
Accurate, Scalable In-Network Identification of P2P Traffic
Using Application Signatures

Subhabrata Sen
AT&T Labs-Research

Florham Park, NJ 07932
sen@research.att.com

Oliver Spatscheck
AT&T Labs-Research

Florham Park, NJ 07932
spatsch@research.att.com

Dongmei Wang
AT&T Labs-Research

Florham Park, NJ 07932
mei@research.att.com

ABSTRACT
The ability to accurately identify the network traffic associated with
different P2P applications is important to a broad range of net-
work operations including application-specific traffic engineering,
capacity planning, provisioning, service differentiation, etc. How-
ever, traditional traffic to higher-level application mapping tech-
niques such as default server TCP or UDP network-port based dis-
ambiguation is highly inaccurate for some P2P applications.

In this paper, we provide an efficient approach for identifying
the P2P application traffic through application level signatures. We
first identify the application level signatures by examining some
available documentations, and packet-level traces. We then utilize
the identified signatures to develop online filters that can efficiently
and accurately track the P2P traffic even on high-speed network
links.

We examine the performance of our application-level identifica-
tion approach using five popular P2P protocols. Our measurements
show that our technique achieves less than

���
false positive and

false negative ratios in most cases. We also show that our approach
only requires the examination of the very first few packets (less
than ��� packets) to identify a P2P connection, which makes our
approach highly scalable. Our technique can significantly improve
the P2P traffic volume estimates over what pure network port based
approaches provide. For instance, we were able to identify � times
as much traffic for the popular Kazaa P2P protocol, compared to
the traditional port-based approach.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network opera-
tions—Network management, Network monitoring; D.2.8 [Software
Engineering]: Metrics—Performance measures

General Terms
Measurement, Performance, Design

Keywords
Traffic Analysis, P2P, Application-level Signatures, Online Appli-
cation Classification

1. INTRODUCTION
Peer-to-peer (P2P) file sharing applications have dramatically

grown in popularity over the past few years, and today constitute a
Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

significant share of the total traffic in many networks. These appli-
cations have proliferated in variety and have become increasingly
sophisticated along a number of dimensions including increased
scalability, more functionality, better search capabilities and down-
load times, etc. In particular the newer generation P2P applications
are incorporating various strategies to avoid detection.

Access networks as well as enterprise networks require the abil-
ity to accurately identify the different P2P applications and their as-
sociated network traffic, for a range of uses, including network op-
erations and management, application-specific traffic engineering,
capacity planning, provisioning, service differentiation and cost re-
duction. For example, enterprises would like to provide a degraded
service (via rate-limiting, service differentiation, blocking) to P2P
traffic to ensure good performance for enterprise critical applica-
tions, and/or enforce corporate rules guiding running of peer-to-
peer. Broadband ISPs would like to limit the P2P traffic to limit
the cost they are charged by upstream ISPs. All these require the
capability to accurately identify P2P network traffic.

Application identification inside IP networks, in general, can be
difficult. In an ideal situation, a network administrator would pos-
sess precise information on the applications running inside the net-
work, along with unambiguous mappings between each application
and its network traffic (e.g., by port numbers used, IP addresses
sourcing and receiving the particular application data, etc.). How-
ever, in general, such information is rarely available, up-to-date or
complete, and identifying either the applications or their associated
traffic is a challenging proposition. In addition, traditional tech-
niques like network port-based classification of applications have
now become problematic. Although the earlier P2P systems mostly
used default network ports for communication, we have found that
substantial P2P traffic nowadays is transmitted over a large number
of non-standard ports, making default port-based classification less
accurate.

In this paper, we report on our exploration of online, in-network
P2P application detection based on application signatures. The fol-
lowing are some key requirements for such an application-level fil-
ter. It must be accurate, have low overheads, and must be robust
to effects like packet losses, asymmetric routing, etc. (details in
Sections 2 and 3) that make it difficult/impossible for a monitor-
ing point to observe all the application-level data in a connection
flowing by.

We designed a real-time classification system which operates on
individual packets in the middle of the network, and developed
application-level signatures for a number of popular P2P applica-
tions. Our signatures can be used directly to monitor and filter P2P
traffic.

Evaluations using large packet traces at different Internet loca-

512

tions show that the individual signature-based classification (i) has
good accuracy properties (low false positives and negatives), even
in situations where not all packets in a connection are observed by
the monitoring point, (ii) can scale to handle large traffic volumes
in the order of several Gbps (GigaBits per second), and (iii) can
significantly improve the P2P traffic volume estimates over what
pure network port based approaches provide. Our filter has been
successfully deployed and is currently running at multiple network
monitoring locations.

A lot of existing research on P2P traffic characterization has only
considered traffic on default network ports (e.g., [11, 18, 17]). A re-
cent work [12] uses application signatures to characterize the work-
load of Kazaa downloads. But they do not provide any evaluation of
accuracy, scalability or robustness features of their signature. Sig-
nature based traffic classification has been mainly performed in the
context of network security such as intrusion and anomaly detec-
tion (e.g. [5, 4, 19, 14]) where one typically seeks to find a signature
for an attack. In contrast our approach identifies P2P traffic for net-
work planning and research purposes. This work, is therefore, more
closely related to [8] which provides a set of heuristics and signa-
tures to identify Internet chat traffic. There is also a large body of
literature on extracting information from packet traces (e.g., [9]);
however, none of these works provides and evaluates application
layer P2P signatures.

The remainder of this paper is organized as follows. Section 2
highlights the issues involved in identifying P2P traffic in real time
inside the network. Section 3 discusses some of the design choices
we made in our approach. Section 4 derives the actual signatures
used for P2P detection, and Section 5 describes our implementa-
tion of an online P2P application classifier using these signatures.
Section 6 presents the evaluation setting, and Section 7 describes
the evaluation results. Finally, Section 8 concludes the paper.

2. PROBLEM STATEMENT

We first outline some key requirements of any mapping tech-
nique for identifying traffic on high speed links inside the network.

Accuracy: The technique should have low false positives (iden-
tifying other traffic as peer-to-peer) and low false negatives
(missing peer-to-peer traffic).

Scalability: The technique must be able to process large traffic
volumes in the order of several hundred thousand to several
million connections at a time, with good accuracy, and yet
not be computationally expensive.

