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Abstract—Multiport interferometers based on inte-

grated beamsplitter meshes are widely used in pho-

tonic technologies. While the rectangular mesh is fa-

vored for its compactness and uniformity, its geome-

try resists conventional self-configuration approaches,

which are essential to programming large meshes in

the presence of fabrication error. Here, we present

a new configuration algorithm, related to the 2 × 2

block decomposition of a unitary matrix, that over-

comes this limitation. Our proposed algorithm is ro-

bust to errors, requires no prior knowledge of the pro-

cess variations, and relies only on external sources

and detectors. We show that self-configuration using

this technique reduces the effect of fabrication errors

by the same quadratic factor observed in triangular

meshes. This relaxes a significant limit to the size

of multiport interferometers, removing a major road-

block to the scaling of optical quantum and machine-

learning hardware.

1 Introduction

Large-scale programmable photonic circuits are the cor-
nerstone of many emerging technologies, including quan-
tum computing [1, 2], machine learning acceleration [3–
5], and microwave photonics [6, 7]. One such circuit—the
universal multiport interferometer, which functions as a
linear optical input-output device with a programmable
transfer matrix (Fig. 1)—is of special importance due to
its generality and broad range of applications [8]. The
most scalable designs involve meshes of Mach-Zehnder
interferometers (MZIs): while the triangular Reck mesh
(Fig. 1(a)) was initially employed and is straightforward
to configure [9], more recently work has shifted to the
Clements rectangle (Fig. 1(b)), which offers clear ad-
vantages of compactness, path-length uniformity, and re-
duced sensitivity to loss [10]. Much recent study has
focused on scaling [11, 12] and optimizing [13–16] MZI
meshes based on the Clements design.

A major challenge to scaling MZI meshes is the pres-
ence of component errors due to fabrication imperfec-
tions. Errors cause each MZI transfer matrix to deviate
from its programmed value (Fig. 1(c)); since the overall
circuit is a cascade of MZIs with O(N) depth, the to-

tal error in the transfer matrix scales as O(
√
N), where

N is the circuit size (assuming uncorrelated errors). At
large mesh sizes, these errors (if left uncorrected) place
unreasonable constraints on fabrication tolerances, ulti-
mately limiting the scaling of multiport interferometers.
Error-correction techniques are therefore critical for large-
scale programmable photonics. Global optimization [13–
15] and in-situ training [17] are promising in principle,
but computationally inefficient and the optimization re-
sult is device-specific. Local per-MZI correction is also
effective, but requires prior characterization of the device
errors [18, 19]. A number of efficient “self-configuring”
algorithms have been proposed [20–22], but these gen-
erally only work for triangular meshes and require large
numbers of internal power monitors [23], a significant ad-
dition in hardware complexity. Recently, we proposed
an efficient error-correction algorithm that does not re-
quire internal detectors or accurate pre-characterization
[24]. However, this algorithm only works for triangular
(i.e. Reck) meshes, which excludes the more efficient
Clements design.

In this article, we present a self-configuring strategy that
is naturally adapted to the Clements design and re-
quires no additional hardware complexity beyond exter-
nal sources and (coherent) detectors. This algorithm pro-
ceeds by configuring the diagonals of the mesh, starting
at the corners, in a manner that progressively zeroes out
the elements of a target matrix through a sequence of

θ
φ

==

(a) (b)

S(  ) S(  )eiθ

1
π
4

π
4

(c)

S(  +α) S(  +β)π
4

π
4

S(ψ) = 
cos(ψ)   i sin(ψ)
i sin(ψ)   cos(ψ)

errors

Figure 1: (a) Reck and (b) Clements 5 × 5 MZI meshes.
(c) Tunable building blocks: MZI and phase shifter. Effect of
errors on MZI transfer function.
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Figure 2: (a) Clements mesh and order of MZI configuration.
(b) Building up the matrices V,W in a sequence of Givens
rotations to diagonalize X = V †UW †. (c) Order of matrix
elements zeroed by the procedure.

Givens rotations. Numerical experiments on imperfect
MZI meshes show that our algorithm is stable and robust,
and reduces errors by at least a quadratic factor (while
sufficiently small errors are corrected exactly), consistent
with the behavior observed for triangular meshes [24].
This significantly relaxes the scaling constraints posed by
imperfections in realistic MZI meshes. As an example,
we consider the application to optical neural networks
and show how this correction scheme provides a path to
overcome the no-go results of Ref. [25].

