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Accurate Screening of COVID-19 Using
Attention-Based Deep 3D Multiple

Instance Learning
Zhongyi Han , Benzheng Wei , Yanfei Hong, Tianyang Li , Jinyu Cong,

Xue Zhu, Haifeng Wei, and Wei Zhang

Abstract— Automated Screening of COVID-19 from chest
CT is of emergency and importance during the outbreak of
SARS-CoV-2 worldwide in 2020. However, accurate screen-
ing of COVID-19 is still a massive challenge due to the
spatial complexity of 3D volumes, the labeling difficulty
of infection areas, and the slight discrepancy between
COVID-19 and other viral pneumonia in chest CT. While
a few pioneering works have made significant progress,
they are either demanding manual annotations of infection
areas or lack of interpretability. In this paper, we report our
attempt towards achieving highly accurate and interpretable
screening of COVID-19 from chest CT with weak labels.
We propose an attention-based deep 3D multiple instance
learning (AD3D-MIL) where a patient-level label is assigned
to a 3D chest CT that is viewed as a bag of instances. AD3D-
MIL can semantically generate deep 3D instances following
the possible infection area. AD3D-MIL further applies an
attention-based pooling approach to 3D instances to pro-
vide insight into each instance’s contribution to the bag
label. AD3D-MIL finally learns Bernoulli distributions of the
bag-level labels for more accessible learning. We collected
460 chest CT examples: 230 CT examples from 79 patients
with COVID-19, 100 CT examples from 100 patients with
common pneumonia, and 130 CT examples from 130 people
without pneumonia. A series of empirical studies show
that our algorithm achieves an overall accuracy of 97.9%,
AUC of 99.0%, and Cohen kappa score of 95.7%. These
advantages endow our algorithm as an efficient assisted
tool in the screening of COVID-19.
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I. INTRODUCTION

W
ITH the outbreak and widespread of SARS-Cov-2

worldwide, artificial intelligence (AI) assisted screen-

ing of COVID-19 from chest CT is significantly urgent and

necessary. SARS-Cov-2 is a novel virus with the human-

to-human transmission, causing an ongoing pandemic of

the respiratory illness known as coronavirus disease 2019

(COVID-19). To date, SARS-Cov-2 has attacked 216 coun-

tries, areas, or territories that involve 6,272,098 confirmed

COVID-19 cases and 379,044 confirmed deaths according to

WHO. Toward fast stopping the widespread of COVID-19,

large-scale screening is imperative to cut off the source of

infection. Clinical practice demonstrates that chest CT is an

effective inspection strategy because it can characterize the

standard features between the majority of COVID-19 cases,

which show ground-glass opacities in the early stage and pul-

monary consolidation in the late stage [1], [2]. While nucleic

acid detection of reverse transcription-polymerase chain reac-

tion is a gold standard to screen COVID-19, the availability,

stability, and reproducibility of the nucleic acid detection kits

are questionable [3]. For example, some patients need to be

checked repeatedly because the false-negative rate is high [3].

Chest CT seems particularly essential and even is called

to replace the detection kits as one of the early diagnostic

criteria in a period of time [4]. However, clinical screening

of COVID-19 from chest CT is under problem with enor-

mous pressure, and its screening sensitivity is unsatisfactory

according to the screening performance test of radiologists [3].

Automated tools can correspondingly assist the clinical prac-

tice in speeding up screening and improving the sensitivity.

Therefore, automated screening of COVID-19 from chest CT,

the main topic of our analysis, is urgently needed to deal with

this problem.

However, accurate screening of COVID-19 still faces enor-

mous challenges from the spatial complexity of 3D volumes,

the labeling difficulty of infection areas, and the slight dis-

crepancy between COVID-19 and common viral pneumonia in
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chest CT. Firstly, despite the advantages of CT compared with

traditional 2D medical radiography, the volumes of CT gener-

ally include hundreds of slices that bring in more difficulties

for computational analysis. Secondly, one possible automated

approach for screening COVID-19 is to build a classifier on

segmented infection areas, unfortunately, which are hardly

labeled manually due to the necessity of expensive cost and

the indistinguishable characteristic of ground-glass opacities.

Finally, COVID-19 and other viral pneumonia share similar

features. Even radiologists cannot distinguish them from chest

CT accurately without other inspection methods [3].

While a few previous studies have made significant advance-

ment for automated screening of COVID-19 from chest CT,

they are either demanding manual annotations of infection

areas or lack of interpretability. According to the input types

of screening classifiers, we divide the pioneering methods into

three classes. The first class is the patch-based methods that

leverage a segmentation model to detect infection areas and

then train a classifier based on them [3]–[6]. Although the two-

stage manner is similar to the observation processes of radi-

ologists on Chest CT, supervised segmentation needs a large

scale of annotations of infection areas. Even if unsupervised

segmentation algorithms do not need annotations, but they are

prone to errors. The second class is the slice-based methods

that use a 2D model to perform slice-wise decisions [7]–[10].