Robustness: Traffic measurement in the middle of the network has
to deal with the effects of asymmetric routing (2 directions
of a connection follow different paths), packet losses and re-
ordering.

The above requirements indicate there are tradeoffs in terms of
the level of accuracy, scalability and robustness that can be achieved.

On one end of this spectrum is the current practice of TCP/UDP
port number based application identification. Port number based
application identification uses known TCP/UDP port numbers to
identify traffic flows in the network. It is highly scalable since only
the UDP/TCP port numbers have to be recorded to identify an ap-
plication. It is also highly robust since a single packet is sufficient
to make an application identification.

Unfortunately port number based application identification is be-
coming increasingly inaccurate in identifying P2P traffic. For ex-
ample, we observed in our traffic traces that a large amount of

Kazaa traffic is not using the default Kazaa port numbers most
likely — we speculate — to avoid detection.

To address this problem we developed and evaluated a set of ap-
plication layer signatures to improve the accuracy of P2P traffic
detection. In particular this approach tries to determine common
signatures in the TCP/UDP payload of P2P applications.

A key challenge in realizing such signatures is the lack of openly
available reliable, complete, uptodate and standard protocol speci-
fications. This is partly due to developmental history and partly a
result of whether the protocols are open or proprietary. First, the
protocols are mostly not standardized and they are evolving. For
some protocols (e.g., Gnutella), there exists some documentation,
but it is not complete, or uptodate. In addition, there are various
different implementations of Gnutella clients which do not comply
with the specifications in the available documentation, raising po-
tential inter-operability issues. For a user, this will manifest itself
in the form of sometimes poor search performance. For an appli-
cation classifier to be accurate, it is important to identify signatures
that span all the variants or at least the dominantly used ones. At
the other end of the spectrum is a protocol like Kazaa, which is
developed by a single organization and therefore exhibits a more
homogeneous protocol deployment, but is a proprietary protocol
with no authoritative protocol description openly available. Finally,
just access to the protocol specification is not sufficient - we need
signatures that conform to the design decisions outlined above.

Our approach to signature identification has involved combin-
ing information available documentation, with information gleaned
from analysis of packet-level traces to develop potential signatures.
Multiple iterations were used to evaluate the signatures against net-
work traffic data to improve the accuracy and computation over-
heads.

3. DESIGN CHOICES

Our main goal is to derive application layer signatures for P2P
protocols which achieve high accuracy and robustness while being
able to apply them at least at Gigabit Ethernet speeds in real time.
As we will discuss in Section 7 we achieved these goals by making
the following high level design choices.

UDP versus TCP: P2P traffic in principle can flow over UDP and
TCP. Since currently most P2P protocols transmitted their
data via TCP we focus on signatures found within TCP based
P2P traffic. Obviously our signatures could be extended to
UDP if so desired.

Packets versus Streams: The P2P application layer signatures can
be applied to individual TCP segments or to fully reassem-
bled TCP connection data streams. The advantage of apply-
ing them to TCP data streams is that duplicate data has been
removed and that signatures can match data which is trans-
mitted in multiple TCP segments. However, the drawback
of applying the signatures to TCP data streams is that the
TCP segments have to be reassembled in real time on the
monitoring device. In our current design we chose to apply
the signatures to individual TCP segments which allows us
to achieve higher speeds. We therefore focus on developing
signatures that do not span multiple TCP packet boundaries.
As we will demonstrate we still achieve high accuracy for the�

applications with the signatures that we develop.

Location of Signature: Again to improve performance we focus
on finding signatures which appear in the beginning of the
file downloads. Using this approach allows us to focus our

513

signature evaluation on the first few packets of a TCP con-
nection. We will study how many packets our signatures re-
quired in Section 7.

Robustness to network effects: We also aim to develop signatures
that can independently identify each direction of an application-
level communication. This is to enhance the potential of
identifying connections for which the filter does not observe
one direction of the traffic (due to asymmetric network rout-
ing), or misses some signature-carrying packets in one or
both directions (caused by either router-based load split-
ting [16] or other routing instabilities). Independent iden-
tification of each direction also serves to decrease the po-
tential of misclassification, by either reinforcing the marking
(if both directions identify the same application) or flagging
a potential discord (if the 2 directions are identified with
different applications). Note that for some usages, such as
accounting for total P2P traffic or identifying if some P2P
communication is being used, where it is more important to
identify that some P2P communications is being used, the
last potential (of multiple classifications of the directions) is
not an issue.

Early Discard: For efficiency reasons, we shall consider both sig-
natures that identify an application as well as those that in-
dicate that a connection does not belong to an application.
The latter category of signatures allows us to quickly identify
packets that are not likely application packets, and thereby
frees up resources for examining more promising candidates.

Signaling versus Transport: Since the bulk of P2P traffic is re-
lated to file downloads and not due to file searches (signal-
ing) we chose to concentrate our efforts on identifying signa-
tures for file downloads rather than the signaling part of P2P
protocols.

4. P2P PROTOCOLS AND SIGNATURES

Historically in the client/server model content is stored on the
server and all clients download content from the server. One draw-
back of this model is that if the server is overloaded, the server
becomes the bottleneck. The P2P file sharing model addresses this
problem by allowing peers to exchange content directly. To per-
form these file sharing tasks, all popular P2P protocols allow a ran-
dom host to act as both a client and a server to its peers, even though
some P2P protocols do not treat all hosts equally.

Typically the following two phases are involved if a requester
desires to download content:

Signaling: During the signaling phase a client searches for the
content and determines which peers are able and willing to
provide the desired content. In many protocols this does not
involve any direct communication with the peer which will
eventually provide the content.

Download: In this phase the requester contacts one or multiple
peers directly to download the desired content.

In addition to the two phases described above many P2P proto-
cols also exchange keep-alive messages or synchronize the server
lists between servers.

In the remainder of the paper we focus on the download phase
of the five most popular P2P protocols (Kazaa, Gnutella, eDon-
key, DirectConnect, and BitTorrent). We decided to only track the

download phase since it allows us to capture the majority of P2P
traffic. We will also only classify the first download in a TCP con-
nection. This simplification is reasonable since it is highly unlikely
that two different applications will share a single TCP connection.
In the remainder of this Section we will discuss the signatures we
discovered for these five protocols. Unless otherwise specified, all
the identified signatures are case insensitive.

