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A B S T R A C T

Recently, the convolutional neural network (CNN) has achieved great progress in many computer vision tasks
including object detection, image restoration, and scene understanding. In this paper, we propose a novel
CNN-based saliency detection method through dense recurrent connections and residual-based hierarchical
feature integration. Inspired by the recent neurobiological finding that abundant recurrent connections exist
in the human visual system, we firstly propose a novel dense recurrent CNN module (D-RCNN) to learn
informative saliency cues by incorporating dense recurrent connections into sub-layers of convolutional stages.
Then we present a residual-based architecture with short connections for deep supervision which hierarchically
combines both coarse-level and fine-level feature representations. Our end-to-end method takes raw RGB
images as input and directly outputs saliency maps without relying on any time-consuming pre/post-processing
techniques. Extensive qualitative and quantitative evaluation results on four widely tested benchmark datasets
demonstrate that our method can achieve more accurate saliency detection results solutions with significantly
fewer model parameters.

1. Introduction

Saliency detection aims at finding the most distinctive objects in
an image which are consistent with human visual perception. It is
commonly utilized as a preliminary processing step to facilitate a
wide range of applications such as object recognition [1], person
re-identification [2], image retrieval [3], semantic segmentation [4],
scene classification [5], visual tracking [6], video summarization [7]
and so on.

Salient object detection has been attracting great attention, and var-
ious effective computational models have been developed [8–10]. In-
spired by cognitive studies of human visual attention mechanisms [11,
12], many existing approaches make use of different types of saliency
cues (e.g., color [13], texture [14] and contrast [15,16]) and prior
knowledge (e.g., background prior [17], center prior [18] and ob-
jectness prior [19]) to predict salient image regions. However, these
methods rely on hand-crafted features and pre-defined priors, thus are
not capable of generating accurate saliency detection results for images
with complex object–scene contextual interactions and highly cluttered
backgrounds.
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Recently, a number of CNN-based models have been proposed

and achieved impressive performances in large-scale saliency detec-

tion tasks [20–22]. They successfully utilized semantic information

extracted on raw images to overcome the limitations of traditional

hand-crafted ones. It is noted that most state-of-the-art methods are

based on purely feed-forward CNN architectures. However, the latest

studies of human visual system reveal that recurrent connectivities of

synapses in the human brain are essential to perform high-level visual

perception tasks (e.g., object recognition and saliency detection) [23,

24]. Moreover, these models mainly consider the high-level features

extracted in late convolutional stages to generate global saliency pre-

dictions, which are robust to cluttered backgrounds but unfavorably

remove object boundaries and subtle structures. It is important to

incorporate both global and local saliency cues to achieve accurate

detection results [25,26].

To address the above-mentioned limits, we present a novel saliency

detection method based on two major improvements including: (1)

building more informative saliency cues through a novel dense recur-

rent CNN module (D-RCNN) and (2) integrating multi-level feature
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Fig. 1. Comparative results of different saliency detection methods. (a) Input images;
(b) Results of DSS [25]; (c) Results of Amulet [27]; (d) Our results. (e) Ground truth.

maps via a residual-based architecture with short connections. The lat-
est experiments reveal that ubiquitous recurrent connections in human
brains are essential for high-level vision task performance. Inspired
by this neurobiological finding, we first present the D-RCNN module
to extract more representative salient cues by adding dense recurrent
connections within each convolutional stages of the feed-forward CNN
architecture. It is noted that the extracted high-level features provide
global cues to robustly predict the location of salient regions while
local features are useful to estimate accurate boundary between salient
objects and background. Based on this observation, we further develop
a residual-based architecture with short connections to hierarchically
integrate both global and local feature maps for improving the perfor-
mance of saliency detection in terms of both accuracy and robustness.
Our end-to-end method takes whole images as input and directly out-
puts full-size saliency maps without relying on any computationally
expensive post-processing methods. Some comparative results using
different saliency detection methods are shown in Fig. 1. Both source
code and trained model will be made publicly available in the future
to facilitate research in the related domains.

The contributions of this paper can be summarized as follows:

• We propose a novel dense recurrent CNN module (D-RCNN), in
which abundant recurrent convolutional layers (RCL) are added
within each convolutional stages of the feed-forward CNN, to
learn distinctive feature representations and informative saliency
cues.
• We present an effective residual-based deep neural network ar-
chitecture with short connections to optimize the integration of
semantic features and detail features for improving the perfor-
mance of saliency detection in terms of both robustness and
accuracy.
• Experimental results on four public benchmark datasets and com-
parisons with other state-of-the-art approaches demonstrate the
superiority of our proposed method, improving saliency predic-
tion accuracy with significantly fewer model parameters.

2. Related works

We present a review of the most recent studies closely related to our
work below.