2 Algorithm

Our procedure is based on the diagonalization of a unitary
using 2 × 2 Givens rotations [10], which we review here
for clarity. Following Fig. 2(a), divide the mesh along
the rising diagonal so that its transfer matrix becomes
U = V DW , where D is a phase screen and V and W
represent the upper and lower triangles, given by:

V = (T21T22)(T41 . . . T44) . . . (TN−2,1 . . . TN−2,N−2)

W = (TN−1,N−1 . . . TN−1,1) . . . (T33 . . . T31)(T11) (1)

where Tmn is the 2 × 2 block unitary corresponding to
the nth crossing (MZI / phase-shift pair) of the mth di-
agonal. Following the order in the figure, we “build up”
the matrices (V,W ) one block at a time while keeping

track of X = V †UW †. Fig. 2(b) shows the first few steps
of this process. Updates to W → TmnW right-multiply
X → XT †mn, and the phases of Tmn are chosen to zero
an element in the lower-left corner of X. Likewise, up-
dates to V → V Tmn left-multiply X → T †mnX. Following
the order in Fig. 2(c), this procedure zerores all elements
in the lower-left triangle of X, enforcing diagonality. The
remaining phases are read off from the diagonal elements.

While this procedure correctly sets the phases (θ, φ) for
an ideal Clements mesh, it does not work in the presence
of errors because the relationship between (θ, φ) and Tmn
also depends on the splitting angle imperfections (α, β)
(Fig. 1(c)), which are unknown. Here, we describe the
procedure for programming Clements in the presence
of errors:

1. Initialize the MZIs to approximate the cross state
(θ = 0). An ideal cross state is not possible with
errors, but an approximation will be fine.

2. Configure the crossings in the order given by
Fig. 2(a). For each crossing in W [resp. V ]:

(a) Perform the Givens rotation X → XT †mn [resp.
X → T †mnX] that zeroes the next element ofXij

in the sequence Fig. 2(c) (note (i, j) 6= (m,n)).

(b) Update W → TmnW [resp. V → V Tmn].

(c) Send input ~ain = ~w∗j (the jth column of W †)
into the device, Fig. 3. The output ~aout(θ, φ)
depends on the phases being configured. Set
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Figure 3: Programming a physical Clements mesh in the
presence of errors. (a) Procedure to set phases for a crossing
in W . (b) Procedure for V .
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(θ, φ) to zero the inner product 〈~vi|~aout(θ, φ)〉,
where ~vi is the ith column of V .

3. Finally, set the diagonal: for each i, inject ~ain = w∗i
and adjust φ to satisfy arg(〈~vi|~aout(φ)〉) = arg(Xii).

Of the main loop (Step 2), parts (a-b) are just a restate-
ment of the Clements factorization [10]. However this
is performed merely to keep track of matrices (V,W );
we do not use the (θ, φ) provided by the algorithm. In-
stead, Step 2(c) uses physical measurements find the cor-
rect phases in the presence of hardware errors. This step,
which amounts to zeroing matrix element Xij = v∗i Uw

∗
j

of the physical hardware, is visualized in Fig. 3:

1. When configuring an W (Fig. 3(a)), we input ~ain =
~w∗j and program (θ, φ) to direct all the light to in-
termediate output j (solid arrow), zeroing the power
that goes to j + 1 (dashed arrow). We do not have
access to these intermediate outputs, but j + 1 con-
nects to the input i of V ; therefore 〈~vi|~aout〉 is a valid
proxy for this field and zeroing it correctly configures
the red block to match W .

2. When configuring V (Fig. 3(b)), we want ~vi to be
the output from light at intermediate port i (solid
arrow); therefore, the output from light at port i −
1 (dashed arrow) should be orthogonal to ~vi. We
excite this field by inputting ~w∗j ; any errors in the
unconfigured mesh will hit downstream inputs k <
i− 1, but will not pollute input i. Therefore zeroing
〈~vi|~aout〉 correctly configures the blue block of the
mesh to match V , provided W is properly configured.

In both cases, the nulling signal 〈~vi|~aout〉 arises from
light transmitted down the dashed diagonals in Fig. 3;
a (near) cross-state initialization is needed to maintain
a non-negligible transmitted power. As we discuss later,
this initialization is limited by random phase shifts in the
MZIs, which can be fixed with a one-time calibration. It
is also relatively straightforward to extend our proposed
scheme to triangular meshes, as described in Appendix A.

