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Abstract

Motivation: Population-scale sequenced cohorts are foundational resources for genetic analyses, but processing
raw reads into analysis-ready cohort-level variants remains challenging.

Results: We introduce an open-source cohort-calling method that uses the highly accurate caller DeepVariant and
scalable merging tool GLnexus. Using callset quality metrics based on variant recall and precision in benchmark
samples and Mendelian consistency in father-mother-child trios, we optimize the method across a range of cohort
sizes, sequencing methods and sequencing depths. The resulting callsets show consistent quality improvements
over those generated using existing best practices with reduced cost. We further evaluate our pipeline in the deeply
sequenced 1000 Genomes Project (1KGP) samples and show superior callset quality metrics and imputation refer-
ence panel performance compared to an independently generated GATK Best Practices pipeline.

Availability and implementation: We publicly release the 1KGP individual-level variant calls and cohort callset
(https://console.cloud.google.com/storage/browser/brain-genomics-public/research/cohort/1KGP) to foster addition-
al development and evaluation of cohort merging methods as well as broad studies of genetic variation. Both
DeepVariant (https://github.com/google/deepvariant) and GLnexus (https://github.com/dnanexus-rnd/GLnexus) are
open-source, and the optimized GLnexus setup discovered in this study is also integrated into GLnexus public
releases v1.2.2 and later.

Contact: cym@google.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequencing a single individual can identify variants informative for
diseases (Yang et al., 2013), traits (Welter et al., 2014) and ancestry
(The 1000 Genomes Project Consortium, 2010). Jointly using se-
quence data of multiple individuals can discover rare genetic dis-
eases (Ramoni et al., 2017). Population-scale sequencing generates
annotation resources for clinical sequencing, such as dbSNP (Sherry,
2001), ExAC (Lek et al., 2016), DiscovEHR (Dewey et al., 2016),
TOPMed (Taliun et al., 2019) and gnomAD (Karczewski et al.,
2020), and enables well-powered association studies (Ozaki et al.,
2002) in large datasets of sequenced and phenotyped individuals
(Bycroft et al., 2018).

Single-sample variant calling methods (Garrison and Marth,
2012; Kim et al., 2018; Luo et al., 2019; McKenna et al., 2010;
Poplin et al., 2018b) use sequence reads mapped to a reference gen-
ome to identify and genotype positions which differ from the refer-
ence. Many variant callers support the generation of Genome
Variant Call Format (gVCF) outputs, which supplement the variant

calls with block records of non-variant regions annotated with con-
fidence estimates that the regions match the reference genome. Joint
genotyping tools such as GATK GenotypeGVCFs (Poplin et al.,
2018a) and GLnexus (Lin et al., 2018) transform a cohort of gVCFs
into a project-level VCF that contains a complete matrix of every
variant in a cohort with a call for each sample. Compared to a full
joint-calling strategy, joint genotyping both substantially reduces
the size of required input data and avoids the need to fully reprocess
all samples when adding samples to an existing cohort.

Joint genotyping of large cohorts introduces unique challenges.
Harmonizing the representation of overlapping alleles is algorith-
mically intricate, and the number of overlapping alleles increases
with cohort size. In addition, even with high single-sample variant
calling accuracy, many samples will aggregate a large number of
total errors. At the same time, large cohorts present unique opportu-
nities to increase accuracy. Cross-referencing genotype likelihoods
across a cohort can help refine calls and filter errors, for example by
identifying recurrent artifacts that violate Hardy-Weinberg equilib-
rium (HWE) (Hardy, 1908).
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Here, we introduce a framework to generate highly accurate and
scalable cohort callsets with DeepVariant, using its superior calibra-
tion of variant confidences and high single-sample accuracy (Poplin
et al., 2018b). We adapt the scalable joint genotyper GLnexus (Lin
et al., 2018) to DeepVariant gVCFs and tune filtering and genotyp-
ing parameters to optimize performance for whole-genome sequen-
ces (WGS) and whole-exome sequences (WES) across a range of
sequence coverages and cohort sizes. We compare the resulting call-
sets to analogous callsets generated by the broadly used GATK Best
Practices (DePristo et al., 2011) which serve as current state-of-the-
art benchmarks. Finally, we apply the optimized method to the re-
cent deep sequencing of the 1000 Genomes Project (1KGP) phase 3
samples (The 1000 Genomes Project Consortium, 2015). We evalu-
ate the resulting callset across multiple quality metrics and perform-
ance as an imputation reference panel against a callset
independently generated using a GATK Best Practices pipeline.

2 Materials and methods

2.1 Data acquisition and preparation
Throughout this study we use the human GRCh38 reference genome
with no ALT contigs. We use 7 WGS samples (HG001-HG007), 2
WES samples (HG001, HG002) from Genome in a Bottle (GIAB)
project (Zook et al., 2014, 2019), 929 WGS and 346 WES samples
from Clinical Sequencing Evidence-Generating Research (CSER)
(Amendola et al., 2018), and finally 313 WGS samples from
Population Architecture Using Genomics and Epidemiology (PAGE)
(Matise et al., 2011). All WGS samples are deeply sequenced at 40–
50� coverage. We identify 249 disjoint trios in CSER WGS samples,
among which we randomly selected five WGS trios and five WES
trios (Supplementary Table S3) among non-outliers to use for
Mendelian violation rate estimation during callset evaluation. To
identify the outlier samples, we examined six variant summary sta-
tistics for each sample: the number of total records, SNPs and indels,
the Ti:Tv ratio, the mean SNP quality and the mean indel quality.
Non-outliers are defined as the samples whose z-scores for all six
statistics are at most one.