2.1. Salient object detection

Many saliency detection models have been proposed since two
decades ago [8–10,28–30]. Traditional saliency detection methods are

typically based on various hand-crafted saliency cues, among which
image contrast is the most widely used one. Ma et al. presented a local
contrast-based saliency analysis model by evaluating the distinctiveness
of each image region with respect to its local neighbors [15]. Achanta
et al. proposed to calculate local image contrast at different scale
levels to generate saliency maps [16]. A noticeable drawback of local
contrast based methods is that they only highlight boundaries but
cannot uniformly identify entire salient objects. To overcome the limit,
Cheng et al. developed a regional contrast (RC) model to firstly divide
an image into various local regions and then assign each region a global
contrast value [31]. Although the global-contrast based models provide
robust localization results of salient objects, they usually fail to preserve
important object details and boundaries. Some researchers attempted
to explore various prior knowledge, such as background prior [17],
compactness prior [32], objectness prior [19], to extract informative
cues for salient object detection. Zhang et al. presented a novel bottom-
up salient object detection approach by exploiting the relationship
between the saliency detection and null space learning [33]. Li et al.
made use of fixation and boundary cues as foreground and background
seeds to construct multiple graphs and then integrated the multiple
graphs and seeds to generate smooth and accurate saliency maps [34].
However, these methods based on hand-crafted features or pre-defined
priors are difficult to detect salient objects with complex textures and
cluttered backgrounds.

2.2. Convolution neural network

Recently, CNN-based models have been utilized to tackle the chal-
lenging saliency prediction tasks, significant bridging the gap between
machine and human visual system [20–22,35]. Attempts are made
to combine both hand-crafted low-level and learning-based high-level
features to improve the performance of saliency detection [36]. Li
et al. proposed a coarse-to-refine approach to detect salient objects
with precise boundary by combining pixel-wise FCN with superpixel-
based CNN [37]. Wang et al. presented a saliency detection algorithm
by integrating both local estimation and global search, which are
individually performed through two deep neural networks [38]. Li
et al. proposed a multi-task deep salient object detection model by
exploring the inherent correlations between saliency detection and
semantic image segmentation [39]. Zhao et al. proposed a multi-context
deep learning framework for robust salient object detection when the
foreground objects share similar appearance with backgrounds [40]. A
noticeable drawback of these deep network models is that the generated
saliency maps typically contain blurred and inaccurate boundaries since
it is difficult to discriminate pixels around the object boundaries.

Zhang et al. presented a generic aggregating multi-level convo-
lutional feature framework for accurate salient object detection by
incorporating both coarse semantics and fine details [27]. Hu et al. pro-
posed a deep level set network to generate salient objects with accurate
boundaries [41]. Hou et al. adopted the fully connected conditional
random field (CRF) as a selective layer during the inference phase
to improve spatial coherence and quality of their saliency maps [25].
However, such post-processing techniques are usually time-consuming
thus significantly decrease the computational efficiency of saliency de-
tection methods. Wang et al. proposed to neural networks with a novel
pyramid pooling module and a multi-stage refinement mechanism [42].
Zhang et al. proposed a novel bi-directional message model to integrate
multi-level features for salient object detection [43].

2.3. Recurrent convolution neural network

The latest neuroscience researches reveal that abundant recurrent
connections of synapses exist in the human brain. They provide critical
functionalities to support high-level visual perception tasks (e.g., ob-
ject recognition and saliency detection) [23,24,44]. Therefore, it is
important to include a recurrent mechanism within the feed-forward
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Fig. 2. The overall architecture of our proposed model. Firstly, multi-scale feature extraction at individual convolutional stages via a number of D-RCNN modules (D-RCNN1,
D-RCNN2, …, D-RCNN5). Then the extracted features are hierarchically integrated through a residual-based architecture. The model is trained in an end-to-end manner to optimize
saliency detection results generated at different scale levels.

CNN architectures for improving the accuracy and efficiency of saliency
detection models. A more neurobiologically realistic recurrent neu-
ral network (RNN) model is initially proposed for sequential data
processing tasks such as handwriting recognition [45,46] and speech
recognition [47] and outperforms feed-forward models. Liang et al.
presented a recurrent CNN (RCNN), which contains both feed-forward
and recurrent connections, to utilize context information for more
accurate object recognition [23]. Wang et al. proposed a saliency
prediction model using recurrent fully convolutional networks (RFCNs)
to refine saliency maps and to precisely describe the compact and
boundary-preserving object regions [48]. Liu et al. proposed an end-
to-end deep network, in which a hierarchical recurrent convolutional
neural network is applied to refine the saliency maps by integrating
local context information [26]. Deng et al. proposed a novel recurrent
residual refinement network (R3Net) equipped with residual refinement
blocks (RRBs) to detect salient regions of an input image [49]. Wang
et al. proposed a global Recurrent Localization Network (RLN) to
localize accurate salient objects, exploiting contextual information by
the weighted response map [50]. Zhang et al. proposed a progressive
attention guided recurrent network with multi-path recurrent feedback
to enhance multi-level contextual information integration [51].