3 Results

To test our algorithm, we performed numerical experi-
ments on Clements meshes of size up to 128× 128. The
algorithms were implemented in Python and are avail-
able as part of the Meshes package [26]. We consider an
error model based on imperfections in splitter angles α, β
(Fig. 1(c)), as these are the dominant effect of fabrication
error in MZI-based silicon photonic circuits. For simplic-
ity, consider the case of uncorrelated Gaussian errors so
that the error magnitude can be characterized by a single
variable σ = 〈α〉rms = 〈β〉rms (the case of correlated errors
is treated in Appendix B; the qualitative results are the
same because most correlations cancel out in ensemble av-
eraging [24]). Target matrices are sampled uniformly over

the Haar measure [27, 28]. As a figure of merit, we con-
sider the normalized matrix error E = 〈‖∆U‖〉rms/

√
N .

For unitary matrices, E ∈ [0, 2] corresponds to the average
relative error of a given matrix element Uij .

In the uncorrected case, each MZI introduces a mean er-
ror 〈‖∆U‖〉rms =

√
2σ. These errors add in quadrature,

leading to an overall normalized error E0 =
√

2Nσ, which
grows with mesh size. This is understandable given that
a circuit depth that grows as O(N), with each layer con-
tributing O(σ) error and the layers adding in quadrature.
Fig. 4(a) plots the error as a function of σ for a 64 × 64
mesh, both without error correction (red) and with our
algorithm (blue). The algorithm always improves the ma-
trix fidelity, but there are two distinct regimes: for small
σ, the error approaches machine precision, as errors can
be corrected exactly. On the contrary, for large σ, the
corrected error asymptotes to a finite value:

Ec =
√

2/3Nσ2 =
1√
6
E2

0 (2)

This form can be derived rigorously from the distribution
of MZI splitting angles for Haar-sampled unitary matri-
ces [24, 29], where errors arise solely from MZIs whose
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Figure 4: (a) Corrected and uncorrected matrix error as a
function of σ, 64×64 Clements mesh. (b) Scaling with mesh
size, showing the quadratic suppression of errors due to correc-
tion. (c) Boundary between the regimes of exact and inexact
error correction.
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Figure 5: (a) 2-layer DNN for MNIST classification where
synaptic connections are represented by Clements meshes.
(b) Simulated classification accuracy as a function of network
size N and hardware MZI error σ.

target splitting ratios cannot be realized in the imperfect
hardware. Since Ec ∝ E2

0 , we can say that self-calibration
leads to a quadratic suppression of errors: the smaller the
initial error, the greater the benefit of error correction.

Fig. 4(b-c) tests the scalability of the algorithm by vary-
ing the mesh size N . Fig. 4(b) shows that, as expected,
as the mesh size grows, the corrected error asymptotes
to the quadratic factor Eq. (2). By plotting Ec/(E2

0/
√

6),
Fig. 4(c) shows the boundary between the exactly cor-
rectable small-error regime (Ec = 0) and the inexact
large-error regime where Eq. (2) holds. The regimes meet
where the coverage cov(N) of U(N) dips below unity [29];

we have previously shown that cov(N) ∼ e−N
3σ2/3 [24];

therefore the boundary lies at roughly N3σ2 = 3 (dashed
curve in Fig. 4(c)).

To illustrate the benefits of this error reduction, we con-
sider as an example deep neural network (DNN) inference
on optical hardware. DNNs process data in a sequence
of layers, each consisting of (linear) synaptic connections
and (nonlinear) neuron activation (Fig. 5(a)). One excit-
ing possibility is to use photonics to accelerate this pro-
cess: encode the input in optical amplitudes, use a pro-
grammable MZI mesh to implement the synaptic weights,
and perform the activations with an all-optical (or electro-
optic) nonlinearity [3]. A major challenge is that useful
learning tasks require large mesh sizes (N > 100), which
are particularly susceptible to fabrication error; a recent
study showed that accurate DNN inference might require
unrealistic process tolerances in the hardware [25]. This
challenge has spurred investigations into alternative pro-
posals, which have their own limitations [4, 5, 30].