However, such an approach needs to manually select infection

slices among hundreds of chest CT slices for training. The

third class is the 3D CT-based method that takes 3D CT scans

as input, and use 3D convolutional neural networks (CNN)

to make decisions directly [11]. This direct approach can

avoid mistakes caused by intermediate processes; however,

it still a black-box model lacking interpretability of results.

In summary, the direct yet interpretable algorithms would

be more helpful and compelling; however, they are under-

explored so far.

In this paper, we propose an attention-based deep 3D multi-

ple instance learning (AD3D-MIL) approach towards achiev-

ing accurate and interpretable screening of COVID-19 from

chest CT. Generally speaking, AD3D-MIL views each 3D

chest CT as a bag of instances that can be interpreted into small

3D cubes. The main goal of AD3D-MIL is learning to predict

an individual category label assigned to a chest CT, e.g.,

COVID-19, common pneumonia, or no pneumonia. Another

essential objective is to obtain crucial instances that can reveal

the location of infection areas. Unlike previous MIL works that

assume the existence of already-separated instances, AD3D-

MIL could semantically generate deep 3D instances with

permutation-invariance. For improving the interpretability of

results, AD3D-MIL involves an attention-based MIL pooling

strategy applied on deep 3D instances to give insight into

every instance’s contribution to the bag label. AD3D-MIL

finally learns Bernoulli distributions of the bag-level labels

for more accessible learning. Since existing MIL works

are mainly focusing on binary classification, AD3D-MIL

can also extend MIL to multi-class classification by mod-

eling the joint Bernoulli distribution of multi-class bag

labels. We seamlessly transform AD3D-MIL into a 3D neural

network that performs efficient end-to-end optimization by

backpropagation, successfully achieving accurate screening of

COVID-19. A series of empirical studies on a newly-collected

dataset show that AD3D-MIL, with interpretability of results,

remarkably exceeds the state of the art works.

The main contributions of this study include: The main

contributions of this study include:

• We achieve an accurate and interpretable screening of

COVID-19 that contribute to the large-scale screening in

clinical for the fast stopping of COVID-19 worldwide.

• In the screening problem of COVID-19, we propose a

weakly-supervised learning framework that unifies atten-

tion mechanism and deep multiple instance learning in a

mutually beneficial way.

• We propose, for the first time, an automated deep 3D

instances generator with robust scalability and flexibility.

This approach can extend the MIL into practical tasks.

We arrange the remainder of this article as follows.

In Section II, we review the related works in terms of arti-

ficial intelligence assisted analysis of COVID-19 and involved

methodology. We give some preliminaries in Section III and

describe in detail the proposed AD3D-MIL in Section IV.

In Section V, we provide detailed descriptions of collected

datasets, experiment settings, and evaluation results. Finally,

we conclude and discuss this study in Section VI.

II. RELATED WORK

This section presents related works in terms of automated

screening of COVID-19 and involved methods of our work.

A. Automated Screening of COVID-19

Since medical imaging plays a fundamental function in

the global fight against COVID-19, lots of works have been

devoted to AI-empowered technologies to improve the work

efficiency of medical image analysis. These emerging works of

COVID-19 includes automated screening [3]–[11], lesion seg-

mentation [8], [12], infection quantification [13], and patient

severity assessment [14]. Among them, automated screening

attracts the most attention, for instance, which takes up much

space in the first comprehensive review paper about AI for

COVID-19 [15]. Generally speaking, pioneering screening

works include chest X-ray based and chest CT based works.

Chest X-ray based works leverage 2D CNNs to make decisions

directly [16]–[20]. While chest X-ray has the characteristics

of low radiation and low cost, chest CT is the most commonly

used inspection strategy for the COVID-19 diagnosis because

it can characterize the most common findings [2]. Accordingly,

a large part of screening works is built on chest CT.

Due to the spatial complexity of chest CT, existing screening

works attempt to handle that by adopting three different strate-

gies. The first type is the patch-based methods. As far as we

know, Xu et al. is the first work attempting to study the auto-

mated screening of COVID-19 from chest CT [4]. Based on

618 CT scans, they first leveraged VB-Net to extract regions of

interest (ROI) and then used a CNN to screen COVID-19 from

Influenza-A viral pneumonia and irrelevant to infection groups.

Wang et al. first used a threshold approach to extract ROI

images and then trained a modified inception network to screen
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COVID-19 from typical viral pneumonia [3]. They collected

chest CT scans from 79 cases of COVID-19 and 180 cases of

typical viral pneumonia with an accuracy of 79.3%. Based on

a large-scale dataset, Shi et al. first trained a VB-Net for the

segmentation of ROIs and then extracted manually-designed

features to train a random forest on classifying COVID-19 and

common pneumonia [5]. Jin et al. attempted to combine 3D U-

Net and ResNet-50 to build a screening system in four weeks

with satisfying performance [6]. As we mentioned before,

these two-stage approaches either need lesion annotations or

are prone to the errors from intermediate steps.