4.1 Gnutella protocol
Gnutella is a completely distributed protocol. In a Gnutella net-

work, every client is a server and vice versa. Therefore the client
and server are implemented in a single system, called servent. A
servent connects to the Gnutella network through establishing a
TCP connection to another servent on the network. Once a servent
has connected successfully to the network, it communicates with
other servents using Gnutella protocol descriptors for searching the
network - this is the signaling phase of the protocol. The actual
file download is achieved using a HTTP-like protocol between the
requesting servent and a servent possessing the requested file.

To develop the Gnutella signature we inspected multiple Gnutella
connections and observed that the request message for Gnutella
TCP connection creation assumes following format:

GNUTELLA CONNECT/<protocol version string>\n\n

And the response message for Gnutella TCP connection creation
assumes:

GNUTELLA OK\n\n

We also observed that there is an initial request-response hand-
shake within each content download. In the download request the
servent uses the following HTTP request headers:

GET /get/<File Index>/<File Name>
/HTTP/1.0 \r \n
Connection: Keep-Alive\r\n
Range: byte=0-\r\n
User-Agent: <Name>\r\n
\r\n

The reply message contains the following HTTP response head-
ers:

HTTP 200 OK\r\n
Server: <Name>\r\n
Content-type: \r\n
Content-length: \r\n
\r\n

Based on these observations and performance consideration, we
recommend the following signatures for identifying Gnutella data
downloads:

� The first string following the TCP/IP header is ‘GNUTELLA’,
‘GET’, or ‘HTTP’.

� If the first string is ‘GET’ or ‘HTTP’, there must be a field
with one of following strings:

User-Agent: <Name>
UserAgent: <Name>
Server: <Name>

514

where �
	������� is one of the following: LimeWire, Bear-
Share, Gnucleus, MorpheusOS, XoloX, MorpheusPE, gtk-
gnutella, Acquisition, Mutella-0.4.1, MyNapster, Mutella-
0.4.1, MyNapster, Mutella-0.4, Qtella, AquaLime, NapShare,
Comeback, Go, PHEX, SwapNut, Mutella-0.4.0, Shareaza,
Mutella-0.3.9b, Morpheus, FreeWire, Openext, Mutella-0.3.3,
Phex.

Generally it is much cheaper to match a string with a fixed off-
set than a string with varying locations. Hence we include ‘GET’
and ‘HTTP’ here to help early discard the packets, which do not
start with ‘GNUTELLA’, and also are non-HTTP packets. For ro-
bustness, we included the signatures for the request and response
header. This way, we can identify Gnutella traffic even if we only
see one direction of the traffic.

4.2 eDonkey protocol
An eDonkey network consists of clients and servers. Each client

is connected to one main server via TCP. During the signaling
phase, it first sends the search request to its main server. (Option-
ally, the client can send the search request directly to other servers
via UDP - this is referred to as extended search in eDonkey.) To
download a file subsequently from other clients, the client estab-
lishes connections to the other clients directly via TCP, then asks
each client for different pieces of the file.

After examining eDonkey packets, we discovered that both sig-
naling and downloading TCP packets have the following common
eDonkey header directly following the TCP header:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
+-+-+-+-+-+-+-+-+
| Marker |
+-+
| packet Length (4 Bytes) |
+-+
| Message type |
+-+-+-+-+-+-+-+-+

where the marker value is always 0xe3 in hex, the packet length
is specified in network byte order and the value is the byte length
of the content of the eDonkey message excluding the marker 1 byte
and the length field 4 bytes.

Utilizing these discoveries, we recommend the following signa-
tures for identifying eDonkey packets:

For TCP signaling or handshaking data packets, we use two steps
to identify eDonkey packets.

� The first byte after the IP+TCP header is the eDonkey marker.
� The number given by the next 4 bytes is equal to the size

of the entire packet after excluding both the IP+TCP header
bytes and 5 extra bytes.

Since the accuracy for identifying the P2P connections is pro-
portional to the length of the signatures, we tend to include as
many fields as we can so long as they do not increase the com-
putational complexity significantly. Here both marker and length
fields have a fixed offset, therefore the computational complexity is
the same (O(1)) for matching one of them or both, but the accuracy
is improved by ����� times compared with matching the marker field
alone.

We have also identified the signatures for UDP handshaking mes-
sages. However, since UDP is only used for extended searching,
and is rare compared with TCP communications, we do not report
it in this study.

4.3 DirectConnect Protocol
The DirectConnect network is composed of hubs, clients, and a

single superhub with multiple servers. All of them listen on TCP

port 411 to connect and exchange commands such as search re-
quest. Clients (peers) store files and respond to search requests for
those files. The single superhub acts as a name service for all the
hubs. All hubs register with the superhub and clients discover hubs
by asking the superhub. Each of the clients has a username (a.k.a.
nick). Normally the clients listen at port 412 for client connections.
If the port 412 is already in use, clients will use ports 413, 414
and so on. DirectConnect uses TCP for client to server and client
to client communication, while UDP is used for communication
between servers. The TCP/UDP data is a series of commands or a
public chat message. In this study, we focus on the TCP commands.
The TCP commands are identified with following form:

$command_type field1 field2 ...|

which starts with character ‘ � ’, and ends with character ‘ � ’. The
list of valid command types for TCP communications are: MyN-
ick, Lock, Key, Direction, GetListLen, ListLen, MaxedOut, Error,
Send, Get, FileLength, Canceled, HubName, ValidateNick, Vali-
dateDenide, GetPass, Mypass, BadPass, Version, Hello, Logedin,
MyINFO, GetINFO, GetNickList, NickList, OpList, To, Connect-
ToMe, MultiConnectToMe, RevConnectToMe, Search, MultiSearch,
SR, Kick, OpForceMove, ForceMove, Quit.

To improve the evaluation performance we evaluate this signa-
ture in the following two steps:

1. The first byte after the IP+TCP header is ‘ � ’, and the last byte
of the packet is ‘ � ’.

2. Following the ‘ � ’, the string terminated by a space is one of
the valid TCP commands listed above.

Although we are matching a list of strings which can be an ex-
pensive operation, we shall only perform the string match on pack-
ets which pass the first test.