Fig. 5(b) illustrates the advantage of error correction in an
MZI-mesh DNN accelerator. Here, input images are pre-
processed by a Fourier transform and fed into a two-layer
DNN, with electro-optic neuron activations designed to

(splitter)

(p
ha
se
)

DAC
θ

φ

Figure 6: Comparison of hardware error types: E plotted
against mesh size. Here σbs = 2%, σph = 0.2, σ` = 5 × 10−4,
and σdac = 2π/

√
12× 2−B with B = 12 bits of precision. See

Appendix D for derivation.

approximate a complex modReLU [31, 32]. Models with
inner layer sizes N = 64 and N = 256 were trained on the
MNIST digit dataset [33] using the Neurophox package
[34]. Details and code are provided in Appendix C and
the Supplementary Material [35], respectively. These pre-
trained models were then simulated numerically on im-
perfect Clements meshes to calculate the classification
accuracy. Applying our correction algorithm increases
the error tolerance of these DNNs by over 2×. Note that
directional couplers in silicon typically exhibit σ ≈ 2%
[36]; in this regime, the uncorrected DNNs show signifi-
cant degradation, while error correction restores them to
their canonical accuracy. Error correction may even allow
the use of broad-band multi-mode interference couplers,
which typically exhibit larger hardware errors.

4 Discussion

Beyond splitting-ratio errors, realistic meshes must con-
tend with a range of additional imperfections, including
undesired phase shifts, unbalanced losses, and limited
programming precision. We analyze these error sources
in Appendix D, with the main results shown in Fig. 6.
Phase-shift and loss errors introduce a random transmis-
sion coefficient eiψ−`/2 to each waveguide segment, where
〈ψ〉rms = σph, 〈`〉rms = σ`. If known, phase errors can be
corrected exactly with a one-time calibration. However,
even without calibration, self-configuration still succeeds
provided the errors are small enough, and we observe a
sharp error-correction threshold of

√
Nσph . O(1). This

condition is related to the need to initialize the MZIs
close enough to the near-cross state that a significant frac-

4



tion of the light can propagate down the nulling diagonal
(dashed green line in Fig. 3) to give a non-negligible signal
〈~vi|~aout〉.

Unlike phase errors, unbalanced losses and programming
(DAC) errors are not correctable, as evidenced by the
observed behavior Ec =

√
Nσ` and

√
Nσdac/2, which fol-

lows the same
√
N scaling observed for uncorrected er-

rors. Loss imbalance is limited by statistical fluctuations
in surface roughness; an analysis based on Ref. [37] gives
σ` ≈ π−1αwg

√
LcL log(4L/Lc), where αwg is the waveg-

uide loss, L is the waveguide length, and the scatterer
size Lc = λ/n0 depends on wavelength and cladding re-
fractive index. For a L = 200 µm and αwg = 2 dB/cm,
one calculates σ` = 5 × 10−4, which is close to observed
wafer-scale loss variations [38]. DAC error is set by the av-
erage truncation to B bits of a signal in the range [0, 2π]:
σdac = 2π/

√
12 × 2−B . While neither loss or DAC er-

ror are correctable, Fig. 6 clearly shows that these effects
are about an order of magnitude smaller than the typ-
ical splitter errors, even after correction. These errors
will only become relevant if the (correctable) unitary im-
perfections can be substantially reduced, e.g. with post-
fabrication trimming [39] or “perfect” MZI-doubled struc-
tures [40].

Our algorithm runs in O(N2) steps and requires only
O(N3) FLOPs of computation. This figure is at least
an order of magnitude faster than in-situ or direct nu-
merical optimization schemes (Appendix E). While local
error correction [18] and parallelized progressive methods
[16] are faster still, these schemes respectively require cal-
ibration and internal detectors, a major challenge to their
deployment on large-scale photonic meshes.

We have proposed a self-configuration technique for rect-
angular MZI meshes. Our technique requires only exter-
nal sources and (coherent) detectors and does not rely
on an accurate characterization of device errors. This
method is based on the diagonalization of a unitary ma-
trix by Givens rotations, with a specific set of measure-
ments performed to ensure that the Givens rotations are
properly implemented in the hardware. For sufficiently
small hardware errors, our approach leads to perfect real-
ization of the target matrix. For large errors, it achieves
the same quadratic reduction E → E2/

√
6 observed for

local correction algorithms [18] and self-configuration on
triangular meshes [24]. As a target application, we consid-
ered optically accelerated DNNs and showed that the pro-
posed technique increases their robustness to hardware
error, particularly in the critical region around σ ≈ 2%
characteristic of directional couplers in silicon.