The second type is the slice-based methods. Gozes et al.

used a 2D CNN to perform slice-level classification on

270 slices comprised of 120 COVID-19 and 150 nor-

mal slices [8]. Based on a multi-center dataset comprised

of 88 COVID-19, 101 bacteria pneumonia, and 86 healthy

CT scans, Song et al. applied a modified residual net-

work (ResNet-50) for slice-level classification [7]. Moreover,

Jin et al. [10] and Gozes et al. [9] constructed a same pipeline:

a deep ResNet-50/152 to perform slice-level classification and

a gradient class activation mapping for show the heatmaps.

Note that while the heatmaps can also explain results, they are

post-hoc analyses. The slice-based methods need the manual

selection of slices to train the classifier, and they neglect the

spatial correlation in CT scans, which is key for the screening

of COVID-19.

The last type is the 3D CT-based method, and there is

only one existing work to date. Based on 540 CT scans

comprised of 313 COVID-19 and 229 others, Zheng et al.

attempted to leverage a 3D CNN to make decisions directly

with satisfying performance [11]. Since a 3D model is more

complicated than a 2D model, this type of resolution lacks

the interpretability of results. On the other hand, this direct

manner can achieve optimal minima by leveraging end-to-

end optimization, which often obtains better performance than

multi-stage methods. Therefore, to realize the direct screening

and interpretability of results simultaneously, we propose a

novel algorithm of multiple instances learning that integrates

the expression ability of key instances and the end-to-end

optimization.

B. Involved Methods of Our Work

1) Multiple Instance Learning (MIL): MIL is a type of inexact

supervised learning that is a branch of weakly supervised

learning [21]. Concretely, MIL receives coarse-grained labels

where the training data is imperfect. One seminal work in this

field was conducted by Dietterich et al. [22]. For analyzing

the multiple instance setting, this work attempted three types

of approaches for learning axis-parallel rectangles. It showed

that the algorithm that ignores the multiple instance setting

performs very unsuccessfully. After that, many powerful algo-

rithms appeared and performed at two levels: instance-level or

bag-level [23]. Since developing the instance-level classifica-

tion algorithm demands ground truth of instance labels, most

studies focus on the bag-level MIL setting. Almost all bag-

level classification algorithms are extended from supervised

learning algorithms, including MI-SVM [24], MIL-Boost [25],

EM-DD [26], and MILD [27]. These algorithms consider

learning an optimal classification boundary for the MIL

problem.

MIL has been successfully applied to various domains

over the last 20 years, such as computer-aided diagnosis and

detection [28]–[32], image classification/retrieval/annotation

[33]–[36], text categorization [37], spam detection [38], object

detection [25], unsupervised saliency object discovery [39],

object tracking [40], etc. When MIL applies to medical image

analysis, the occurrence and structures of instances (organs)

are beneficial for MIL classifier [23]. For example,

Melendez et al. shown an obvious performance gain by

training an MI-SVM classifier on distinguishing chest X-ray

images into healthy or containing tuberculosis [31]. The appar-

ent improvement is also obtained on the task of diagnosis of

chronic obstructive pulmonary disease (COPD) from breast

CT [32]. Ilse et al. proposed a new attention-based deep

multiple instance learning framework used for the intelligent

detection of cancerous regions in histopathological slides,

in which ROIs can be indicated [41]. To achieve the computer-

aided diagnosis of endoscopic diseases using weak labels,

Wang et al. formulated this task as a MIL problem and built a

weakly labeled endoscopic image dataset [42]. For more work,

please refer to the survey given by Cheplygina et al. [43].

Compared with existing MIL algorithms, our AD3D-MIL

mainly has four advances: 1) extent MIL to 3D tasks, 2) can

generate instances automatically, 3) achieve the classification

of multi-class bags, and 4) introduce attention mechanism

to discover key instances that indicate the infection area of

COVID-19 on chest CT.

2) Attention Mechanism With MIL: Embedding attention

mechanisms in deep learning is an attempt to mimic human

brain actions concentrating on a few important things. It has

given birth to the rise of many breakthroughs in the field of

natural language processing (NLP), such as Transformer archi-

tecture [44] and Google BERT [45]. The attention mechanism

based deep learning framework is generally adopted in the

fields of image captioning [46] and text analysis [47]. There

are only four works integrates attention mechanism into MIL

problem and are in a minimal form. Pappas et al. attempted

to use an additional linear regression module to compute

the attention weights on instances. A one-layer network then

replaces the linear regression model with a single output [48].

Qi et al. attempted to use attention-based MIL operator for

the classification and segmentation of point sets [49]. However,

this attempt performed worst than the max operator of instance

pooling. To improve this attempt, Ilse et al. proposed to adopt

two fully-connected layers as a neural network to learn an

attention-based MIL operator and demonstrated that this idea

exceeds the max operator and the mean operator [41]. Inspired

by this idea, we propose to use the attention mechanism to

apply on 3D data with automated instance generation and end-

to-end optimization through backpropagation.

III. PRELIMINARIES

In this section, we present the necessary notations and

objectives for the task of screening of COVID-19 from chest

CT and then present the underlying assumptions and popular

approaches for the problem of multiple instance learning.
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A. Problem Setting

We first consider the familiar supervised learning setting

in which the learner receives a sample of m labeled training

examples {(X i , Yi )}
m
i=1 drawn from a joint distribution Q

defined on X×Y , where X is the instance set and Y is the label

set. Y is {0, 1} in binary classification and {1, . . . , K } in multi-

class classification. Denote by Q̂ the empirical distribution.