We created custom WGS cohorts of size 3, 100, 333 and 1247
and a WES cohort of size 346 using the above samples
(Supplementary Tables S2 and S8) for which both GIAB concord-
ance and Mendelian violation rate could be evaluated. We used the
GIAB benchmark variant v3.3.2 to evaluate concordance. Finally,
we created 15� autosomal coverage BAMs from all BAM files from
GIAB, CSER and PAGE datasets by downsampling the full BAMs
with samtools (Li et al., 2009) (‘samtools view -s’).

For our independent evaluation and demonstration with 1KGP,
we used the recent deep sequencing (~30� coverage) of the 1KGP
phase 3 cohort by New York Genome Center. We used third party
tools such as samtools (Li et al., 2009), BWA-MEM (Li, 2013),
samblaster (Faust and Hall, 2014), etc. for data processing steps out-
lined above. Full details can be found in Supplementary Note S2.

2.2 DeepVariant and GLnexus
We used DeepVariant v0.8.0 and the publicly released WGS model
v0.8.0 to generate the single-sample variant calls for all samples in
GIAB, CSER and PAGE. A single-line command to run DeepVariant
in a pre-built docker container is available on the DeepVariant pub-
lic repository (https://github.com/google/deepvariant). The
DeepVariant calls for the sample from 1000 Genomes Project were
generated using a custom model trained exclusively for the NovaSeq
platform. Both the custom model and all single-sample DeepVariant
calls generated by it are publicly available, as described in
‘Availability and Implementation’ in the Abstract.

To merge and evaluate the multiple cohorts in parallel, we
deployed the open-source GLnexus algorithm using Apache Beam
(https://beam.apache.org) on Google internal compute clusters. The
Beam-based pipeline abstracts away the need to specify multi-
threading on a single machine (as is done in the open-source
GLnexus), and deploys hundreds of different parameter configura-
tions on thousands of CPUs. The pipeline produces identical

scientific results to the open-source GLnexus v1.2.2 when run with
the same parameters. To both ensure our train/test dataset split is
non-overlapping and limit computational costs of this study, we
used separate individual chromosomes for pipeline optimization and
evaluation. For consistency with previous studies (Lin et al., 2018;
Poplin et al., 2018b), we used chromosome 2 to optimize the pipe-
line, and computed final performance benchmarks separately on
chromosome 20. The optimized DeepVariant parameters from this
study, which are discussed in detail in Results, are included in open-
source GLnexus v1.2.2 or later versions in two presets: –config
DeepVariantWGS for WGS and –config DeepVariantWES for
WES. After installing the GLnexus command line tool, users can
merge DeepVariant calls in these optimized setups using a single
command like

$ glnexus_cli –config DeepVariantWGS \

deepvariant.*.g.vcf.gz > cohort.bcf

In addition to parameter optimization, we modified the internals
of both DeepVariant and GLnexus for better communication be-
tween the tools and to improve the joint-calling process. All modifi-
cations were incorporated into open-sourced DeepVariant (v0.8.0
or later) and GLnexus (v1.2.2 or later).

2.3 GATK
We followed GATK Best Practices v4.1.2.0 to establish the baseline
performance of each callset generated from GIAB, CSER and PAGE
data. Starting from the BAM files, prepared as described above, we
ran HaplotypeCaller in GVCF mode to call single-sample variants,
followed by GenomicsDBImport and GenotypeGVCFs to consoli-
date and jointly genotype the cohort, and finally
VariantRecalibrator and ApplyVQSR for variant quality score reca-
libration (VQSR) (see Supplementary Note S3 for full details). We
performed the steps on each chromosome separately in parallel and
combined calls at the end to speed up the process. Cost benchmark-
ing was performed on chromosome 20. For the 1KGP samples, we
downloaded the GATK cohort callset independently generated by
the New York Genome Center using samtools v1.3.1, Picard v2.4.1
and GATK v3.5. The complete description of the pipeline used to
generate this callset is available on the European Bioinformatics
Institute’s FTP (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_col
lections/1000G_2504_high_coverage/working/20190425_NYGC_
GATK/1000G_README_2019April10_NYGCjointcalls.pdf).

2.4 Single-sample variant call statistics
We used bcftools v1.9 (samtools.github.io/bcftools) and hap.py
v0.3.9 (Krusche et al., 2019) (github.com/illumina/hap.py) to gener-
ate basic call statistics from single-sample VCFs in the GIAB, PAGE
and CSER datasets.

2.5 GLnexus parameter optimization
We used Google Vizier (Golovin et al., 2017), a Google-internal ser-
vice for performing black-box optimization, for optimizing the con-
figurable parameters of GLnexus (Supplementary Table S4). We
constructed an optimization objective function incorporating both
GIAB benchmark call concordance and the rate of Mendelian viola-
tions, and optimized the parameters for this objective in two steps,
first using Pareto-optimal search algorithm to reduce the search
space and then performing an exhaustive grid search within the
reduced parameter space. Complete details of this work can be
found in Results and in Supplementary Note S4.