One open question is increasing the robustness of error
correction to non-unitary errors (unbalanced losses), as
many emerging photonic devices often have undesired
state-dependent loss [41–43]. In addition, extensions of
the algorithm to more recently developed mesh geome-

tries [44–48] may prove useful, as some geometries are less
sensitive to hardware error and may be easier to scale up
to large dimensions.

S.B. is supported by an NSF Graduate Research Fel-
lowship under grant no. 1745302 and the Air Force
Office of Scientific Research (AFOSR) under award
number FA9550-20-1-0113. D.E. acknowledges funding
from AFOSR (no. FA9550-20-1-0113, FA9550-16-1-0391).
R.H., S.B., and D.E. are inventors on patent application
No. 96/196,301 assigned to MIT and NTT Research that
covers techniques to suppress component errors in inter-
ferometer meshes.

A Triangular Meshes

The key to self-configuring the Clements mesh [10] was
realizing that it could be divided into two triangles with
a phase screen in the center: U = V DW . By configur-
ing one diagonal at a time, alternating between V and
W , we could zero all the elements of the target matrix
X = V †UW †, thus realizing the desired unitary. This
procedure is simplified when configuring Reck [9], which
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Figure 7: Self-configuration procedure for the triangular Reck
mesh. The procedure depends on whether the mesh layout has
(a) an output phase screen, or (b) an input phase screen.
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can be expressed in terms of a single triangle:

U = D
(∏
mn

Tmn︸ ︷︷ ︸
W

)
or
(∏
mn

Tmn︸ ︷︷ ︸
V

)
D (3)

The first case U = DW corresponds to a mesh with an
output phase screen (Fig. 7(a)), while the mesh for U =
V D has an input phase screen (Fig. 7(b)). The algorithm
in Sec. 2 simplifies because we may substitute V = I [resp.
W = I]. This leads to two cases:

1. For the first case (Fig. 7(a)), we work downstream
from the leftmost MZI. For example, we can work
down the falling diagonals, with the order given in
the figure. Each step adds an MZI to W → TmnW ,
which updates the target matrix X → XT †mn to zero
an element in the upper triangle. With input field
ain = w∗j (the jth column of W †), the parameters
(θ, φ) are set to zero the field at output i, where
(i, j) is the index of the element Xij being zeroed.

2. For the second case (Fig. 7(b)), we work upstream
from the rightmost MZI, which performs the update
V → TmnV , X → T †mnX. With light sent into the
ith input, (θ, φ) are chosen to zero the dot product
between the output field and vi (the ith column of
V ).

After the crossings are configured, the phases of D can
be obtained by inspection.

The MZI order in Fig. 7 is not unique. Any order that
preserves causality (the set of configured and unconfig-
ured MZIs must be causally separated) will produce a
valid self-configuration.

Like the configuration of the Clements rectangle, the
procedure above is designed, at each time step, to prop-
erly set the configured MZIs in the red [resp. blue] block
to realize W [resp. V ]. The procedure in Fig. 1(a) is
closely related to the Reversed Local Light Interference
Method (RELLIM) [22]. However, there are two impor-
tant differences. First, RELLIM inputs columns of U†,
while our scheme inputs columns of W †. As the MZIs
are configured, W changes. Second, RELLIM assumes
the existence of internal power detectors after each MZI
(or the ability to pre-calibrate the downstream mesh so
that internal fields can be read off from the outputs). By
inputting a row of the target W †, light will exit the red
block along only the jth and (j+ 1)th channels (provided
all upstream MZIs are correctly set). The former, which
is set to zero by varying (θ, φ), is read off directly from
the ith output.

The procedures in Fig. 7(a-b) are reciprocal to each other
and can also be related to the “ratio method” described
in Ref. [24], since the process of zeroing matrix elements
never depends on absolute amplitudes, only on their ra-
tios. Moreover, the ratio method is also robust in the
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Figure 8: Corrected and uncorrected matrix error as a function
of MZI error σ, 64× 64 Reck mesh.

presence of large errors and achieves the same quadratic
error reduction. However, the when configuring each
MZI, the ratio method required a sweep of the upstream
phase shifter in order to subtract the common amplitude
~a, a procedure that is not necessary here.