4.4 BitTorrent Protocol
The BitTorrent network consists of clients and a centralized server.

Clients connect to each other directly to send and receive portions
of a single file. The central server (called a tracker) only coordi-
nates the action of the clients, and manages connections. Unlike the
protocols discussed above, the BitTorrent server is not responsible
for locating the searching files for the clients, instead the BitTorrent
network client locates a torrent file through the Web, and initiates
the downloading by clicking on the hyperlink. Hence there is no
signaling communication for searching in the BitTorrent network.
To identify BitTorrent traffic, we focus on the downloading data
packets between clients only since the communication between the
client and server is negligible.

The communication between the clients starts with a handshake
followed by a never-ending stream of length-prefixed messages.
We discovered that the BitTorrent header of the handshake mes-
sages assumes following format:

<a character(1 byte)><a string(19 byte)>

The first byte is a fixed character with value ‘ ��� ’, and the string
value is ‘BitTorrent protocol’. Based on this common header, we
use following signatures for identifying BitTorrent traffic:

� The first byte in the TCP payload is the character 19 (0x13).
� The next 19 bytes match the string ‘BitTorrent protocol’.

The signatures identified here are 20 bytes long with fixed loca-
tions, therefore they are very accurate and cost-effective.

515

4.5 Kazaa protocol
The Kazaa network is a distributed self-organized network. In

a Kazaa network, clients with powerful connections, and with fast
computers are automatically selected as Supernodes. Supernodes
are local search hubs. Normal clients connect to their neighboring
Supernodes to upload information about files that they share, and
to perform searches. In turn Supernodes query each other to fulfill
the search.

The request message in a Kazaa download contains the following
HTTP request headers:

GET /.files HTTP/1.1\r\n
Host: IP address/port\r\n
UserAgent: KazaaClient\r\n
X-Kazaa-Username: \r\n
X-Kazaa-Network: KaZaA\r\n
X-Kazaa-IP: \r\n
X-Kazaa-SupernodeIP: \r\n

The Kazaa response contains the following HTTP response head-
ers:

HTTP/1.1 200 OK\r\n
Content-Length: \r\n
Server: KazaaClient\r\n
X-Kazaa-Username: \r\n
X-Kazaa-Network: \r\n
X-Kazaa-IP: \r\n
X-Kazaa-SupernodeIP: \r\n
Content-Type: \r\n

For higher Kazaa version (v1.5 or higher), a peer may send an
encrypted short message before it sends back above response. Note
that both messages include a field called X-Kazaa-SupernodeIP.
This field specifies the IP address of the supernode to which the
peer is connected including the TCP/UDP supernode service port.
This information could be used to identify signaling using flow
records of all communication.

Using the special HTTP headers found in the Kazaa data down-
load we recommend the following two steps to identify Kazaa down-
loads:

1. The string following the TCP/IP head is one of following:
‘GET’, and ‘HTTP’.

2. There must be a field with string: X-Kazaa.

Similar to our Gnutella signatures we include ‘GET’ and ‘HTTP’
to early discard non-HTTP packets, so that we can avoid searching
through the whole packet to match ‘X-Kazaa’ if the packet has a
low probability to contain HTTP request or response headers.

5. SIGNATURE IMPLEMENTATION

As stated earlier we concentrate on P2P application detection in
TCP traffic. In particular we decomposed our P2P signatures into
fixed pattern matches at fixed offsets within a TCP payload and
variable pattern matches with variable offset within a TCP payload.
The fixed offset operation can be implemented cheaply whereas
variable pattern matches are substantially more expensive.

To be able to execute the decomposed signatures on real network
traffic we implemented them in the context of the Gigascope [7]
high speed traffic monitor. In this section we will first discuss the
issues involved in evaluating fixed and variable offset signatures
and then discuss how we implement them in the context of Gigas-
cope.

5.1 Fixed Offset Match
Implementing a fixed pattern match at a fixed offset within a TCP

payload is rather trivial. The complexity of this operation in the
worst case is the size of the pattern matched. Despite this simplicity
it is useful to provide multiple library functions which perform this
operation using slightly different parameters to allow for the easy
implementation of diverse signatures. For example, in the context
of P2P signatures the offset could be specified from the beginning
or end of the TCP payload and the pattern matches could be a byte,
a word in little endian byte order, a word in big endian byte order,
or a string. Therefore, we implemented a library which provides
the following functions:

byte match offset: returns true if a byte matches the byte in the
TCP payload on a given offset. If the offset is negative it is
calculated from the end of the TCP payload.

word match offset: similar to byte match offset, except that a word
is compared. This function takes as additional argument a
flag indicating the byte order of the data in the TCP payload.

string match offset: similar to byte match offset, except that a
fixed length sequence of bytes (string) is compared.

5.2 Variable Offset Match
There are multiple ways to implement matches at variable offsets

in an input stream that involve variable length strings. As discussed
in Section 3 we decided to perform the matches on a per packet ba-
sis, trading off higher performance against matching strings which
span multiple packets.

Using this approach all variable matches we need to perform can
be expressed as a regular expression match over TCP payloads. For
example, the Gnutella data download signature can be expressed as:

’ˆ(Server:|User-Agent:)[\t]*(LimeWire|
BearShare|Gnucleus|Morpheus|XoloX|
gtk-gnutella|Mutella|MyNapster|Qtella|
AquaLime|NapShare|Comback|PHEX|SwapNut|
FreeWire|Openext|Toadnode)’

Due to the fact that it is expensive to perform full regular ex-
pression matches over all TCP payloads we exploit the fact that the
required regular expression matches are of a limited variety. In par-
ticular all of the signatures we need to evaluate can be expressed as
stringset1.*stringset2 where stringset1 and stringset2 contain a list
of possible strings. This allows us to use the following algorithms
for our signatures:

� Standard regex (SR): This is the regular expression match
function found in the standard c library on FreeBSD 4.7.

� AST regex (AR): Part of the AST library [10], this code is
based on the Boyer Moore string search algorithm [6] ex-
tended to handle alternation of fixed strings. To search for
an character long string in a ���� character sequence,
the Boyer-Moore algorithm has worst case time complex-
ity �! "$#%�'& , but often runs in �! "�)(*+& -time on natural-
language text for small values of .