2.6 1KGP imputation reference panel creation
We generated the 1KGP reference panels from DV-GLN-OPT and
GATK-VQSR callsets (see Results) by applying identical minimal
transformations to them and phasing them with Eagle2 (Loh et al.,
2016). We followed a standard pipeline for generating a reference
panel recommended in Eagle’s website. More details and a script
used for these steps are included in Supplementary Notes S2 and S5.
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2.7 Imputing pseudo-microarray variant calls
To evaluate 1KGP imputation reference panels, we first generated
pseudo-microarray variant calls from GIAB benchmark variants of
HG002 and HG005 in the benchmark regions by extracting the
variant sites used by a popular commercial microarray kit (Illumina
Infinium OmniExpress-24). We obtained the microarray sites from
the CSV manifest file (GRCh38 version) on Illumina’s official web-
site (ftp://webdata2:webdata2@ussd-ftp.illumina.com/downloads/
productfiles/humanomniexpress-24/v1-2/infinium-omniexpress-24-
v1-2-manifest-file-csv.zip) and converted it to VCF format using
Illumina’s GTCtoVCF tool (github.com/Illumina/GTCtoVCF).

Starting from GIAB v3.3.2 benchmark variants for HG002 and
HG005, we removed all existing phasing information from the VCF,
extracted the high-confidence variants in the microarray sites using
bcftools v1.9, and added homozygous-reference genotypes to all
microarray sites not present in GIAB VCFs. We phased the resulting
pseudo-microarray variants with Eagle v2.4.1 using the reference
panel to evaluate (DV-GLN-OPT or GATK-VQSR, see Results) and
the hg38 genetic map file released with Eagle.

Finally, we imputed the phased pseudo-microarray variants with
Beagle v5.0 (Browning et al., 2018) using the same reference panel
used in the phasing step. A complete script for running Beagle can
be found in Supplementary Note S6.

3 Results

3.1 Cohort variant call evaluation strategies
In contrast to single-sample variant calling, for which the Genome
in a Bottle (GIAB) (Zook et al., 2014, 2019) dataset enables broadly
accepted accuracy metrics to benchmark and compare tools and
methods (https://precision.fda.gov/challenges/truth and https://preci
sion.fda.gov/challenges/10), for cohort variant calls there is no exist-
ing standard for comparison. Here we use four different measures of
variant calling accuracy to optimize and evaluate cohort variant
calls, for single nucleotide variants, small indels (excluding struc-
tural variants), and homozygous reference regions. For both opti-
mization and evaluation, we examined two accuracy metrics: (i) we
computed concordance of the Genome in a Bottle (GIAB) HG001-
HG007 benchmark samples to directly measure variant accuracy
within the well-characterized 83% of the genome in the GRCh38
GIAB v3.3.2 benchmark regions, and (ii) we computed Mendelian
violation rates in trios to indirectly measure variant accuracy
genome-wide. For evaluation only, we included two additional in-
direct measures of callset quality: (iii) we computed the ratio of tran-
sitions to transversions (Ti:Tv ratio) of single nucleotide
polymorphisms (SNPs) for all samples to measure deviations from
the expected genome-wide ratio of approximately 2.0–2.1
(Bainbridge et al., 2011), as random genotyping errors would reduce
this ratio, and (iv) we computed deviations from HWE at the cohort
level, which can be indicative of recurrent artifacts in a variant call-
ing algorithm (Graffelman et al., 2017).

3.2 Cohorts used in development and evaluation
Four distinct data sources were used to optimize and evaluate cohort
variant calls. The first data source is the aforementioned GIAB con-
sortium which provides a well-characterized set of truth variants.
To maximize the diversity of samples and sites used for evaluation,
other trios in the cohort were used to compute Mendelian violation
rates (with the sole exception being the three person HG002-
HG003-HG004 cohort) and the children of GIAB trios were
excluded from the GIAB metrics calculations. The second data
source is the Clinical Sequencing Evidence-Generating Research
(CSER) consortium (Amendola et al., 2018), which contains 929
WGS and 344 WES samples, including 249 WGS trios and 112 WES
trios. The third data source is the Population Architecture using
Genomics and Epidemiology (PAGE) consortium (Matise et al.,
2011), which contains 313 WGS. The final data source is the recent
30� WGS of 2504 individuals from 1KGP. We fully withheld the
1KGP cohort from development, only using it as a final independent

evaluation set. Within this cohort, a single cryptic trio (Roslin et al.,
2016) was used to compute Mendelian violation rates.

We performed analyses both at full sequence coverage as well as
in the same cohorts downsampled to 15� coverage. We targeted ro-
bust performance across the diversity of sequencing projects by rep-
resenting cohorts of high and low coverage, WES and WGS, those
sequenced by various groups, on various instruments, and across a
wide array of ancestries.

3.3 Quality properties of single-sample variant calls
We first investigated variant call properties of 1248 individuals from
the GIAB (n¼6), CSER (n¼929) and PAGE (n¼313) cohorts. The
total number of SNPs reported by DeepVariant is lower than
GATK4 HaplotypeCaller for nearly all individuals, and the number
of indels is also lower for most individuals. However, the Ti: Tv
ratio measured in all individuals, and both precision and recall com-
puted separately for SNPs and indels in the six GIAB individuals, are
all higher in DeepVariant than GATK4 HaplotypeCaller
(Supplementary Fig. S1).