Our proposed approach differs from the methods mentioned above
in two significant aspects. Firstly, a novel dense recurrent CNN module
(D-RCNN) is proposed to extract more informative saliency cues based
on the latest neurobiological finding that abundant recurrent connec-
tions exist in human brains for high-level vision task performance.
The proposed D-RCNN module extracts more representative image
features by adding dense recurrent convolutional layers within each
convolutional stages of a feed-forward CNN model. In contrast, existing
RCNN-based models only add recurrent connections to the last layer
of each stage [23,26]. Secondly, our method employs a residual-based
architecture with short connections to integrate multi-level feature
maps. This end-to-end architecture effectively utilizes global and local
features for robust object prediction and accurate detail restoration,
respectively. Therefore it successfully overcomes limits of other CNN-
based saliency detection models such as generating inaccurate or blurry
object boundaries [38–40] and relying on additional post-processing
techniques [25,48].

3. Proposed method

As illustrated in Fig. 2, the proposed method consists of two main
components including (1) multi-scale feature extraction via D-RCNN
modules, (2) residual-based hierarchical feature integration and deep
supervision. The two components are jointly trained in an end-to-
end manner to optimize saliency detection results generated at differ-
ent scale levels. When testing, the model feed-forwards a raw image
through the network and directly outputs high-accuracy saliency maps
without using any post-processing methods.

3.1. Dense recurrent convolutional neural network

We build our architecture based on the pre-trained VGG-16 model
[52]. VGG-16 model has been successfully used as the backbone in
many visual perception tasks and achieved state-of-the-art results.
The VGG-16 model consists of five feed-forward convolutional stages
(Conv1, Conv2, Conv3, Conv4, and Conv5) and each stage contains
a number of sub-layers. In order to include a recurrent mechanism
within the feed-forward CNN architectures, a number of recurrent con-
volutional layers are connected to the last sub-layer of convolutional
stages in the VGG-16 network ( Conv1-2, Conv2-2, Conv3-3, Conv4-3,
and Conv5-3). The states of recurrent convolutional layers evolve over
discrete time steps to integrate context information which is critical
for high-level visual perception tasks. Inspired by the success of RCNN
models [23,26,48], we propose a novel Dense Recurrent Convolutional
Neural Network (D-RCNN) model to combine outputs of different sub-
layers with a convolutional stage. Different from the RCNN model in
which only the final output of a convolutional stage gets involved
in recurrent interactions, D-RCNN adds recurrent connections within
different sub-layers of a convolutional stage as illustrated in Fig. 3.

The net input zijk(t) of a neural unit located at (i, j) on the kth
feature map in the standard RCNN model [23,26] at time step t is
calculated as

zijk(t) = (w
f

k
)T u(i,j) + (wr

k
)T x(i,j)(t − 1) + bk, (1)

where u
(i,j) is the feed-forward output of the last sub-layer of a convo-

lutional stage, x(i,j)(t− 1) is the recurrent output at previous time t− 1,
w
f

k
and w

r
k
denote the vectorized feed-forward weights and recurrent
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Fig. 3. The overall architecture of (a) a standard RCNN model [23,53] and (b) the
proposed D-RCNN. Note the RCNN model only connects recurrent convolutional layers
to the last sub-layer of a convolutional stage while the D-RCNN model adds dense
recurrent connections to each sub-layers. Comparative evaluation results of these two
models are provided in Section 4.3.1.

weights, respectively, and bk is the bias. Instead of only integrating
the output of the last convolution sub-layer in recurrent interactions,
we add dense recurrent convolutional connections within different sub-
layers of a convolutional stage. The input of a neural unit in D-RCNN
becomes

zijk(t) =

min(t+1,Lmax)∑

m=1

(
(w

f

mk
)T u(i,j)

m

)
+ (wr

k
)x(i,j)(t − 1) + bk, (2)

where u
(i,j)
m is the feed-forward output of the mth sub-layer in a convo-

lutional stage from bottom to top, wf

mk
is the vectorized feed-forward

weights of this sub-layer, and Lmax denotes the maximum number
of sub-layers in this convolutional stage. In the pre-trained VGG-16
model, Lmax are set to 2, 2, 3, 3 and 3 for convolutional stage 1–5,
respectively. The activity of this unit is calculated as

xijk(t) = f (zijk(t)), (3)

where f is the Rectified Linear Unit (ReLU) activation function. It is
noted that the state of a unit in D-RCNN depends on both the recurrent
signal evolves over iterations and the feed-forward inputs from all
sub-layers in a convolutional stage.