Fig. 8 plots the matrix error E = ‖∆U‖/
√
N as a func-

tion of MZI error σ for the Reck mesh. The result is
identical to the case of the Clements mesh, Fig. 4, fol-
lowing the curves E0 =

√
2Nσ, Ec =

√
2/3Nσ2 predicted

by theory [24]. Over the Haar measure, the distribution
of MZI splitting angles is the same for both mesh geome-
tries up to a reordering of the MZIs [29]; therefore, this
correspondence is unsurprising.

The self-configuration procedures for Reck and
Clements can be mapped to a general-purpose sub-
routine that self-configures any MZI mesh of the form
U = V DW , provided that the geometry admits a matrix
diagonalization by way of Givens rotations. This algo-
rithm has been implemented in Python with Numba
extensions for numerical efficiency, and is available as
part of the Meshes package [26]

B Correlated Errors

In realistic MZI meshes, the splitter errors αn, βn will
be strongly correlated, since the process variations that
lead to errors (waveguide thickness and spacing, partial
etch depth, slab height) all have correlation lengths much
longer than the size of an MZI. In general, the matrix
error 〈‖∆U‖2〉 will depend both on the error amplitudes
(〈α2

n〉, 〈β2
n〉) as well as their correlations (〈αmαn〉, etc.).

For an individual matrix U , the dependence on corre-
lations can be significant. However, we have previously
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Figure 9: Corrected and uncorrected matrix error as a function
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mesh.

shown that, in an ensemble average of matrices uniformly
sampled over the Haar measure, this dependence becomes
very small for most inter-MZI correlations because of
the random phase shifts between pairs of MZIs [24, Ap-
pendix A]. Only intra-MZI correlations 〈αnβn〉 have a
significant effect on the ensemble-averaged matrix error.

Consider the extreme case of full correlation αn = βn = µ.
This case is realized, for instance, when the dominant
error source arises from operating the mesh away from
the coupler design wavelength. In Ref. [24], the coverage,
uncorrected error, and corrected error are calculated to
be:

cov(N) = e−(2/3)N3µ2

(4)

E0 = 2
√
Nµ (5)

Ec =
√

8/9Nµ2 (6)

Fig. 9 plots E0 and Ec against the error amplitude µ for a
128 × 128 Clements mesh. Small residual dependences
on correlation (proportional to θmθn) lead to a slight de-
viation in E0, while the theoretical curve for Ec matches
very accurately. The behavior is qualitatively very close
to that in the uncorrelated case.

C Neural Network Model

The optical neural network model is based on the archi-
tecture described in Ref. [16]. Images from the MNIST
digit dataset are preprocessed with a Fourier transform,
which is cropped to a

√
N ×

√
N window, where N is

a model parameter that quantifies the size of the neural
network. The light from this window (N input neurons) is
fed into a two-layer optically accelerated DNN. This DNN

α

g

FFT

𝑁× 𝑁28×28

(a)    (b)    (c)    (d)    (e)    (f)

(a)    (b)    (c)    (d)    (e)    (f)

U1 U2 "4"

(a)    (b)    (c)    (d)    (e)    (f)

Figure 10: Neural network model. (a) Dataflow: a 28 × 28
image is Fourier transformed and cropped to an N ×N win-
dow; the complex amplitudes are then fed through a two-layer
ONN. (b) Electro-optic nonlinearity implementing Eq. (7). (c)
Input-output relation for the nonlinearity, which approximates
a complex modReLU.

consists of a single inner layer and two N×N unitary cir-
cuits, represented by Clements meshes (Fig. 10(a)).

The activation function at the inner layer is realized with
an electro-optic nonlinearity: a fraction of each output
field is fed into a detector that drives a Mach-Zehnder
modulator, while the remaining light passes through the
modulator [31]. This is shown in Fig. 10(b), and imple-
ments the activation function:

f(E) =
√

1− α e−i(g|E|
2+φ−π)/2 cos

(
1
2 (g|E|2 + φ)

)
(7)

where α is the power tap fraction, g is the modulator
phase induced per unit optical power, and φ is the phase
in the absence of power. Here, we choose α = 0.1,
g = π/20, and φ = π, which causes f(E) to approxi-
mate the form of a complex modReLU [49] in the right
power regime (Fig. 10(c)).

Models of sizes N = 64 and N = 256 were trained using
the Neurophox package [34]. Code and model parame-
ters are provided in the Supplementary Material [35].