To illustrate why different single-sample variant callers require
separate calibration during joint genotyping, we compared
Genotype Quality (GQ) scores estimated by each caller, defined as
the Phred-scaled conditional probability that a genotype is incorrect,
to GQ scores derived empirically from GIAB ground truth (Fig. 1).
In detail, we first binned the variants by their GQ values estimated
by each caller, computed the empirical error rate for variants in each
bin against the GIAB truth, and then converted the empirical error
rate to Phred-scale to obtain the empirical GQ for each bin.
DeepVariant shows markedly better GQ calibration than GATK4
HaplotypeCaller at all reported GQ scores (Fig. 1A, B).
DeepVariant is well-calibrated both across sequence coverages and
when stratified by variant type, with a slight bias toward overconfi-
dence in homozygous alternate SNPs (Supplementary Fig. S2). To
rigorously quantify GQ calibration, we computed the Brier score
(Brier, 1950) and Spiegelhalter’s Z statistic (Spiegelhalter, 1986) by

Fig. 1. Genotype quality (GQ) distribution properties of PASS variants. (A)

Genotype quality calibration for DeepVariant v0.8.0. Reported GQ is plotted

against the empirical GQ calculated using genome-wide GIAB benchmark variant

calls at 40� coverage. Each data point is a set of variant calls with the same GQ (x-

axis), and the y-axis value is the empirical error rate calculated from the GIAB truth

set. Both axes are in Phred-scale. Marker areas are proportional to the square root

of the number of variants. The dotted y ¼ x line represents perfect calibration. (B)

Genotype quality calibration for GATK4 HaplotypeCaller, analogous to (A). (C)

Distributions of reported GQ for DeepVariant v0.8.0 in all 1248 samples computed

genome-wide. (D) Distributions of reported GQ for GATK4 HaplotypeCaller in all

1248 samples computed on chromosome 2 only. Note the broken y-axis and differ-

ent scales. See also Supplementary Figure S4
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converting the Phred-scaled GQ into the caller’s estimated probabil-
ity of correctly calling the genotype, and comparing it to the GIAB
truth (Supplementary Table S1). Substantially lower Brier scores
(0.000918 for DeepVariant and 0.005371 for GATK, averaged over
all samples) and Spiegelhalter’s Z values (0.52 for DeepVariant and
1141.03 for GATK, averaged over all samples) confirm
DeepVariant’s superior calibration.

The overall distribution of GQ scores within a sample deter-
mines the information content of the field. Substantial variant frac-
tions occur across the GQ spectrum for DeepVariant calls (Fig. 1C),
and the DeepVariant GQ score distribution shifts smoothly toward
higher qualities as sequence coverage increases (Supplementary Fig.
S3). In contrast, GATK4 HaplotypeCaller both produces a consist-
ently oscillating GQ distribution for variants with GQ < 99
(Fig. 1D) and frequently reports most variants as GQ¼99
(Supplementary Fig. S4A). When considered in conjunction with the
GQ calibration comparisons (Supplementary Table S1), these results
suggest that joint genotyping algorithms may be able to more accur-
ately refine individual genotypes produced by DeepVariant since
joint genotyping algorithms refine individuals’ variant calls based on
observed allele frequencies in the rest of the cohort, using GQ as a
prior on genotype.

The large-scale analysis of genomes and exomes in gnomAD
identified variant quality normalized by read depth (QD) as the
most important feature for discriminating true variants from arti-
facts in GATK calls (Karczewski et al., 2020). Consistent with that
observation, GATK single-sample QD is less uniformly biased than
GQ (Supplementary Fig. S4B) and has a more informative distribu-
tion across the cohorts (Supplementary Fig. S4C).

3.4 Optimized parameters for joint calling
We adapted GLnexus (Lin et al., 2018) for merging DeepVariant
gVCFs because of its computational scalability to large cohorts, ac-
cess to relevant parameters, performance on allele normalization
and open-source license. To identify optimal parameters for merging
DeepVariant gVCFs, we created four custom WGS cohorts of 3,
100, 333 and 1247 samples at both high coverage (40–50�) and
low coverage (15�) on chromosome 2, resulting in eight total
cohorts (Supplementary Table S2). The cohorts contain five mutual-
ly non-descendant GIAB samples used to evaluate benchmark calls
and five non-GIAB trios used to compute Mendelian violation rates
(Supplementary Tables S2B, C and S3).

We focused on the four tunable GLnexus parameters
(Supplementary Table S4) most crucial to optimize: ‘min_’, the
quality threshold applied to each discovered allele; ‘min_’, the qual-
ity threshold applied to alleles whose copy number is at least two;
‘min_GQ’, the minimum genotype quality to be used for copy num-
ber estimates for the alleles; and ‘revise_genotypes’, a boolean
switch indicating whether to use cohort information to re-genotype
low quality genotype calls.

We extensively explored parameter configurations using Google
Vizier (Golovin et al., 2017) to optimize a multiple metric objective
function. Minimization of Mendelian violation rate in trio samples
encourages precision genome-wide. Maximization of concordance
with GIAB samples, measured as the harmonic mean of SNP and
indel F1 scores, encourages both precision and recall in the well-
characterized subset of the genome. Together, the joint metric dis-
courages strategies which improve Mendelian violation rate at the
expense of genotype errors (for example, by filtering true variant
sites). We first performed a Pareto-optimal search using Vizier’s de-
fault Bayesian hyperparameter selection algorithm to reduce the
problem space, and then explored the reduced space using an ex-
haustive grid search. Many configurations simultaneously improve
both Mendelian violation rate and concordance with GIAB when
compared to the GLnexus configuration that performs no variant
modification (Fig. 2, Supplementary Fig. S5).

The smooth Pareto-optimal boundary (Fig. 2, Supplementary
Fig. S5) indicates that the tradeoff between recall and precision can
be tuned in an application-specific manner. We investigated the ex-
tent to which parameter settings are applicable across cohort sizes
and sequence coverage by summing the rate of error reduction

across five metrics over the ‘no modification’ parameter setting (see
Supplementary Note S4 for details). We selected the best-performing
parameter configuration as the ‘optimized’ setting after verifying its
strong performance across cohort sizes and sequence coverages
(Supplementary Figs S6–S8).