In this task, X is the set of chest CT scans, and Y is the set

of patient-level labels. X i is any chest CT scan of one patient,

and Yi is the label of this patient.

We denote by ` : Y × Y → R a loss function defined

over pairs of labels. For binary classification, we denote by

f : X → {0, 1} a scoring function, which induces a labeling

function h f : X → Y where h f : X → arg maxY∈Y f (X, Y ).

For any distribution Q on X ×Y and any labeling function h f ,

we denote �Q(h f ) = �(X,Y )∼Q`(h f (X), Y ) the expected risk.

Our objective is to select a hypothesis f out of a hypothesis set

F with a small expected risk �Q(h f ) on the target distribution.

B. Multiple Instance Learning

1) MIL Formulation: The MIL algorithm acquires a sample

of m training examples {(X i , Yi )}
m
i=1 drawn from a joint

distribution Q defined on X × Y . Note that X i is a bag

of instances and X i = {x1, x2, . . . , xN } where N denotes

the quantity of instances in a bag. Furthermore, we assume

that each instance xn has a individual label yn ∈ {0, 1}, for

n = 1, · · · , N . However, in this task, these instance labels y

are not easily available due to the expensive annotation cost

in clinical. X i is any chest CT scan of one patient, and Yi is

the label of this patient. Note that any instance xi is a small

volume in a CT scan, and it may involve the infection area of

COVID-19.

2) MIL Assumption: Traditional MIL studies agree that the

assumption of MIL is as follows.

Y =

{

0, iff
∑

n yn = 0,

1, otherwise.
(1)

In our work, this assumption indicates that the chest CT is

from a COVID-19 patient if it involves at least one lesion.

Based on this assumption, the empirical loss is formulated by

�
Q̂
(h f ) =

1

m

m
∑

i=1

`(h f (X i ), Yi ), (2)

where h f (·) represents a labeling function induced by an MIL

scoring function f , and `(·, ·) can be any loss functions, such

as 0-1, hinge loss, etc.

3) MIL Decomposition: In practice, the process of MIL

includes several steps, in which each step corresponds to a

specific transformation function. Given an input instance xn ,

the whole scoring function f of the MIL problem can be

revised into

f (X) = g(σxn∈X [ψ(xn)]), (3)

where ψ and g are continuous functions. σ is a symmetric

function, e.g., max, mean. Accordingly, the MIL problem can

be decomposed into three steps: 1) a transformation function

ψ to obtain the features or pseudo-labels of instances; 2) an

asymmetric function σ to generate the feature or predication

label of the bag by combining the features or pseudo-labels of

instances; 3) if the feature of the bag is generated, a trans-

formation function g to pursue the final label of the bag.

Otherwise, this step is needless.

4) MIL With Raw Instances: Traditional MIL methods do

assume that the instances are pre-defined and segmented in

advance. For example, each instance has been defined by

the researcher, and the features of each instance have been

extracted, i.e., the transformation ψ is needless. However,

the instances of lots of real-world tasks are raw without

extracted features [28]–[32]. Owing to the strong expression

ability, neural networks are used for the representation extrac-

tion of instances. Given an raw instance xn , a neural network

ψ with parameters θψ transforms it into a hidden feature hn :

hn = ψ(xn), in which hn ∈ R. Note that R = [0, 1] for

instance-level approach, while R = �
D for embedding-level

approach. The goal of the instance-level approach is to predict

the label of instances rather than generating features for them.

On the contrary, the objective of the embedding-level

approach is to generate the features of raw instances. As men-

tioned above, the function g is needless for the instance-level

approach. For the embedding-level approach, the function g

can also be a neural network to make final decisions based

on the representation z of the bag. The only restriction is that

the symmetric function σ must be differentiable. To achieve

that, MIL pooling operators are leveraged to integrate the

learned representation of instances. There are two standard

differentiable MIL pooling operators: the maximum operator:

∀d=1,...,D : z = max
n=1,...,N

{hnd }, (4)

and the mean operator:

z =
1

N

N
∑

n=1

hn . (5)

Both MIL pooling operators are viewed as neural layers and

widely used in the MIL with neural networks. Note that MIL

pooling is different from the max or average pooling layers of

CNNs that perform on the feature maps.

5) Disadvantages: While MIL with neural networks has

made substantial impacts in advancing algorithm designs, there

are two crucial directions for improvement:

1) While the approaches of MIL with neural networks

can extract deep features from a bag of raw instances,

they also need the instances that are separated already.

However, manual separation of instances is inefficient

and suboptimal in many real-world tasks like video or

image analysis, even for the 3D medical image analysis.

The other problem caused by this approach is that when

new tasks appear, the researcher still needs to separate

instances. In the specific new tasks, such as the 3D CT

based screening of COVID-19, the instances are hard

to be defined and designed due to the difficulties of

infection area labeling. As a result, the previous MIL

algorithms cannot be used directly.
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Fig. 1. An illustration of the proposed attention-based deep 3D multi-instance learning compared with traditional learning paradigms.