� Karp-Rabin (KR): This is a probabilistic string matching tech-
nique [13] that compares the hash value of the pattern against
the hash value of the sub text of a given search text. The
worst case complexity of Karp-Rabin is �! "��)& , but for many
situations is often �! ",#-�)& .

516

5.3 Gigascope Based Implementation
Gigascope is a high speed traffic monitor which can perform a

variety of traffic measurement tasks at speeds up to OC- .�/ (2x2.4
Gbps). To evaluate our signature based P2P classification we in-
cluded the libraries described above into the Gigascope framework
and wrote a set of Gigascope configuration files based on our P2P
signatures. In the Gigascope framework these configuration files
are translated into C code which is subsequently compiled. The
resulting executable is used to perform the network monitoring in
real time. Gigascope automatically breaks complex computation
into multiple tasks exploiting multiple processors if available. In
addition to the real-time P2P detection task we also used Gigascope
to collect large datasets for our accuracy evaluation as discussed in
Section 7.

When we configured our Gigascope instance we utilized the fact
that fixed offset matches are substantially cheaper to execute than
variable offset matches. For example, to identify the DirectConnect
protocol we need to perform a regular expression match for:

types|MyNick|Lock|Key|Direction|
GetListLen|ListLen|MaxedOut|Error|
Send|Get|FileLength|Canceled|HubName|
ValidateNick|ValidateDenide|GetPass|
MyPass|BadPass|Version|Hello|LogedIn|
MyINFO|GetINFO|GetNickList|NickList|
OpList|To|ConnectToMe|MultiConnectToMe|
RevConnectToMe|Search|MultiSearch|SR|
Kick|OpForceMove|ForceMove|Quit

However, we also know that the first byte of the DirectConnect
TCP payload needs to be 36 and the last byte 124. We therefore
configured the Gigascope to only try the regular expression match
for DirectConnect if the fixed offset fields match.

Note that we used a similar approach for Gnutella and Kazaa
which both use the HTTP protocol for their data transfer. Our
setup only performs the regular expression match if the TCP pay-
load starts with GET or HTTP indicating a HTTP payload.

In addition to finding packets which identify a particular connec-
tion as belonging to a particular P2P application the classifier also
maintains an accounting state about each TCP connection. This
accounting state is collected by tracking the TCP handshakes for
each TCP connection and accounting all packets with the same IP
address port number pairs towards the same TCP connection. A
TCP connection record is emitted if either the connection has been
closed for two minutes, no traffic has been seen for 8 minutes (the
typical TCP keep alive interval) or the record is older than 30 min-
utes. In particular each connection state contains:

� Byte count in each direction
� Number of packets with zero payload in each direction
� Number of packets with nonzero payload in each direction
� First signature match in each direction

TCP connection reconstruction in the middle of the network is
challenging due to the existence of packet reordering, and asym-
metric routing, and losses, and the need to scale to large num-
bers of connections. For our purpose, the more lightweight ap-
proach of TCP connection accounting is sufficient. Currently our
implementation also only inspects the first fragment of an IP data-
gram which was fragmented. We could enhance our implementa-
tion to reassemble IP fragments, however, it would only provide
a marginal benefit since TCP uses MTU discovery to avoid frag-
mentation. For example, in our experiments we observed less than
0.1% IP fragmentation in TCP traffic.

6. EXPERIMENTAL SETUP

To demonstrate the feasibility of our goal of fast P2P detec-
tion using application layer signatures we evaluate our signatures
in the three dimensions introduced in Section 2. We evaluate our
signature-based classifier in terms of accuracy, robustness and scal-
ability.

6.1 Data Sets
We analyzed two full packet traces from different network van-

tage points using the Gigascope.

Internet Access Trace: The first trace was collected on an access
network to a major backbone and contains typical Internet
traffic. The trace covers a 24 hour period on a Tuesday in
November 2003 and a 18 hour period on a Sunday in Novem-
ber 2003. The total traffic volume was ����� GB of com-
pressed data and corresponded to .10 � / million TCP connec-
tions.

VPN Trace: The VPN (Virtual Private Network) trace was col-
lected on a T3 (45 Mbps) link connecting a VPN contain-
ing 500 employees to the Internet. The router on this link
blocks P2P ports and corporate policy prohibits the use of
P2P applications within the VPN. Therefore, this link has a
low probability of carrying P2P traffic. This trace contains
6 days worth of data or 1.8 Terabytes of data in 2.8 billion
packets. The data was collected in November 2003.

6.2 Accuracy Evaluation
There are two types of classification inaccuracies, both undesir-

able
� The classifier erroneously identifies non-application traffic as

application traffic. One metric to measure this error is the
False Positive (FP).

� The classifier fails to identify application traffic as such. One
measure of this error is the False Negative (FN) metric.

Let denote the total application traffic (total bytes, connec-
tions etc.) identified by the signature, and � , the total actual traffic
for that application, and 2 be the total amount of non-application
traffic identified as application-traffic. Then the FP and FN ratios
are computed as 3547698: and 35	;6 :�<>=: . Low false positives
and negatives are important to ensure that conclusions drawn from
signature based P2P monitoring are accurate.

The misclassification can be caused by various factors includ-
ing (i) the proposed application signature being too restrictive or
too general (identifying only part of the application traffic and/or
misidentifying other traffic as the P2P application), (ii) the indi-
vidual packet-based marking approach could also cause errors as
we do not consider any signatures that might be spanning packet
boundaries, and finally, (iii) our reconstruction of bidirectional TCP
connections from packets could have inaccuracies, e.g., if the time-
out used to determine the end of a connection causes a single appli-
cation connection to be split into multiple connections. In that case,
because the application signatures typically occur at the beginning
of a TCP connection, our scheme would be unable to recognize
some of the split-created connections.

To demonstrate the robustness to some of the network effects dis-
cussed in Sections 2–3, we explore the impact on our classification
filter to loss of information in one direction. We report the amount
of traffic which can be identified based on only one traffic direction
of a TCP connection, as a fraction of that amount which can be
identified by capturing either traffic direction of a TCP connection.