Next, we compared four variant calling and merging methods
across all 8 cohorts. The first and second methods use the GATK4
Best Practices (DePristo et al., 2011; McKenna et al., 2010; Poplin
et al., 2018a) pipeline and either retain all variants (‘GATK-Joint’)
or retain only variants that pass variant quality score recalibration
(‘GATK-VQSR’). The third method uses DeepVariant for single-
sample calling and GLnexus to merge the calls, with DeepVariant
run with default parameters and GLnexus run in a setting to avoid
single-sample variant modification (‘DV-GLN-NOMOD’)
(Supplementary Table S4). The final method uses the optimized ver-
sion of the DeepVariantþGLnexus pipeline (‘DV-GLN-OPT’)
(Supplementary Note S1). After verifying qualitatively similar callset
properties on distinct chromosomes (Supplementary Fig. S9), we
generated all evaluation callsets on chromosome 20 to avoid overlap
with the training data from chromosome 2.

The callsets were evaluated on five measures of quality: SNP and
indel false discovery rates, false negative rates and total Mendelian
violation rate, for each cohort size and at both 15� and 40� se-
quence coverage. DV-GLN-OPT equals or exceeds both GATK-
based methods in 38 of the 40 measured metrics (Fig. 3,
Supplementary Table S5), with only SNP false discovery rates in
15� coverage callsets not uniformly stronger. In the cohort of 1247
individuals at 40� coverage, DV-GLN-OPT has a 3.0-fold lower
Mendelian violation rate (1.7% versus 5.0%), 17.6-fold lower SNP
F1 error (0.07% versus 1.23%) and 2.6-fold lower indel F1 error
(1.14% versus 2.92%) than GATK-VQSR. DV-GLN-OPT general-
ly, though not strictly, also outperforms DV-GLN-NOMOD.

We repeated the parameter search technique described above in
a single WES cohort of 346 samples (Supplementary Table S2B).
Similarly to WGS, there exist many configurations that strictly

Fig. 2. Parameter search for n¼1247, 15� cohort. Each data point represents a

unique parameter combination explored by Vizier. The color indicates whether the

GLnexus parameter to revise genotypes was true (orange) or false (blue), and the

shape represents the search algorithm. The x-axis indicates Mendelian violation

rate. The y-axis indicates errors on GIAB through the harmonic mean of SNP F1

and indel F1 (lower is more accurate). Points toward the lower left are more accur-

ate on both metrics. The intersection of the green horizontal and vertical dotted lines

indicates the performance using GLnexus with no variant modification

(Supplementary Table S4). Supplementary Figure S5 shows the results for all cohort

sizes and coverages. The red diamond indicates the parameter set we selected for the

optimized DeepVariantþGLnexus pipeline
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outperform the ‘no modification’ parameter setting (Supplementary
Fig. S10) and the WES-optimized DVþGLnexus pipeline outper-
forms the GATK4 Best Practices in all metrics (Supplementary Table
S5C).

3.5 Evaluation on deeply sequenced 1000 Genomes

Project phase 3
To evaluate DV-GLN-OPT in an independent dataset, we generated
a cohort callset for high-coverage sequencing reads of the 2504 sam-
ples in 1KGP (The 1000 Genomes Project Consortium, 2015), and
made the cohort callset and all DeepVariant single-sample calls pub-
licly available (see ‘Availability and Implementation’ in Abstract).
We compared the single-sample variant calls from DeepVariant with
those of GATK HaplotypeCaller, and the DV-GLN-OPT callset
with that of an independently generated GATK-VQSR pipeline (see
Section 2.3). Each sample has a higher Ti:Tv ratio in the
DeepVariant-based variant calls in both cases (Fig. 4A, in light green
and blue, respectively). Taken together, these results provide indirect
evidence that the DeepVariant calls are of higher quality.

Overall callset composition depends on the filtering methods
applied. The GATK-VQSR callset contains substantially fewer total
variants and rare variants compared to both DV-GLN-OPT and
GATK-Joint (Supplementary Fig. S11). To identify recurrent variant
calling and genotyping artifacts, we quantified the sites which vio-
late HWE in each callset at various p-value thresholds (Fig. 4B).
Only 6.62% of autosomal sites in the DV-GLN-OPT callset have
HWE p < 10�5 (7 443 684 of 112 451 553 total autosomal sites),
compared to 8.05% in GATK-VQSR (8 276 874 of 102 804 074)
and 9.77% in GATK-Joint (11 724 367 of 120 046 355). Finally,
we observed that the GATK-based callsets limit the maximum num-
ber of alleles at any position to six, and thus exclude a number of
alleles present at highly variable sites (Supplementary Fig. S11).
Manual inspection confirmed that most highly multiallelic variants
are short tandem repeats of varying lengths, with the bulk of calls at-
tributable to few common alleles but a long tail of additional alleles
(Supplementary Fig. S12).

To further assess 1KGP callset quality, we evaluated Mendelian
violation rate within a single cryptic trio present in the cohort
(Roslin et al., 2016). We first verified the trio’s relatedness
(NA20882: mother, NA20891: father, NA20900: child, all of
Gujarati Indian ancestry), and used this trio to compute Mendelian
violations in DV-GLN-OPT, GATK-VQSR and GATK-Joint
(Fig. 5).