2) Both maximum and mean pooling operators are pre-

defined and non-trainable. Maximum pooling is unsuit-

able for the embedding-level approaches, while mean

pooling cannot find the key instances.

These directions are significant challenges for practical algo-

rithm designs. In this paper, we aim to overcome these

challenges by designing an attention-based deep 3D multi-

instance learning.

IV. THE PROPOSED APPROACH

According to the above directions, we propose the attention-

based deep 3D multi-instance learning (AD3D-MIL). As illus-

trated in Figure 1, compared to traditional multi-instance

learning, AD3D-MIL first transforms a raw unseparated bag

into multiple 3D instances with semantic representation (see

Section IV-A). It then combines the deep 3D instances into

the bag representation using an attention-based MIL pooling

(see Section IV-B). It finally transforms the bag representation

into the final prediction by using a neural network to learn

the Bernoulli distribution of the bag (see Section IV-C).

We integrate these three steps into a 3D deep neural network

for end-to-end optimization. We then relax the assumption of

MIL into multi-class classification problem (see Section IV-D).

Finally, we summarize the advantages (see Section IV-E).

A. Deep Instance Generation

As mentioned before, existing popular approaches of MIL

with neural networks treat separated instances as inputs, then

use a deep neural network to transform them into embedding

space. However, such a manner neglects the spatial and global

information between instances among 3D CT scans. Here we

propose a deep instance generator ψ that treats one 3D CT

scan as a whole and generate deep instances automatically.

Generally speaking, the deep instance generator can be a fully

3D convolutional neural network (CNN). In practical, given a

3D chest CT scan X i with the shape of H × W × S, the final

layer of 3D fully CNN outputs a series of 3D feature maps

with the shape of H ∗×W∗ × S∗ × D, where H ∗, W∗, S∗, and

D represent the high, width, spatial, and feature dimension

of 3D feature maps, respectively.

Inspired by [50], we view each point of the H ∗ × W∗ × S∗

cube as an instance with dimension of D × 1. That is, inside

the final layer of the deep instance generator, there are total

N = H ∗ ×W∗ × S∗ instances generated with deep representa-

tion. Following the former notations, we can generate a bag of

deep 3D instances: Hi = {h1, h2, . . . , hN } where N denotes

the quantity of instances in a bag, Hi ∈ �N×D . Note that

the raw location of corresponding instances on the 3D chest

CT can be easily derived according to the location of deep

instances on the cube. Formally, this step can be formulated

into:

Hi = ψ(X i ), (6)

where X i is a bag of raw input and Hi ∈ �N×D .

In conclusion, the transformation ψ in our work not only

transforms of instances into embedding space but generates

instances that are not defined before. Viewing each point in

the feature maps as an instance is a straightforward routine to

create deep 3D instances that consider the spatial relations

between instances. The main difference with the existing

method [50] is that our generator can apply on 3D data.

B. Attention-Based MIL Pooling

Since maximum and mean MIL pooling operators have clear

disadvantages, a flexible and adaptive MIL pooling approach

would be desirable for achieving hopeful performance. After

obtaining a bag of deep 3D instances H, we embed the

attention-based MIL pooling approach into the AD3D-MIL

framework for achieving interpretable screening of COVID-19.

The attention-based MIL pooling is an interpretable symmetric

function proposed by [41].
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Formally, we denote by H = {h1, h2, . . . , hN } a bag of N

deep instances. the attention-based MIL pooling is defined by:

z =

N
∑

n=1

an hn, (7)

where,

an =
exp{w>tanh(V h

>
n )}

∑N
j=1 exp{w>tanh(V h

>
j )}

, (8)

where w ∈ �N×1 and V ∈ �N×D are trainable parameters.

The hyperbolic tangent tanh(·) element-wise non-linearity is

used for proper gradient flow. The main difference with the

existing attention mechanism is that we apply the attention

mechanism on deep 3D instances. Intuitively, if a deep 3D

instance is assigned to the biggest attention weight, it is the

key instance. That is, the attention weights can give insight

into every instance’s contribution to the bag label. Therefore,

the attention-based MIL pooling gives strong interpretability

for the predictions. Also, the generated bag representation

z is more semantic than traditional MIL pooling operators.

In summary, let σa with parameters θσa represent the the

attention-based MIL pooling, this step can be formulated into:

zi = σa(Hi ). (9)

Based on 3D convolutional neural networks, the attention-

based MIL pooling module can receive deep 3D instances and

generate the semantic representation for 3D data. These endow

AD3D-MIL the ability to process 3D CT data. Because 3D

data contains more and more instances than 2D data, the task

of the 3D MIL task is more complex and challenging than 2D

data. Therefore, the setting of instance number is essential.