517

6.3 Scalability Evaluation
For the application-signature based classification to be usable,

the technique has to be able to scale to high speed network links
with large numbers of P2P connections. We evaluate the scalability
of our technique in two ways:

� Number of packets to be examined: We explore the mini-
mum number of packets that need to be checked before we
achieve a signature match, for each P2P connection. It is de-
sirable that most P2P traffic can be identified by considering
only a very small number of packets at the beginning of each
connection.

� Micro-benchmarking: The primary component of our signa-
ture evaluation is the string search we have to perform on all
TCP payloads. We therefore, evaluate the performance of
the string search operation using three different algorithms
described in Section 5. This evaluation uses the Internet Ac-
cess Trace and measures the time it takes to process one hour
worth of trace data (. GBytes) for each of the string based
signatures introduced in Section 4. The experiments were
performed on a Dell Power Edge 2650 with . GBytes of
RAM and two 2.8GHz processors running FreeBSD 4.7.

7. EXPERIMENTAL EVALUATION

In this section we report our experimental results.

7.1 Accuracy and Robustness Measurements

7.1.1 False Positives
Because of strict firewall restrictions as well as active monitoring

and enforcement of corporate rules on use of P2P applications, the
VPN Trace offered us a large data set that was expected to contain
little or no P2P traffic. We applied our classifier in real time to the
VPN traffic to measure the false positive ratio of our technique. Our
approach was to investigate manually any TCP connection which
is identified as a P2P connection. If in fact the content of the con-
nection did not belong to a P2P protocol we count the connection
as a false positive.

Our signatures initially identified 2610 packets as P2P packets
out of 2.8 billion packets. We then examined the 2610 packets
to determine their status. We identified manually that 82 of these
packets contain the string ‘X-Kazaa’, which is the signature for
Kazaa protocol, and the rest of them (2528) contain the string ‘Bit-
Torrent Protocol’, which is the signature for BitTorrent protocol.
We subsequently informed the operator of the VPN about these pol-
icy violations. Our signatures, therefore, resulted in at most 2610
false positives out of �?0 / billion (��0 / TeraBytes) and zero false pos-
itives assuming that our manual verification is correct.

A second test involved the Internet Access trace. Recall that our
approach involved applying each P2P application signature to in-
dividual packets, and in case of a match marking that packet as a
candidate for that application. We found that there was not a single
instant where the same packet was classified as belonging to more
than one of the P2P applications. Also there was no case where
different packets in the same direction or in different directions of
a TCP connection were marked as different applications. This re-
sult is important as it suggests that the signatures themselves and
the packet-based marking approach were able to unambiguously
distinguish between the five different P2P applications.

7.1.2 False Negatives
We next explore the extent of misclassification where the chosen

signature fails to identify the application traffic. The Internet Ac-
cess Trace is used to measure the false negative ratio of our signa-
tures. For this evaluation we assume that all traffic on well-known
default P2P port numbers is P2P traffic and that this traffic con-
tains a representative mix of P2P protocol versions. Therefore, any
TCP connection on this port number which carries data should be
classified as P2P traffic by our signatures and doing so tests our
signatures on a representative mix of protocol versions. If a TCP
connection on such a port is not identified as P2P traffic we count
the connection as a false negative. Note that this approach does
not make any assumptions about the traffic on non-P2P ports – in
particular we do not assume that it is not P2P traffic.

Alternative approaches for examining false negatives would in-
clude getting the traffic dataset by either running each P2P applica-
tion in an isolated testbed, or running a P2P client and SuperNode
locally that communicate with other nodes in the Internet. Given
the multiple variants of each protocol, concerns about the need to
get packet traces that are representative, and legal issues in actively
joining such a system, we adopted the approach of passive moni-
toring at representative network locations.

We use the following ports [3, 2, 1] for identifying the P2P traf-
fic for this test: Gnutella A@���.B@�CD@���.BE�& , Kazaa F�G�?��.B& , DirectCon-
nect ".H����IJ.1����& , BitTorrent A@�/�/H��IK@�/�/��B& , eDonkey ".B@�@H��C�.B@�@���& .

Table 1 presents the FN ratio for the different applications. For
each application, column � presents the total traffic for all connec-
tions that use the default application port(s) at at least one end-
point, and column � depicts how much of that traffic the signature-
based classification missed. We find the FN ratio is less than

���
for all the protocols except BitTorrent for which it is about ��� � .

Some of the missed traffic can be attributed to TCP connections
where there were no application-level packets exchanged, e.g., for
connections with some or part of the SYN-SYNACK-ACK hand-
shake that occurs at the beginning of a TCP connection. The ap-
plication signature-based classification would miss such connec-
tions. To quantify how this might impact traffic accounting, the
second set of numbers in each row in Table 1 depict the total traf-
fic based on port numbers and the corresponding FN ratio, when
we consider only connections that have at least one packet with
application-level payload (data beyond the TCP/IP header) in at
least one direction. For Gnutella, it reduces from .10 �BE � to ��0 ��� � .
For each of the other protocols, the FN ratio remains very similar
to the “all connections” case. This might indicate that missing the
no-application payload connections does not significantly limit the
accuracy of the signatures in accounting for the traffic volume.

Some of the missed traffic may be the P2P signaling commu-
nications which we excluded from our signature coverage. The
FN ratio for eDonkey is significantly lower than Gnutella, Kazaa
and BitTorrent, since we included part of the eDonkey signaling
in our coverage. Note for DirectConnect, our signatures covered
both data and signaling and the FN ratio is almost zero, indicating
a near-perfect match. The FN numbers are also upper bounds on
the missing signaling overhead.

Finally note that the FN numbers that we present here are es-
timates, because it is entirely possible that the default port(s) are
being used by applications other than the specific P2P protocol.
For instance, while BT uses ports 6881-6889, port 6883 and 6888
respectively are also associated with DeltaSourceDarkStar [3], and
MUSE. Similarly, ports .1����IJ.H��� (default DirectConnect ports) are
associated in the IANA database [2] to other applications. Given
the low False Positive characteristics demonstrated by the signa-
tures, the FN ratios we obtain above are likely to be overestimates

518

Protocol All Connections Connections with payload
Port-based (MB) FN(%) Port-based (MB) FN(%)

Gnutella 486.39 4.97 467.05 1.03
Kazaa 548.41 4.82 547.71 4.70
DirectConnect 2000.75 0.0003 2000.74 0
BitTorrent 54444.67 9.90 54442.37 9.89
eDonkey 2149.84 1.83 2144.92 1.60

Table 1: False Negative for different P2P protocol signatures.

of the actual False Negative if there was only P2P application traf-
fic running on the default ports. Finally, the FN values also provide
upper bound estimates on how much other traffic is delivered on
the same default ports.