To quantify the improvement to Mendelian violation rate and
GQ calibration, we sorted variant calls from most to least confident
using the minimum GQ in the trio, independently for each callset.

Importantly, variant-level metrics such as QUAL were not used for
this analysis because the call qualities for three samples in a trio may
differ substantially from a variant quality metric computed over all
2504 samples. DV-GLN-OPT calls have a lower overall Mendelian
violation rate, as evidenced by cumulative Mendelian violation rate
plotted as a function of variants retained (Fig. 5A). While all callsets
show decreased Mendelian violation rates as the minimum GQ of
the trio is increased (Fig. 5B), the broader GQ distribution of
DeepVariant (Fig. 1) enables better separation of true and false calls.
Remarkably, applying the maximally stringent GQ¼99 filter to the
GATK-VQSR callset retains only 1.9 million sites (29.8%) at a
Mendelian violation rate of 0.11%, whereas the DV-GLN-OPT call-
set can retain 5.5 million sites (90.6%) at a lower Mendelian viola-
tion rate of < 0.1%.

Finally, we annotated variants discovered in 1KGP using the
Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2016) to
analyze their coding consequences. We analyzed variants in three

Fig. 3. Comparison of four cohort callset creation methods. Four calling and merg-

ing pipelines are applied at both 15� and 40� sequence coverage for WGS cohorts

of size n¼3, 100, 333 and 1247. Five evaluation metrics are presented: Mendelian

Violation Rate, SNP False Discovery Rate (1-Precision), SNP False Negative Rate

(1-Recall), indel False Discovery Rate and indel False Negative Rate. In all cases,

lower values are better. All evaluation metrics are computed on chr20. See

Supplementary Table S5 for the precise values and the variances of each metric

Fig. 4. 1KGP cohort callset quality. (A) Ti:Tv ratios of 1KGP samples, from single-

sample SNPs and joint-called SNPs, generated by DV-GLN-OPT and GATK pipe-

line. Each point represents the ratio in one of the 2504 samples across the whole

genome. Each point cloud compares the Ti:Tv ratios in variant calls from the two

systems, after equivalent steps are performed. The first cloud (in light green) com-

pares the Ti:Tv ratios from DeepVariant (y-axis) and GATK HaplotypeCaller (x-

axis) single sample calls. The second cloud (in turquoise) compares Ti:Tv after joint-

genotyping is performed (optimized GLnexus for DeepVariant, and

GenomicsDBImportþGenotypeGVCFs for GATK HaplotypeCaller). Finally the

third cloud (in blue) compares the final outputs from the two systems, after VQSR is

performed for GATK (x-axis), while no additional operation is performed for the

optimized DeepVariant-GLnexus calls. (B) Fractional counts of autosomal variants

with low HWE p-values, binned by non-major allele frequency in DV-GLN-OPT,

GATK-VQSR and GATK-Joint. The major allele is the allele with the largest allele

count in a given variant within the callset. The variants are aggregated in non-

major-allele-frequency bins of size 0.0125, and the frequency is clipped at 0.5 for

visualization purposes (for all methods the fractional counts in bins after 0.5 are less

than 10�3)

Fig. 5. Mendelian violations in autosomes of a cryptic trio in 1KGP. (A) The per-

centage of variants that violate Mendelian inheritance in the trio NA20900-

NA20891-NA20882 as a function of the number of variants considered. Variants

are ranked by the minimum GQ within the trio. Callset variants with homozygous

reference calls for all three trio samples, and those have indeterminate violation sta-

tus due to missing genotype calls in the trio, are ignored. (B) Mendelian violation

percentages of the same trio binned by minimum GQ in the trio using bin size 5
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groups: variants called by both DV-GLN-OPT and GATK-VQSR,
by DV-GLN-OPT exclusively, and by GATK-VQSR exclusively
(Supplementary Fig. S13). Among the annotations with the highest
potential impact (‘stop gained’, ‘frameshift’, ‘stop lost’, ‘start lost’),
we found more variants discovered exclusively by DV-GLN-OPT
than by GATK-VQSR. We also analyzed the same groups of var-
iants when restricted to variants detected exclusively in each 1KGP
superpopulation (African, American, East Asian, European, South
Asian). While the total number of variants exclusive to each super-
population varied, the overall distribution of the annotations and
the three groups of variants seems broadly consistent across
populations.

3.6 Evaluation of 1KGP callsets as imputation reference

panels
The 1KGP dataset is frequently used for population-based down-
stream applications, such as genotype phasing and imputation, due
to its genetic diversity and large sample size (Delaneau et al., 2014;
Huang et al., 2012; Nikpay et al., 2015; Shaikho et al., 2017). To il-
lustrate how the accuracy of the DV-GLN-OPT callset translates
into improved results for these downstream analyses, we assessed
the performance of imputing variants using it as a reference panel.
We first created reference panels from the deeply sequenced DV-
GLN-OPT and GATK-VQSR 1KGP callsets described in the previ-
ous section, by applying identical minimal transformations to both
cohort VCFs (see Materials and Methods) and phasing the callsets
with Eagle2 (Loh et al., 2016).

The DV-GLN-OPT panel contains 4.69% more variant sites
than the GATK-VQSR panel generated from the same source. More
than 99% of the GATK-VQSR panel sites are present in the DV-
GLN-OPT panel, while fewer than 95% of the DV-GLN-OPT panel
sites are present in the GATK-VQSR panel (Fig. 6A).