Although D-RCNN and RCNN models both consist of a number of
RCLs, they are very different in two major aspects. First, the RCNN
models typically add recurrent connections to the last sub-layer of
a convolutional stage [23,26], thus only the final output of a con-
volutional stage is used to generate context information for saliency
detection. In comparison, the D-RCNN model introduces dense recur-
rent connections to utilize outputs of each sub-layers for improving the
ability of the model to integrate context information, thus constructs
more representative features. Second, D-RCNN model provides more
path options between the input layer to the output layer to improve
gradient back-propagation during network training. For instance, the
dense recurrent layers connected to the first sub-layer in a convolu-
tional stage (e.g., Con1-1, Con2-1, Con3-1, Con4-1, and Con5-1) add
shorter paths by bypassing all feed-forward convolutional layers and
recurrent convolutional layers, while the RCNN model can only bypass
the recurrent convolutional layers. More comparative evaluation results
are provided in Section 4.3.1.

3.2. Residual-based hierarchical feature integration and deep supervision

Using the proposed D-RCNN modules, a number of scale-dependent
feature maps Xn (n = 1, 2.., 5) are extracted in convolutional stages Con-
1, Con-2, Con-3, Con-4, and Con-5, respectively. It is well-known that
the feature maps extracted in deeper layers encode high-level scene
information to estimate the global location of salient regions, while the

rich low-level features learned in shallower layers are useful to refine
accurate boundaries of objects [25,26,54]. It is reasonable to utilize
both high-level and low-level features extracted in layers with different
depths for robust and accurate saliency detection. Instead of directly
combining feature maps extracted in different layers through the simple
concatenation technique [21,25,55], we introduce a residual-based
module for effective step-by-step feature integration which leads to the
performance gain of saliency detection by adding more gradient back-
propagation path options to facilitate better network training. Residual
module is initially proposed by He et al. for image recognition [56],
and then has been successfully utilized for other computer vision
tasks [57–59].

The detailed architecture of residual-based hierarchical feature in-
tegration (RHI) is shown in Fig. 4. In convolutional stage n, the output
of D-RCNN module Xn is combined with the residual output Rn of stage
n + 1 to generate the fused feature map Fn as

Fn = f cat(Xn,Rn), (4)

where f cat represents the concatenation operation stacking Xn and
Rn feature maps at the same spatial locations but across the feature
channels. In the last convolutional stage (n = 5), we set R5 = X5

since it cannot be computed in a deeper convolutional stage. The fused
feature map Fn then goes through a residual function, which consists
of 2 convolutional layers, 2 ReLU layers and a 2 × 2 deconvolutional
layer (double the size of feature map), to compute the residual feature
map Rn−1 for feature integration at stage n − 1. The fused feature
map Fn is utilized to generate saliency perdition in stage n through a
deconvolutional layer. For example, when n = 5, the size of feature
maps X5 and R5 is 16 × 16, and after the 16 × 16 Deconvolution layer,
the size of output is 1 × 256 × 256.

Let
{
(Im, Ym), m = 1, 2,… ,M

}
denote the training dataset, where

Im =
{
im
j
, j = i,… , |Im|

}
is the input image with |Im| pixels and Ym =

{
ym
j
, j = i,… , |Ym|

}
, ym

j
∈ [0, 1] denotes the corresponding ground truth

saliency map of image Im. y
m
j
= 1 is foreground pixel and ym

j
= 0 is a

background pixel. In addition,Wf ,Wr andW
res denote the parameters

of the feed-forward VGG-16 model, the recurrent D-RCNN modules,
and the residual-based feature integration modules, respectively. The
sigmoid cross entropy loss function Ln

f
in convolutional stage n is

defined as

Ln
f
= −

∑

j

{yj logPr(oj |I ;Wf ,Wr,Wres)

+(1 − yj ) logPr(oj |I ;Wf ,Wr,Wres)},

(5)

where Pr(oj |I ;Wf ,Wr,Wres) represents the confidence score of a pixel
belongs to the foreground. The confidence score is calculated using the
sigmoid function as

Pr(oj |I ;Wf ,Wr,Wres) =
1

1 + es
, (6)

where s is the pixel value in the last convolution layer of our architec-
ture. The final multi-loss function Lf is defined as

Lf (W
f ,Wr,Wres) =

N∑

l=1

�lL
l
f
(Wf ,Wr,Wres), (7)

where N = 5, and �l = 1(l = 1, 2..., 5). The Adaptive Moment Estimation
(Adam) method [60] is used to compute the optimal parameters as