D Additional Hardware and Calibration
Errors

We find that beamsplitter imperfections are the dominant
source of error in most situations. Additional hardware
imperfections include: (1) random phase shifts, which are
perfectly correctable provided the error is below a given
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threshold, and (2) unbalanced loss and finite program-
ming precision, which are in general uncorrectable. The
sections below analyze these effects in detail, concluding
that for realistic hardware, errors in the former category
are well below the threshold for perfect correction, while
errors in the latter category are small enough that they
can be ignored.

D.1 Perfectly Correctable Errors: Phase Shifts

While multiport interferometers are length-balanced to
ensure that all paths accumulate the same phase shift
(in the absence of heater power), in practice there will be
phase errors due to localized imperfections. If these errors
are known, they can be calibrated away and absorbed
into the programmable phase shifts (θ, φ) of each MZI.
Various calibration procedures have been reported in the
literature [50, 51]. However, even without pre-calibration,
the method reported in this paper can exactly correct for
phase-shifter errors provided that their magnitude falls
below a given threshold.

To start, consider an error model with random phase
shifts on both the internal and external arms, i.e. a given
MZI has the 2× 2 unitary

T (θ, φ)→

S(π4 +β)

[
ei(θ+ψ1) 0

0 eiψ2

]
S(π4 +α)

[
ei(φ+ψ3) 0

0 eiψ4

]
(8)

where errors are uncorrelated and Gaussian: (α, β) ∼
N(0, σbs) and ψi ∼ N(0, σph). In Fig. 11, we numeri-
cally perform self-configuration on such faulty Clements
meshes, varying both mesh size N and phase error σph,
for the cases of ideal (σbs = 0) and non-ideal (σbs = 0.03)
splitters. In the absence of error correction, the matrix

error is calculate to be E0 =
√

2N(σ2
ph + σ2

bs), which is

dominated by the phase shifts when σph > σbs. With self-
configuration, we see a sharp phase transition between a
regime where error correction succeeds (Ec =

√
2/3Nσ2

bs)

and fails (Ec ≈ 1). This threshold scales as σph ∼ 3/
√
N ,

and varies only slightly with the splitter error σbs.

This threshold arises from imperfect initialization of the
mesh, as phase errors cause the initialized MZIs to devi-
ate from the cross state. While the algorithm does not
rely on these MZIs being exact crossings, the measure-
ment steps consist of nulling optical signals that depend
on fields propagating down a long chain of cross-like MZIs
(dashed lines in Fig. 3). As the (amplitude) transmis-

sion of an imperfect crossing goes as tMZI ∼ e−(ψ1−ψ2)2/2

for small errors, the average transmission after N stages
(there are approximately N crossings during the initial

self-configuration steps) is t = e−Nσ
2
ph .

The algorithm fails for σph > 4/
√
N even with perfect

50:50 splitters because t < 10−7, which is below 32-bit

10 1 100

Phase Error ph

8

16

32

64

Si
ze

 N

No EC, c 1
Partial EC,

c ( 0)2

Perfect EC, c = 0

ph =
3/N

1/2

bs = 0.03

10 1 100

ph =
4/N

1/2

bs = 0

10 4

10 3

10 2
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100

c

10 1 100
10 4

10 3

10 2

10 1

100
0 = 2N ph

c = 2/3N 2
bs

N = 64 32 16

(a)

(b)

Figure 11: Effect of phase errors on self-configuration. (a)
Error as a function of σph for σbs ∈ {0, 0.03}, both uncorrected
and corrected. Note that uncorrected error saturates to unity
for σph & 0.2. (b) Corrected error as a function of N and σph,
showing the sharp error correction threshold at σph ∼ 3/N1/2.

machine precision. In practice, zeroing to such weak sig-
nals is impractical in the presence of noise, so realistically
one requires Nσ2

ph . 2 in order to maintain a reasonable
amplitude for the nulling signal t & 0.1. This is a factor of
2–3 below the thresholds in Fig. 11, so self-configuration
should work to high accuracy.

In a recent 32 × 32 SOI switch network, Suzuki et al.
measured a trimming power variability (σ = 1.52 mW)
an order of magnitude lower than the switching power
(Pπ = 18.1 mW) [52]. Putting these together, we cal-
culate σph = 0.2. This is small enough to comfortably
admit self-configuration on meshes up to size N ≈ 64
(Nσ2 ≈ 2.5). To configure larger meshes, an initial cali-
bration step [50, 51] will be needed to comfortably reduce
the phase errors so that Nσ2

ph . 2. This calibration need
only be performed once, as the phase shifts can be saved
as the initial “cross” state for self-configuring to any ma-
trix U .