To evaluate the imputation quality of the two reference panels,
we extracted variant calls for the approximately 710k sites assayed
by the Illumina Infinium OmniExpress-24 microarray for two GIAB
child samples (HG002 and HG005, of Ashkenazi Jewish and Han
Chinese ancestry, respectively) in their benchmark regions. For each
of the DV-GLN-OPT and GATK-VQSR reference panels, we phased
the pseudo-microarray variants with Eagle2 and imputed the phased
variants into the panel with Beagle 5.0 (Browning et al., 2018).

The imputed variant calls were scored in two evaluation regions
(Supplementary Table S6). The first evaluation region, hereafter the
‘GIAB evaluation region,’ comprises the GIAB benchmark regions
common to both HG002 and HG005, agnostic to either reference
panel. This measures both the accuracy of the imputed genotypes
and the number of benchmark variants absent in the reference panel.
The second evaluation region, hereafter the ‘panel evaluation re-
gion,’ comprises a subset of the GIAB evaluation region additionally
present in both the DV-GLN-OPT and the GATK-VQSR reference
panels. This allows a direct comparison of variants, but provides
limited information about overall individual panel quality.

The DV-GLN-OPT panel outperforms the GATK panel in F1
score in all eight experiments (two samples, two variant types and
two evaluation regions). Of note, DV-GLN-OPT produces substan-
tially higher recall than GATK-VQSR for both indels and SNPs
when evaluated in the GIAB evaluation region (Fig. 6B, C). The DV-
GLN-OPT panel produces on average 4.41% fewer false negative
indels and 8.28% fewer false negative SNPs, while maintaining su-
perior indel precision and indistinguishable SNP precision. As
expected, evaluation metric differences are more subtle in the panel
evaluation region, but the DV-GLN-OPT panel produces higher F1
scores for both samples and for both indels and SNPs
(Supplementary Table S6).

3.7 Cost benchmarking
In large-scale sequencing projects, the temporal and financial cost of
running bioinformatics tools can be prohibitively large. To compare
the computational cost of the DeepVariant-GLnexus and GATK
pipelines, we reanalyzed chromosome 22 in the 2504 1KGP sam-
ples. Starting from the aligned sequencing reads, we ran

DeepVariant and GATK HaplotypeCaller to produce gVCFs on a
separate virtual machine with a fixed machine type for each sample,
using the Docker images published by the respective tool developers.

Using machines with 8 virtual CPUs (vCPUs) each, DeepVariant
finished each chr22 sample using 40% less average time elapsed
(20.0 minutes) without GPU/TPU acceleration, than GATK
HaplotypeCaller (33.2 minutes) (Fig. 7A). The difference is mainly
attributable to DeepVariant’s efficient internal multithreading
(Fig. 7B, Supplementary Table S7). This implies that one can easily
assign more vCPUs to each cloud machine to get a speedup almost
proportional to the increased resources (Supplementary Fig. S14),
without requiring an external workflow that splits the chromosome
into smaller shards. Note that the cost difference between the two
callers would expand significantly if the Base Quality Score
Recalibration (BQSR) preprocessing step were included for GATK,
which is part of GATK Best Practices but not recommended for
DeepVariant.

Next, we processed the n¼2504 sample chromosome 22 gVCF
files to produce cohort VCF files using GLnexus (from DeepVariant
gVCFs), on the one hand, and GATK’s GenomicsDBImport and
GenotypeGVCFs tools (from HaplotypeCaller gVCFs), on the other.
While GLnexus supports internal multithreading, the two GATK
tools are effectively single-threaded and require an external parallel-
ization workflow to achieve practical runtimes, which we repro-
duced based on the developers’ specifications (subdividing the
length of chromosome 22 to scatter across processes). Still, using a
single 32-vCPU virtual machine, GLnexus is 8 times faster
(0.84 hours) than the equivalent GATK tools (6.83 hours), with su-
perior scalability to larger cohorts (Fig. 7C). For this benchmark we
did not run Variant Quality Score Recalibration (VQSR) for GATK,
which is a recommended step after GenotypeGVCFs in its Best
Practices and will add additional runtime to its pipeline. The run-
time scalability of GLnexus up to 50 000 exomes compared to
GATK can be found in Lin et al. 2018 (Fig. 4).

Another relevant cost to users of these pipelines is the cost of
storing the artifacts from them. In the standard block-compressed
variant call format (Danecek et al., 2011; Li et al., 2009), the total

Fig. 6. Imputation accuracy of 1KGP reference panel. (A) Variant sites covered by

DV-GLN-OPT and GATK panel. The DV-GLN-OPT reference panel generated

from 1KGP samples covers 43 181 562 variant sites, while the GATK panel from

the same samples covers 41 247 330 sites. The intersection of the two panel regions

(marked in light blue) covers 40 972 007 sites, which is 94.88% of the DV-GLN-

OPT panel and 99.33% of the GATK panel. (B) Imputed genotype accuracy for

indels. The accuracy of the imputed variants are measured by computing concord-

ance with the GIAB benchmark calls using hap.py. Blue colored markers are from

DV-GLN-OPT panel while the red markers are from GATK panel. The shaped

markers show precision and recall computed across the GIAB evaluation region for

two samples. (C) Imputed genotype accuracy for SNPs. Shapes and colors as in (B)
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size of the DeepVariant gVCFs for all chromosomes of 1KGP sam-
ples is 7 times smaller (total 2.20TB, average 878MB/sample) than
GATK HaplotypeCaller gVCFs (total 15.16TB, average 6053 MB/
sample) (Fig. 7D), which is a result of DeepVariant’s efficient quant-
ization of the reference records. Moreover, the final cohort VCF
from DeepVariant-GLnexus pipeline is also 26% smaller (0.97TB)
than the one from GATK pipeline (1.32TB). This reduction in file
sizes directly translates to a similar ratio of cost savings in cloud
storage services. To further reduce the sizes of the cohort VCF, one
may consider using the BCF (binary VCF) format or other data for-
mats designed for a large number of samples (Danek and
Deorowicz, 2018; Kelleher et al., 2019; Layer et al., 2016; Li, 2016;
Lin et al., 2020; Zheng et al., 2017).