7.1.3 Robustness
We next explore the robustness of our signatures to loss of infor-

mation in one direction using the Internet Access trace. Recall that
this trace was collected at a gateway between the local network and
the Internet. We consider two directions: direction corresponds
to data being transmitted from inside to the Internet, and the re-
verse direction. Using auxiliary interface information, we are able
to identify for each TCP connection, which packets are transmitted
in each of the 2 directions. There are some connections for which
we observe only one direction at this link - the other direction be-
ing routed (due to asymmetric routing) over some other link. These
latter connections are excluded from the study. For this evaluation,
we consider only those connections that route both directions of
traffic through our monitoring router. We consider the subset of
connections that our classifier was able to identify based on signa-
ture matches in either or both directions. For this traffic, for each of
the 2 directions identified above, we identify the fraction of traffic
that is identifiable based on signature matches with only packets
transmitted in that direction. We are effectively trying to evalu-
ate a scenario where the connection level summary statistics may
be available for both directions (using, e.g., tools like Cisco Net-
flow [15] which are deployed at routers throughout many ISPs and
are more ubiquitous compared to packet monitors), but the packet
classification monitor only has access to one direction of the packet
data. Table 2 shows the results. We find that whichever direction
we select, across all the applications, one-way signature detection
is able to detect the vast majority of the connections. This is good
news, because it suggests that the signature based detection is quite
robust to asymmetric routing which is quite prevalent in the Internet
today. This vindicates our strategy of trying to develop signatures
for identifying either direction of a TCP connection.

7.2 Scalability
We next consider the following question: How many applica-

tion level packets have to be examined on a per connection basis
to identify a P2P connection? For the Internet Access data set,
for all the connections identified to belong to one of the five P2P
applications by our signature-based classification, we compute the
minimum number of packets in either direction that are processed
before the first successful match with a signature occurs. Fig. 1
plots, for each P2P application, the cumulative percentage of appli-
cation traffic that was successfully identified based on examining
at most 	 packets, for a range of values of 	 . The graphs indicate
that to identify most of the traffic, for each connection a handful of
packets need to be examined before a match is obtained - a wel-
come news from the efficiency viewpoint.

To evaluate the cost of variable offset matches we measured the
performance impact of variable offset matches for the three proto-

80

85

90

95

100

0 2 4 6 8 10

 C
um

ul
at

iv
e

Tr
af

fic
 id

en
tif

ie
d

(%
)

 Number of packets examined

Gnutella
Kazaa

DirectConnect
BitTorrent
eDonkey

Figure 1: Scalability: The cumulative distribution of total ap-
plication traffic identified by examining at most 	 packets, as
a function of 	 .

cols which require this type of search. In particular we tested the
Kazaa, Gnutella and DirectConnect signatures. The signatures in
particular contained:

Kazaa: One E -character case-insensitive keyword.

Gnutella: Two groups of keywords separated by a random num-
ber of whitespaces. The first group contained two keywords
combined by a logical OR operation, and the second group
contained �GE keywords also combined by logical OR opera-
tions. The total size of the regular expression expressing this
signature was �GE�/ characters.

DirectConnect: The DirectConnect signature consists of 36 key-
words all combined by logical OR operations.

Using the three regular expression algorithms described in Sec-
tion 5 we measured the bit rate at which we can apply the signatures
to all packets using �*. � -minute traces randomly chosen from the
Internet Access Trace. The total data in these traces was . GB. To
contrast the performance of each search algorithm, we first loaded
each

�
-minute trace once to warm up the file cache, and then mea-

sured the time taken to load the trace from the file cache. On our
Dell Power Edge with two �?0 / Ghz processors and . GB of RAM
running FreeBSD .10 E , this resulted in an average data streaming
rate of .10 E Gbps if no search was performed.

Table 3 shows the relative performance of each algorithm com-
pared to the average throughput of just loading the data from a
warm file cache. The results show clearly that the Boyer Moor
based AST regex search outperforms its competitors by more than
one order of magnitude. It also shows that the most complex sig-
nature of DirectConnect reduces our system throughput to /�0 E �

519

protocol Identified Traffic (%)
Interface1 Interface 2

Gnutella 99.10 99.99
Kazaa 99.34 99.99
DirectConnect 98.94 95.55
BitTorrent 99.99 99.95
eDonkey 99.69 99.99

Table 2: robustness of signature based identification.

Protocol libc AST regex Karp Rabin
Kazaa 2.39% 77.60% 0.9%
Gnutella 0.27% 58.7% 0.17%
DirectConnect 0.21% 8.7% 0.07%

Table 3: Performance of search algorithms for different P2P protocol signatures relative to the system throughput.

compared to the throughput when no variable offset match needs
to be performed. In our system this is still in excess of .B��� Mbps.
This throughput combined with the cheap filtering provided by the
fixed offset matches for DirectConnect is more than sufficient to
sustain Gigabit Ethernet links. Both Gnutella (��0 / Gbps) and Kazaa
(��0 E Gbps) even perform above the Gigabit Ethernet mark without
any fixed offset based filtering. Additional savings can be achieved
by only inspecting the first packet as previously shown. This will
allow us to perform this type of signature-based traffic identifica-
tion at very high rates.