C. Transform Into Final Bag Labels

Given a representation zi of a bag X i , we use two fully

connected layers as the transformation function g. This func-

tion can transform the bag representation zi into the bag label

Yi . Specifically, this step can be formulated into:

Yi =

{

1, iff g(z i ) > τ,

0, otherwise.
(10)

We define the distribution of the bag label to Bernoulli

distribution with the parameters θg , i.e., g(z i) ∈ [0, 1],

which represents the probability pi of Yi = 1 given the bag

representation zi . In this paper, the Bernoulli distribution is

a discrete distribution having two possible outcomes labeled

by Y = 1 and Y = 0 in which Y = 1 (COVID-19) occurs

with probability p and Y = 0 (Non-COVID-19) occurs with

probability 1 − p, where 0 < p < 1. We use the two fully

connected layers to learn the Bernoulli distribution of the bag

label, where neural networks fully parameterize the bag label

probability. The final layer outputs a scalar that represents the

probability of being COVID-19. If the probability p > τ

(a threshold), the bag label is COVID-19, else is Non-

COVID-19. Without loss of generality, the final bag label

Ŷi is determined by the threshold τ of 0.5. Note that the

transformation function g projects the bag representation into

Algorithm 1 AD3D-MIL Algorithm

input : parameters θψ , θσa , θg , learning rate η, max

epoch T , threshold τ

output: θψ , θσa , θg

1 initialize parameters θψ , θσa , θg

2 for t = 1, 2, . . . , T do

3 /* step 1: Deep 3D instance generation */

4 preprocess 3D CT scans [X]m
i=1

5 obtain feature maps:O = ψ(X)

6 reshape feature maps O into H

7 /* stage 2: attention-based MIL pooling */

8 obtain attention weight a by Equation (8)

9 combine instance representation z =
∑N

n=1 an hn

10 /* stage 3: transform into Bernoulli distribution */

11 obtain Bernoulli distribution p = g(z) of bag

12 produce bag label Ŷ with threshold τ

13 update θψ = θψ − η∇`(Ŷ , Y )

14 update θσa = θσa − η∇`(Ŷ , Y )

15 update θg = θg − η∇`(Ŷ , Y )

16 end

Bernoulli distribution rather than a binary vector generated

by the traditional softmax layer. Compared with the softmax

layer, such a manner is more suitable for the MIL hypothesis.

It makes the learning (optimization) problem easier through

learning a MIL algorithm by minimizing the log-likelihood

function as follows.

D. Optimization and Extension

We finally integrate the deep instance generator ψ ,

attention-based MIL pooling σa , and transformation function

g into an end-to-end optimization by backpropagation. The

workflow of optimization is shown in Algorithm 1. For the

traditional MIL problem with binary classification, we mini-

mize a log-likelihood loss function, which is in the following

form:

arg min
θψ ,θσa ,θg

−

m
∑

i=1

Yi log(g(σa[ψ(X i )]))

+(1 − Yi ) log(g(σa[ψ(X i )])). (11)

In practice, multi-class classification is demanding. For

example, practical screening of COVID-19 not only needs

the model to distinguish chest CT into COVID-19 and Non-

COVID-19, but also demands the model to distinguish chest

CT into COVID-19, common pneumonia, and no pneumonia

due to the difficulty of distinguishing COVID from viral

pneumonia.

Typical MIL approaches leverage one-vs.-rest (OvR) or one-

vs.-all (OvA) strategies, but which need to train multiple mod-

els. In this work, we relax the assumption of MIL problem,

that is, only if given a bag representation zi , we can construct

a multi-class transformation function gmc that projects zi into

a joint Bernoulli distribution pi = pi(Yi = 1) · pi (Yi =

2) · · · · · pi(Yi = K ) where K is the class number. The class

with max probability is the final label of the bag. For the MIL
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problem with multi-class classification, we minimize the multi-

class cross-entropy loss function without the softmax function,

which is in the following form:

arg min
θψ ,θσa ,θg

−

m
∑

i=1

p(Yi ) log(gmc(σa[ψ(X i )]). (12)

In conclusion, the AD3D-MIL algorithm not only projects

the semantic representation of bags into two-class Bernoulli

distribution but also can project them into the joint Bernoulli

distribution of multiple classes.

E. Advantages of AD3D-MIL

1) Scalability: Intuitively, the deep instance generation mod-

ule allows multiple types of data, such as text, image, video.

The size of the last layer of this module can be modified

according to the needed size of instances. When a new task

occurs, the user only changes the size of the last layer to

avoid manual pre-define and pre-process of instances. The

used attention-based MIL pooling can allocate distinct weights

over instances within a bag, and it allows AD3D-MIL to

find multiple critical instances rather than one key instance.

Moreover, the attention-based MIL pooling is trainable and

fully differentiable. Finally, the last transformation function

can project bag representations into the Bernoulli distributions

of binary or multiple classes. These advances together can be

transformed into an end-to-end neural network, and another

state of the art approaches can replace each of them. Therefore,

the proposed AD3D-MIL algorithm has excellent flexibility

and scalability.

2) Interpretability: In the new task of COVID-19 screening,

it is beneficial to provide infection areas together with the last

screening result to the radiologists. Fortunately, the setting of

multiple instance learning makes the AD3D-MIL algorithm

more interpretable because the discovered key instances can

indicate the location of infection areas of COVID-19. More

importantly, the used attention-based MIL pooling module

assigns high attention weights to instances that contribute

to the positive label of the bag. It can easily interpret the

provided decision and give the attention weights of instance

for indicating the vital attribute of each instance. Therefore,

AD3D-MIL, together with the attention mechanism, has the

potential of great interest in practical applications.