(Wf∗,Wr∗,WRes∗) = argminLf (W
f ,Wr,Wres), (8)

As mentioned above, it is critical to develop an effective feature
fusion scheme to combine both global and local features for accu-
rate saliency detection. Instead of directly combining scale-dependent
feature representations through a simple concatenation/sum opera-
tion [21,25,27], we make use of a residual module to perform hierarchi-
cal feature integration from coarse to fine. The residual module, which
consists of a number of feed-forward layers and shortcut connections,

106



Y. Cao, G. Fu, J. Yang et al. Signal Processing: Image Communication 78 (2019) 103–112

Fig. 4. The detailed architecture of the residual-based step by step feature integration
between two adjacent stages.

provides multiple path options to facilitate better network training.
More specifically, the longer paths (going through feed-forward layers
in the residual modules) improve the capability of a network to con-
struct more complex/distinctive features, while the shorter paths (by-
passing feed-forward layers through shortcut connections) strengthen
the gradient back-propagation process and make models easier to op-
timize [56]. The comparative evaluation of a number of alternative
fusion architectures is provided in Section 4.3.2.

It is worth mentioning that the architecture of our proposed method
is very different from the ones used in Amulet [27] and DHS [26] in
two aspects. In the feature extraction stage, Amulet and DHS utilize
the output of the last feature layer in each scale. In comparison, we
apply a dense recurrent convolutional neural network to enhance the
extracted features in different scales. In the feature integration stage,
Amulet utilizes a simple concatenation function to combine feature
maps extracted at different convolutional states and DHS made use of
a recurrent neural network (RNN) to combine coarse and fine features
adaptively. In comparison, we propose a residual-based architecture for
hierarchical feature integration.

4. Experiments

In this section, we describe the training/testing datasets and evalua-
tion criteria and provide implementation details of our proposed model.
The proposed approach is systematically evaluated and compared with
the state-of-the-art alternatives.

4.1. Datasets and evaluation metrics

We make use of 10,000 images from MSRA10k dataset [31] as the
training dataset. Most of the images in this dataset contain only one
salient object. Some standard image augmentation techniques (e.g., im-
age rotation, cropping, and flipping) are applied to increase the va-
rieties of training data. In total, we obtain 80,000 images with high-
quality pixel-wise annotations. For the performance evaluation, we
consider four public saliency detection benchmark datasets including
ECSSD [61], PASCAL-S [62], HKU-IS [63], and DUT-OMRON [8].
ECSSD contains 1000 semantically meaningful but structurally complex
natural images with objects of different sizes. PASCAL-S contains 850
challenging natural images which are selected from the validation set
of the PASCAL VOC 2010 segmentation dataset. HKU-IS is a recently
released dataset containing 4447 images with high-quality pixel-wise

annotations. Images of this dataset are chosen to include multiple
disconnected salient objects or objects touching the image boundary.
DUT-OMRON is another challenging dataset which has 5168 images
and each image contains one or more salient objects and complex
backgrounds. All these datasets are manually annotated with pixel-wise
ground-truth.

We adopt the most commonly used evaluation metrics, F-measure
and Mean absolute error (MAE), to evaluate the performances of dif-
ferent saliency detection methods. F-measure is a harmonic mean of
average precision and average recall, which is calculated as

F� =
(1 + �2) × Precision × Recall

�2 × Precision + Recall
, (9)

where Precision and Recall are computed by thresholding the predicted
saliency map and comparing the binary map with the ground truth.
Here we set the balance parameter �2 = 0.3 to emphasize the impor-
tance of precision [64]. We also consider another evaluation index MAE
which is calculated as

MAE =
1

W ×H

W∑

x=1

H∑

y=1

|S(x, y) − G(x, y)|, (10)

where W and H are the width and height of the input image, S(x, y)
is the computed saliency map, and G(x, y) is the ground truth. This
metric provides a comprehensive evaluation of the overall detection
performance in both salient and non-salient regions.

4.2. Implementation details

Our network is implemented using the publicly available Caffe
library [65]. All input images are resized to 256 × 256 for training
and testing. The parameters of multi-scale feature extraction layers
are initialized according to the pre-trained VGG-16 model. Parameters
of newly added convolutional layers are initialized randomly using
the ‘‘Xavier’’ method [66]. The parameters of recurrent convolutional
layers are provided in Table 1. Note the channel number of each
convolutional layer is set to 64 to reduce the size of our model, and
larger kernels are employed in deeper layers to facilitate larger recep-
tive fields. Our network is trained using Adaptive Moment Estimation
(Adam) method [60]. The batch size is set to 4 for all experiments.
We use the ‘‘step’’ learning policy, and set base learning rate to 10−4,
gamma to 0.1, step size to 20,000, weight decay to 10−4, momentum
to 0.9, and iter_size to 8. To avoid exploding gradient problems in
the training process [67], we clip gradients when the L2 norm of
the gradients exceeds 35. It takes about 35 h to train our model on
a single NVIDIA TITAN X GPU (12G memory) and a 2.6 GHz Intel
Xeon processor. The source code will be made publicly available in the
future.