4 Discussion

Population-scale sequenced cohorts are foundational resources for
many genetic analyses, including genotype-phenotype discovery,
variant interpretation and genotype imputation. As sequencing proj-
ects have grown to include hundreds of thousands of samples, the
need for highly accurate variant calls and computationally efficient
merging algorithms is increasingly acute. By optimizing GLnexus to
merge single-sample DeepVariant calls, we demonstrated that the
superior accuracy (Poplin et al., 2018b) and generalizability across
sequencing methods (Wenger et al., 2019) of DeepVariant can gen-
erate more accurate cohort callsets at large scale at lower cost. The
callset quality metrics of the optimized pipeline consistently outper-
formed the GATK Best Practices across a range of cohort sizes and
sequence coverages. In addition, we showed that variant confidences
are well calibrated to Mendelian violation rate, allowing tuning of
callsets for very high precision or for high recall.

When optimizing callset creation, we investigated callset quality
stratified by both sequencing coverage and cohort size. Results with-
in a given sequencing coverage were qualitatively similar regardless
of cohort size, suggesting that a major driver of parameter sensitivity
is the distribution of individual call confidence estimates. Even so,

when optimizing equally between benchmark callset accuracy and
Mendelian violation rate, we observed a single parameter set that
provides strong performance across the range of WGS cohorts
analyzed.

Although we demonstrated the strength of the
DeepVariantþGLnexus method, there are multiple areas for future
improvement. At both 15� and 40� coverage, the precision-recall
curves of SNPs versus indels is markedly different. As expected, par-
ameter variation can tune SNPs to improve recall at the expense of
precision or vice versa. In contrast, indels appear to have nearly glo-
bally optimal parameters, suggesting that distinct handling of the
two variant classes may further improve callset quality.
Additionally, the tunable GLnexus parameters affect allele harmon-
ization and genotyping, but do not apply any hard filtering to output
calls. We observed an overrepresentation of Mendelian violations at
very low GQ values, indicating that direct omission of low quality
sites or genotypes also may improve callset quality. Finally, a small
fraction (0.4%) of autosomal sites contain seven or more total
alleles, and typically represent short tandem repeats (Fan and Chu,
2007). While these sites likely capture some of the known hypervari-
ability of these regions, this benefit is weighed against the practical
difficulty of representing and analyzing these sites in downstream
applications.

Comparison of cohort callsets is a less mature field than compari-
son of single-sample callsets. Here we focused on four evaluation
metrics (accuracy of GIAB sample calls, Mendelian concordance,
Ti:Tv ratio and HWE p-value distributions) to incorporate direct
variant accuracy measures where possible, but also include indirect
signals of quality genome-wide. We used the recent deep sequencing
of 1KGP to perform an orthogonal analysis on a publicly available
dataset. The resulting optimized DeepVariantþGLnexus callset pos-
sesses superior metrics to a GATK Best Practices callset generated in-
dependently, including a 32% reduction in sites violating HWE at p
< 10�5. Moreover, an imputation reference panel derived from the
DeepVariantþGLnexus callset results in higher imputation accuracy,
which shows that improving cohort-level variant calls yields
improved performance in a common downstream application. Both
the cohort callset and all DeepVariant single-sample calls are freely
available at Google Cloud Storage (https://console.cloud.google.
com/storage/browser/brain-genomics-public/research/cohort/1KGP).

To our knowledge, this is the most accurate 1KGP callset cur-
rently available as measured by the above metrics, and as such has
substantial utility within the genomics community for studies of gen-
etic variation. Furthermore, we hope this resource spurs additional
innovation in the development and evaluation of population-scale
cohorts.
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Fig. 7. Cost benchmarking DeepVariant-GLnexus and GATK pipeline. (A)

Distribution of elapsed real times to generate single-sample gVCF (chr22 only) from

aligned reads across n¼2504 1KGP samples, using DeepVariant and GATK

HaplotypeCaller (BQSR not included) in 8-vCPU machine. GPU/TPU acceleration

was not used for DeepVariant. (B) Elapsed real times to generate gVCF (chr22 only)

of one sample (NA12878) using a cloud machine with varying number of vCPUs,

with DeepVariant and GATK HaplotypeCaller (excluding BQSR). The default value

for HaplotypeCaller’s HMM multithreading flag (–native-pair-hmm-threads) is 4

(red arrow) and it was practically ineffectual for 16 vCPUs and more (red dotted

lines). (C) Elapsed real times to merge the chr22 gVCF files from (A) into a cohort

VCF for n 2 f10; 100; 1000; 2504g nested subsets of the 1KGP samples, using

GLnexus (for DeepVariant gVCFs) and GATK GenomicsDBImport þ
GenotypeGVCFs (for HaplotypeCaller gVCFs). GATK VQSR step was not

included. (D) The file sizes of the whole-genome cohort VCFs and the single-sample

gVCFs of 1KGP samples from DeepVariant-GLnexus and GATK pipeline
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