V. EXPERIMENTS

We evaluate the proposed algorithm on a newly-collected

dataset against the state of the art methods. The entire code

will be publicly available at https://github.com/zhyhan.

A. Data and Set-up

In this study, we collected a multi-class multi-center chest

CT dataset comprised of 460 transverse-section CT examples.

This dataset includes 230 CT examples from 79 patients with

COVID-19, 100 CT examples from 100 patients with common

pneumonia, and 130 CT examples from 130 people without

pneumonia. The randomly selected CT images are illustrated

in Figure 2. The chest CT examples from the same patient

Fig. 2. The visualization of typical transverse-section chest CT slices
from the collected dataset.

have at least tow days gap. The splitting of the training set and

testing set is according to the patient-level, i.e., no chest CT

from the same patient exists in training and testing sets, simul-

taneously. Without loss of generality, the common pneumonia

patients are with viral pneumonia or bacterial pneumonia.

Note that these 130 people without pneumonia are either

healthy or have other diseases. The dataset is collected from

the designated COVID-19 hospitals in Shandong Province.

Every COVID-19 patient was confirmed with nucleic acid

detection kits of reverse transcription-polymerase chain reac-

tion. The chest CT scans of COVID-19 patients without

image manifestations were excluded. Moreover, the chest CT

scans of common pneumonia patients are collected because

it is tough yet critical to distinguish them from suspected

patients with COVID-19 in clinical worldwide. This study and

all research were approved and conducted following relevant

guidelines/regulations.

We conduct two screening tasks for better verifying the

proposed AD3D-MIL algorithm in the problem of COVID-19

screening. The first task is the screening of COVID-19 CT

scans: the positive class is COVID-19, and the negative class

is Non-COVID-19. From the practical point of view, the Non-

COVID-19 CT scans involve both common pneumonia and no

pneumonia. The second task is the classification task of three

classes: COVID-19, common pneumonia, and no pneumonia.

60% of data is used for training, 20% of data is used for

model selection and super-parameters adjustment, and the

remaining 20% of data is used for testing. We employ standard

five-fold cross-validation on the training and validation set

for adjusting super-parameters. Each experiment is repeated

five times to obtain fair comparisons. The evaluation metrics

include accuracy, F1 score, precision, recall, Cohen kappa
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Fig. 3. The confusion matrix of three classes classification: COVID-19, common pneumonia (CP), and no pneumonia (NP).

TABLE I

CLASSIFICATION RESULTS ON THE BINARY CLASSES: COVID-19 AND

NON-COVID-19 (COMMON PNEUMONIA, NO PNEUMONIA).

STANDARD DEVIATION VALUES ARE ZEROS

score, the receiver operating characteristic (ROC) curve, and

the area under the ROC curve (AUC).

We compare our designed AD3D-MIL algorithm with state

of the art methods: C3D [51] and DeCoVNet [11]. C3D

is an effective approach for spatiotemporal feature learning

using deep 3D convolutional networks. DeCoVNet is a newly-

designed 3D deep convolutional neural network to screen

COVID-19 from CT scans. C3D and DeCoVNet are super-

vised methods under the supervised learning setting.

We implement the AD3D-MIL algorithm in Pytorch. We use

the 3D convolutional layers of DeCoVNet as the deep instance

generator ψ . We set the output shape H ∗×W∗ × S∗ × D of ψ

be 8×8×8×32 according to cross-validation. The input shapes

of CT slices are 256 × 256, and the slice number varies. The

transformation function g is a 2-layer neural network. We set

the training epoch T to 100. Data augmentation strategies,

including color jittering and random affine transformation,

were used. Adam optimizer is used with default parameters

and an initial learning rate of 1e-5. All the compared models

are implemented according to their open-source codes in

Pytorch.

B. Results

1) Binary Classification: Table I reports the results on the

screening of COVID-19 from chest CT. All the used algo-

rithms are achieving promising performance. Among them,

AD3D-MIL significantly outperforms the C3D and DeCoVNet

models on almost all metrics. Note that while all the methods

achieve promising performance, our algorithm can obtain a

more interpretable result, as illustrated in Figure 8.

Figure 4 shows the confusion matrixes of AD3D-MIL,

DecovNet, and C3D. The AD3D-MIL algorithm obtains a

balance performance. Figure 5 illustrates the ROC curve of

the AD3D-MIL algorithm, which characterizes the robustness

Fig. 4. The confusion matrix of the binary classification task.

Fig. 5. The receiver operating characteristic curve of binary classification
between COVID-19 and Non-COVID-19.

TABLE II

CLASSIFICATION RESULTS ON THREE CLASSES: COVID-19,

COMMON PNEUMONIA, AND NO PNEUMONIA

and stability on the screening of COVID-19. From another

view, these results demonstrate that the characteristic features

of COVID-19 on chest CT are different from Non-COVID-19.