4.3. Experimental results

We first evaluate the effectiveness of two main components of
our method including feature extraction based on D-RCNN modules
and residual-based hierarchical feature integration. Then we provide
qualitative and quantitative evaluation results of our saliency detection
method and a number of state-of-the-art ones. For a fair comparison, we
only consider a number of approaches based on the pre-trained VGG-16
model [52].

4.3.1. D-RCNN modules
Inspired by the latest neurobiological finding, we integrate re-

current convolutional layers into the feed-forward CNN architecture
(VGG-16 model [52]) to improve its ability to extract distinctive and
scale-dependent feature maps in individual convolutional stages. Dif-
ferent from the existing RCNN-based models [23,26], our D-RCNN
module adds dense recurrent connections within each convolutional
stages of the feed-forward CNN, as illustrated in Fig. 3. We perform
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Fig. 5. Illustration of different architectures for multi-scale feature integration and deep supervision including (a) DCL [21]; (b) HED [55]; (c) DSS [25]; and (d) Ours. GT denotes
the ground truth saliency map.

Fig. 6. The architecture of D-RCNN modules with (a) two and (b) four recurrent steps.

Table 1
The detailed configurations of recurrent layers in D-RCNN models in different
convolutional stages.

Layer name Kernel size Pad Channel

Conv1-a 1 × 1 1 64
Conv1-b 3 × 3 1 64
Conv1-c 3 × 3 1 64

Conv2-a 3 × 3 1 64
Conv2-b 3 × 3 1 64
Conv2-c 3 × 3 1 64

Conv3-a 3 × 3 1 64
Conv3-b 3 × 3 1 64
Conv3-c 3 × 3 1 64
Conv3-d 3 × 3 1 64

Conv4-a 3 × 3 1 64
Conv4-b 3 × 3 1 64
Conv4-c 3 × 3 1 64
Conv4-d 5 × 5 2 64

Conv5-a 5 × 5 2 64
Conv5-b 5 × 5 2 64
Conv5-c 5 × 5 2 64
Conv5-d 7 × 7 3 64

saliency detection using D-RCNN and two other baseline models on
ECSSD [61] and PASCAL-S [62] benchmark datasets. The first baseline
model (Plain) is a conventional feed-forward CNN without any re-
current connections (VGG-16 model [52]). The second baseline model
(RCNN) is constructed by adding recurrent convolutional layers to
the last sub-layer of each convolutional stages. Moreover, we set up
experiments to evaluate the performance of D-RCNN and RCNN models
with different recurrent steps. More specifically, we set the recurrent
time step t to 2, 3 and 4 for both RCNN and D-RCNN modules. The
architectures of D-RCNN modules with 2 and 4 recurrent steps are
provided in Fig. 6. For a fair comparison, we directly utilize the output
of RCNN/D-RCNN in the last stage of VGG16 to generate saliency
predictions without using any feature integration or deep supervision
techniques. The performances (F� and MAE) of Plain (no recurrent
layers), RCNN, and D-RCNN models are quantitatively compared in
Table 2.

Table 2
The comparative evaluation of different modules (Plain, RCNN, and D-RCNN) on
ECSSD and PASCAL-S benchmark datasets. Here we directly utilize the output of
RCNN/D-RCNN in the last stage of VGG16 to generate saliency predictions without
using any feature integration or deep supervision techniques. Note higher F� and lower
MAE indicate better saliency detection performance.

Model Dataset

ECSSD PASCAL-S

F� MAE F� MAE

RCNN
t = 2 0.821 0.085 0.751 0.139
t = 3 0.826 0.085 0.756 0.139
t = 4 0.818 0.082 0.740 0.135

D-RCNN
t = 2 0.838 0.080 0.765 0.126
t = 3 0.849 0.075 0.769 0.126
t = 4 0.843 0.078 0.762 0.128