7.3 Comparison with port-based identification
As discussed earlier in the paper, the limitations of using port-

numbers for application classification was one motivator for this
research. Our evaluations above indicate that our identification
technique has good accuracy, can scale to large traffic volumes,
and, in particular, has very low False Positives. We next use the
Internet Access Data set to illustrate quantitatively, how a purely
port-based approach would fare against the signature-based identi-
fication. Note that the choice of what goes in the list of default ports
would impact the above performance. For this experiment, we se-
lected the list of default ports based on information from multiple
sources including the IANA database [2], Internet Storm Center
mapping [3], and CISCO documentation. The resulting list is iden-
tical to the one used for the FN experiments (Section 7.1.2), except
that for Gnutella, we add the ports @��*.B/HCD@���.B��CL@�� ��� , and

� @��*. .
Column � in Table 4 presents for each P2P application, the total

traffic based on the default ports. Column � presents the total P2P
traffic identified using application signatures expressed as a per-
centage of corresponding the value in column � . The data indicates
that for some protocols like Kazaa, Gnutella and DirectConnect, a
significant proportion of the traffic is channeled on non-standard
ports, and would be missed by the port-based classification. For
example, the application signatures identified more than � times
more traffic than that obtained using the Kazaa port. BitTorrent
and eDonkey in contrast seem to be at present mostly using their
default ports.

The percentages in Table 4 could also be impacted by the pos-
sibility that the numbers in Column � also include non-application
traffic sharing the default port. If that extra traffic could be iden-
tified and removed, the percentages might increase. To remove
the effect of such non-application traffic, we next compute the to-
tal traffic identified by the application signatures transmitted on
non-standard ports, as a fraction of the total application signature-
identified traffic. The results are shown in Table 5.

8. CONCLUSION AND FUTURE WORK

In this paper we demonstrated the feasibility, robustness and ac-
curacy of application signature based P2P detection in high speed
networks. In particular we described and evaluated the P2P signa-
ture of the five most commonly used P2P applications. Our work
will directly benefit network operators who have a need to identify
P2P traffic today, and researchers who want to accurately study the
behavior of P2P networks using data based on accurate application
identification in contrast to port number based application classifi-
cation used in the literature today.

As a more general contribution we evaluated multiple algorithms
to perform application layer signature matches, and demonstrated
that complex application layer signatures can be evaluated on high
speed links.

As we expect that in the future more and more protocols which
want to avoid detection will use encryption we believe that appli-
cation layer signatures will eventually have the same fate as port
number based application classification has today. Our future work
therefore focuses on exploiting other characteristics of data trans-
fers such as communication patterns, timings and traffic volumes
to perform application classification. Additionally we are investi-
gating how to adapt signatures if new protocol versions are intro-
duced.

9. ACKNOWLEDGMENTS

We would like to thank Glenn Fowler for providing us with the
AST software library and Phong Vo for valuable discussions on
string matching algorithms. We also thank the anonymous review-
ers whose suggestions benefited the final version of the paper.

10. REFERENCES
[1] BitTorrent Protocol.

http://bitconjurer.org/BitTorrent.
[2] Internet Assigned Numbers Authority (IANA). http:

//www.iana.org/assignments/port-numbers.
[3] Internet Storm Center. http://isc.sans.org.
[4] P. Barford, J. Kline, D. Plonka, and A. Ron. A Signal

Analysis of Network Traffic Anomalies. In Proceedings of
ACM SIGCOMM Internet Measurement Workshop,
November 2002.

[5] P. Barford and D. Plonka. Characteristics of Network Traffic
Flow Anomalies. In Proceedings of ACM SIGCOMM

520

Protocol All Connections
Port-based (MB) Signature-based (%)

Gnutella 487.12 145
Kazaa 548.41 347.38
DirectConnect 2000.75 163.45
BitTorrent 54444.67 90.97
eDonkey 2149.84 102.37

Table 4: Accuracy of port-based vs. signature based identification.

Protocol Signature-based
Total (MB) Non-Standard Ports(%)

Gnutella 706.29 34.52
Kazaa 1905.12 72.60
DirectConnect 3270.30 38.82
BitTorrent 49528.90 0.95
eDonkey 2200.92 4.10

Table 5: Fraction of P2P application traffic (as identified by application signature) on non-standard ports.

Internet Measurement Workshop, October 2001.
[6] R. Boyer and J. Moore. A fast string searching algorithm.

Communications of the ACM, 20(10):762–772, 1977.
[7] C. Cranor, T. Johnson, and O. Spatscheck. Gigascope: a

stream database for network applications. In SIGMOD, June
2003.

[8] C. Dewes, A. Wichmann, and A. Feldmann. An analysis of
internet chat systems. In Proceedings of ACM SIGCOMM
Internet Measurement Conference, October 2003.

[9] A. Feldmann. BLT: Bi-layer tracing of HTTP and TCP/IP.
WWW9 / Computer Networks, 33(1-6):321–335, 2000.

[10] G. Fowler, D. Korn, and K.-P. Vo. Libraries and file system
architecture. In B. Krishnamurthy, editor, Practical Reusable
UNIX Software, chapter 2. John Wiley, New York, NY, 1995.
http://www.research.att.com/library/
books/reuse.

[11] A. Gerber, J. Houle, H. Nguyen, M. Roughan, and S. Sen.
P2P The Gorilla in the Cable. In National Cable &
Telecommunications Association (NCTA) 2003 National
Show, Chicago, IL, June 2003.

[12] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. In Proceedings of the
19th ACM Symposium on Operating Systems Principles
(SOSP-19), October 2003.

[13] R. Karp and M. Rabin. Efficient randomized
pattern-matching algorithms. IBM Journal of Research and
Development, 31(2):249–260, March 1987.

[14] D. Moore, G. Voelker, and S. Savage. Inferring Internet
Denial of Service Activity. In Proc. of the USENIX Security
Symposium, Washington, D.C., August 2001.
http://www.cs.ucsd.edu/˜savage/papers/UsenixSec01.pdf.

[15] White paper-netflow services and applications.
http://www.cisco.com/warp/public/cc/pd/
iosw/ioft/neflct/tech/napps_wp.%htm.

[16] V. Paxson. End-to-end routing behavior in the internet.
IEEE/ACM Transactions on Networking, 5(5):601–615,
October 1997.

[17] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy. An Analysis of Internet Content Delivery
Systems. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, 2002.

[18] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks. In Proceedings of ACM SIGCOMM Internet
Measurement Workshop, Marseilles, France, November
2002.

[19] Y. Zhang and V. Paxson. Detecting backdoors. In Proc.
USENIX, Denver, Colorado, USA, 2000.

521