Therefore, they are easy to be distinguished by deep models.

2) Multiple Classification: Table II reports the results on

the difficult three-class classification tasks. Briefly speaking,

the AD3D-MIL algorithm outperforms compared algorithms

by a large margin. The AD3D-MIL algorithm obtains a

classification accuracy of 94.3%, which outperforms the C3D

model by 4.6% and the DeCovNet by 3.7%. Even both the

spatial complexity of 3D CT scans and weak labels lead
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Fig. 6. Classification results on the binary classification with different
instance numbers: 8*8*8 denotes that there are 512 deep instances
generated from three axes of x, y, and z (best in color).

Fig. 7. Classification results on the binary classification with different
instance pooling strategies: maximum, mean, attention.

to unusual difficulties, our algorithm still obtains accurate

performance, which demonstrates its strengths in addressing

these difficulties.

Figure 3 reports the confusion matrix to give strong evi-

dence that AD3D-MIL obtains small predication errors and

accurately screens COVID-19 without any missed case. These

excellent results show that the AD3D-MIL algorithm success-

fully achieves accurate and robust screening of COVID-19.

We further perform statistical analysis to ensure that the

experimental results have statistical significance. A paired

t-test between the DeCovNet and AD3D-MIL is at a 5%

significance level with a p-value of 0.008. This analysis

result clearly shows that the improvement of our method is

noticeable. The p-values of all compared algorithms are less

than 0.05. These analyses verify that our insight that viewing

the screening of COVID-19 from chest CT as a MIL problem

is correct.

C. Analysis

This section gives an ablation study to demonstrate the

effect of each new module.

1) Number of Generated Deep Instances: Figure 6 reports

the results of our ablation study on different generated instance

numbers. When testing with different instance numbers, they

resulted in minor changes in the proposed algorithm’s per-

formance. These results demonstrate that the flexibility and

efficacy of the deep instance generator.

Fig. 8. The visualization of key instances in COVID-19 CT. The red
points in (b) indicate the infection area (best in color). (c) and (d) are
class activation maps (CAM).

2) MIL Pooling Operators: We dissect the strengths of the

attention-based MIL pooling. Intuitively, Figure 7 charac-

terizes the results of our ablation study on different MIL

pooling operators. The mean operator performs worse than the

maximum operator. The maximum operator performs worse

than attention-based MIL pooling with an extent margin. These

results once demonstrate that the attention mechanism plays a

crucial role in the AD3D-MIL algorithm.

3) Key Instances: While Figure 7 has demonstrated the

strengths of our attention-based MIL pooling of improving the

screening accuracy, we provide a broader spectrum for more

in-depth analysis. Figure 8 demonstrates that the AD3D-MIL

algorithm can find the key instances in accordance with the
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Fig. 9. The statistical analysis of training and validation in the multiple
classification tasks.

infected areas. While the class activation maps generated by

DeCoVNet and C3D only indicate the lung areas in 2D slices

coarsely, the key instances of our method precisely indicate the

infection areas of COVID-19. These illustrations demonstrate

the interpretability of our method. Compared to the analysis

of the class activation maps, the advantages of AD3D-MIL

are three-fold. Firstly, AD3D-MIL can precisely discover the

infection areas of COVID-19 by key instances. Secondly,

AD3D-MIL can find 3D infection areas that are more bene-

ficial for large-scale screening of COVID-19. Class activation

maps can only apply to 2D slices. Finally, the process of

finding key instances is natural and easy-to-implement, while

generating class activation maps is still a post-hoc analysis.

We have also conducted more analyses to discover what kinds

of pathology features contribute to the diagnosis of COVID-19.

We mainly found that the ground-glass opacities mostly appear

in the early stage and pulmonary consolidation in the late

stage, which are consistent with clinical findings.

4) Training Stability: Although all the results have verified

the advantages of the AD3D-MIL algorithm, we should prove

its convergence and stability. Figure 9 presents the training

loss and accuracy curve of AD3D-MIL and DeCoVNet on the

multi-class classification task. Our newly-proposed algorithm

maintains fast convergence and stable accuracy, which are

more optimal than DeCoVNet’s.

VI. CONCLUSION

We reported a new attempt of weakly-supervised screening

of COVID-19 from chest CT, an under-explored but more

realistic scenario. We proposed a novel attention-based deep

3D multiple instance learning (AD3D-MIL) for the screen-

ing of COVID-19 with weak labels yet high interpretability.

AD3D-MIL includes a deep instance generator to generate

deep 3D instances automatically, an attention-based MIL

pooling to combine deep instances into an informative bag

representation, and a transformation function to transform the

bag representation into Bernoulli distribution or joint distrib-

utions for multiple classes of bags. The combination of these

three functions can boost the generalization and interpretability

of screening algorithms. Comprehensive results have demon-

strated that AD3D-MIL can achieve high yet interpretable

results. In-depth analyses have revealed the effectiveness and

potential of AD3D-MIL as a clinical tool to relieve radiologists

from laborious workloads, such that contribute to the large-

scale screening of COVID-19.
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