Plain – 0.785 0.105 0.728 0.158

We observe that better detection performance can generally be
achieved by incorporating recurrent connections into the feed-forward
CNN model. This improvement enhances the ability of the model to
integrate the context information for more accurate salient region
detection. With three recurrent steps (t = 3), F� index is increased
from 0.785 (Plain) to 0.826 (RCNN) and MAE is decreased from 0.105
(Plain) to 0.085 (RCNN) in ECSSD dataset. In PASCAL-S dataset, these
two evaluation metrics are also improved by 3.8% and 12.0%, respec-
tively. Moreover, our proposed D-RCNN model can further boost the
accuracy of detection results by adding dense recurrent convolutional
layers between sub-layers within a single convolutional stage. With
three recurrent steps (t = 3), F� is significantly increased from 0.826
(RCNN) to 0.849 (D-RCNN) and MAE is further decreased from 0.085
(RCNN) to 0.075 (D-RCNN) in ECSSD dataset. It is worth mentioning
that D-RCNN modules with different recurrent steps (2, 3 and 4) all
achieve more accurate saliency detection results. Experimental results
demonstrate that D-RCNN provides a more effective way to extract
representative feature maps in individual convolutional stages by uti-
lizing information from more sub-layers and adding more path options
between the input and output layers. We empirically found that the
D-RCNN module with three recurrent steps (t = 3) achieves the highest
F� and the lowest MAE values, therefore we adopt D-RCNN (t = 3)
for feature extraction in following experiments. In the future, we plan
to set up experiments to investigate other alternatives to optimize the
architecture of D-RCNN module (e.g., using how many recurrent steps
in each convolutional stages).

4.3.2. Residual-based hierarchical feature integration and deep supervision
Then we compare the residual-based hierarchical feature integration

(RHI) with a number of alternatives in an attempt to identify the
optimal multi-stage feature integration architecture for salient region
detection. Besides our proposed RHI, we consider three other alter-
natives including DCL [21], HED [55], and DSS [25] as illustrated
in Fig. 5. In DCL architecture, feature maps extracted in multiple
stages are directly combined to generate a final prediction for network
training. In HED architecture, features maps extracted in different scale
are individually utilized to generate multiple prediction results for
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Fig. 7. Visual comparison with state-of-the-art detection methods. (a) Input image; (b) DRFI [68]; (c) DSR [69]; (d) DS [39]; (e) Amulet [27]; (f) UCF [35]; (g) DCL [21]; (h)
DSS [25]; (i) Ours; (j) Ground Truth. Saliency maps or source codes of different methods are provided by their authors.

deep supervision. In DSS architecture, a series of short connections
are introduced to combining global features extracted in deeper layers
and local features extracted in shallower layers. In comparison, RHI
architecture employs a number of residual modules to combine multi-
scale features from coarse to fine hierarchically. Their comparative
results are shown in Table 3. In our experiments, we use the ‘‘step’’
learning policy, and set base learning rate to 10−4, gamma to 0.1,
step size to 20,000, weight decay to 10−4, momentum to 0.9, and
iter_size to 8. It is noted that models incorporating different feature
integration schemes (HED [55], DSS [25] and our proposed RHI)
can all converge properly except the one based on the DCL feature
integration architecture [21]. Therefore the performance of DCL feature
integration scheme is significantly worse than the results of others.
Our experimental results suggest that directly combining feature maps
extracted in multiple stages to generate a final prediction for network
training is not very stable. It is also observed that RHI outperforms
other architectures since residual modules can both deploy longer paths
for constructing distinctive feature maps and shorter paths for fast
gradient back-propagation.

Our model is constructed based on the VGG-16 model which con-
tains 5 convolutional stages. During the training process, 5 differ-
ent predictions are computed in each stage to supervise the learning
process. In Table 4, we evaluate the detection accuracy of different
predicted saliency maps. It is noted that the last prediction achieves
the highest F� and lowest MAE. Therefore, only the last prediction is
calculated as the final saliency map to decrease the deployment time
of the model.

4.3.3. Comparison with state-of-the-art
In this section, we compare our proposed method with the state-

of-the-art saliency detection methods including DRFI [68], DSR [69],

Table 3
Comparative evaluation of different feature integration techniques on ECSSD and
PASCAL-S dataset. Note higher F� and lower MAE indicate better saliency detection
performance.

Models Dataset

ECSSD [61] PASCAL-S [62]

F� MAE F� MAE

DCL [21] 0.280 0.235 0.330 0.241
HED [55] 0.860 0.103 0.745 0.145
DSS [25] 0.869 0.071 0.790 0.105
RHI 0.887 0.053 0.802 0.093

Table 4
The performance of five different predictions (P1, P2, . . . , P5) in ECSSD dataset. Note
higher F� and lower MAE indicate better saliency detection performance.

P1 P2 P3 P4 P5

F� 0.853 0.874 0.881 0.885 0.887
MAE 0.066 0.065 0.056 0.054 0.053

NS [33], DS [39], Amulet [27], DHS [26], UCF [35], DCL [21] and
DSS [25] in terms of both prediction accuracy and execution speed. The
first two methods are based on traditional hand-crafted features and
the remaining ones are deep learning based. For a fair comparison, we
use either the implementations with recommended parameters or the
saliency maps provided by the authors.

Fig. 7 provides several visual comparison results where our method
outperforms the approaches mentioned above and some failure ex-
amples. It is observed that our method successfully highlight salient
regions while suppressing background distraction, thus it can generate
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Table 5
Comparison of quantitative results (average F� and MAE) of different saliency detection methods. The top three results are
highlighted in red, green, and blue, respectively. DL denotes the method is deep learning based. SP denotes the method
utilizes superpixels over-segmentation. CRF denotes the method adopts a conditional random field (CRF) model during the
inference phase. Note higher F� and lower MAE indicate better saliency detection performance.

Table 6
The running time and model size of several deep-learning based methods. All methods
are conducted in a PC with a single NVIDIA TITAN X GPU (12G memory) and a 2.6 GHz
Intel Xeon processor. Note DSS method is not purely deep-leaning based and requires
another 0.4 s for its CRF model.

Running time (s) Model size (MB)

Ours 0.038 67
Amulet [27] 0.043 118
UCF [35] 0.063 132
DHS [26] 0.043 358
DSS [25] 0.08 + 0.4 237

connected salient regions and impose sharp boundaries between fore-
ground and background as illustrated in the 1–3 rows. Images in the
4–6 rows contain extremely clustered background and the foreground
objects have similar appearances with backgrounds. In these challeng-
ing cases, most of the compared methods fail to identify the salient
objects while our method successfully detects them with high precision.
We also show some failed saliency detection examples which are the
cases that the background image has high contrast (e.g., Row 7). It is
noted that our detection results are not as good as the ones involving
an additional inference phase (e.g., using the CRF model [25]) to
improve the spatial coherence of saliency detection results when fore-
ground objects have similar appearances with backgrounds (e.g., Row
8). However, such post-processing techniques are time-consuming thus
significantly decrease the computational efficiency of saliency detection
methods.

Table 5 shows the comparative results of our method and state-of-
the-art ones. It is observed that deep learning based methods signifi-
cantly outperform the hand-crafted ones which reaffirm the superior-
ity of deep neural network models for saliency detection. Compared
with three other purely deep-learning based methods (Amulet [27],
UCF [35], DHS [26]), our method achieves higher F� values in all
four datasets (increasing F� by 1.0% in ECSSD, 4.8% in PASCAL-S,
1.7% in HKU-IS, and 4.5% in DUT-OMRON. Also, it produces lower
MAE results in the DUT-OMRON and HKU-IS datasets. DSS is the only
method outperforms ours, but it adopts a time-consuming conditional
random field (CRF) model to improve spatial coherence and quality of
saliency maps which significantly decrease its computational efficiency.

Another advantage of our method is that it runs faster and requires
smaller storage space as illustrated in Table 6. All models were tested
with 256 × 256 × 3 RGB images. The running times of these methods
are evaluated using a PC with a single NVIDIA TITAN X GPU (12G
memory) and a 2.6 GHz Intel Xeon processor. Our method run 13.2%
faster than the second faster one (Amulet [27]) and its model size is de-
creased almost by half. Our method can process 26 FPS which is almost
a real-time speed. It is worth mentioning that although DSS method
performs better than ours, it involves a conditional random field (CRF)

model to refine saliency maps which is very time-consuming (requires
extra 0.4 s for CRF) and unsuitable for real-time implementation.

5. Conclusion

Recently, a number of CNN-based models are utilized to improve
performances of the challenging saliency prediction task. However,
most state-of-the-art methods are based on purely feed-forward CNN
architectures which do not contain important recurrent connections for
performing high-level visual perception tasks. Moreover, it still remains
an open question what the optimal strategy to combine global and
local saliency cues for accurate salient object detection is. In this paper,
we present two significant improvements in an attempt to address the
above problems. Firstly, we present a novel D-RCNN module to extract
more representative salient cues by adding dense recurrent connections
within each convolutional stages of the feed-forward CNN. Secondly,
we develop a residual-based architecture to hierarchically integrate
both global and local feature maps for improving both the accuracy
and robustness of saliency detection. Both qualitative and quantitative
evaluation results on multiple benchmark datasets demonstrate that our
method achieves more accurate saliency detection results than most
state-of-the-art solutions with significantly fewer model parameters.
Our approach runs almost in real-time (26 fps), therefore it can be uti-
lized as a pre-processing technique to improve the performance of other
high-level computer vision applications such as target recognition, per-
son re-identification, abnormalities detection, scene understanding and
so on. In the future, we plan to optimize the architecture of D-RCNN
module (e.g., what is the optimal way to set up connections between
recurrent layers and the convolutional layer of the feed-forward CNN).
Also, it would be interesting to apply D-RCNN and RHI to other pre-
trained CNN models such as ResNet [56] and GoogLeNet [70] to verify
the effectiveness of the proposed methods.
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