D.2 Uncorrectable Errors: Loss and DAC Pre-
cision

Loss Errors. A uniform waveguide loss does not lead to
errors in balanced MZI structures; however, in practice
losses can be slightly non-uniform. We can model loss
errors by introducing additional amplitude scalings to the
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internal and external arms of the MZI, as follows:

T (θ, φ)→ S(π4 )

[
eiθ−`1/2 0

0 e−`2/2

]
S(π4 )

[
eiφ−`3/2 0

0 e−`4/2

]
(9)

where `i ∼ N(0, σ`) are the loss errors. The uncorrected
error is E0 =

√
N/2σ`. We can perform self-configuration

on the mesh to attempt to correct the errors, but in prac-
tice the error increases by a factor of

√
2 to Ec =

√
Nσ`

(Fig. 12(a)). The matrix error increases because self-
configuration is attempting to correct a non-unitary per-
turbation with a unitary one, in order to correctly set the
splitting ratios of the MZIs. This procedure is generally
successful at setting the MZIs to the target splitting ra-
tios. However, a nonunitary matrix is not defined solely
by its splitting ratio and output phases, so the logic be-
hind error correction breaks down. In fact, the loss error
and the corresponding unitary “correction” are orthogo-
nal, so the overall matrix errors add up, leading to the
additional factor of

√
2.

Loss errors likely rule out the use of doped-Si ther-
mal phase shifters [43], as alignment and doping den-
sity variations lead to a significant wafer-scale variation
(0.23 ± 0.13) dB (σ` = 0.03). However, most SOI plat-
forms use TiN phase shifters, where the heating ele-
ment is placed sufficiently far above (∆y & 0.5 µm)
as to not interact with the waveguide mode. In such
phase shifters, loss is determined entirely by the waveg-
uide loss. Wafer-level statistics for typical SOI pro-
cesses show α = (2.1 ± 0.25) dB/cm for standard pro-
cessing, while H2 thermal annealing can reduce this to
(0.1±0.04) dB/cm. Using these figures, for a 200 µm ther-
mal tuner, σ` = 1.1 × 10−3 and 1.8 × 10−4 respectively
[38]. These values are based on wafer-scale variations,
so the actual die-scale values relevant to moderate-sized
meshes may be much smaller.

Fundamentally, loss variations are limited by the statis-
tics of sidewall scattering. Consider a waveguide segment
of length L with scatterers of size ≈ λ/neff ; if these scat-
terers are randomly and independently placed, the num-
ber in a given segment will follow a Poisson distribu-
tion with a mean 〈n〉 = L/λ and a standard deviation
〈∆n〉rms =

√
L/λ. Dividing these quantities, ratio of loss

variation to average loss will be (∆α/α)L ∼
√
λ/L. A

more rigorous calculation based on the scattering theory
of Lacey and Payne [37] (see Sec. D.3) gives

〈∆α〉rms

〈α〉
=

1

π

√
log(4n0L/λ)

n0L/λ
(10)

where n0 is the cladding index. For a 200 µm phase shifter
at 1.55 µm with α = 2 dB/cm, Eq. (10) gives σ` = 5 ×
10−4, roughly consistent with the wafer-scale variations
in Ref. [38]. These loss variations are low enough to allow
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Figure 12: Uncorrectable errors, 64×64 Clements mesh. (a)
Effect of loss error on mesh with and without correction. (b)
Programming error due to finite DAC bit precision or noise.

scaling up to N ≈ 1000 with matrix errors of at most a
few percent.

Programming / DAC Errors. The phase shifts (θ, φ) are
always programmed to finite bit precision; moreover, fi-
nite signal-to-noise ratios in the nulling signals may limit
the programming accuracy. To model these effects, in
Fig. 12(b) we self-configure the mesh while introducing
a random perturbation to every θ and φ after setting it.
For example, if the phase is set by a DAC with bounds
[0, 2π] and bit precision B, truncation to B bits leads to
a phase error σdac = 2π/

√
12× 2−B .

Naively, we would expect these errors to add randomly
and in quadrature to give

√
Nσdac. However, subsequent

steps in self-configuration correct for exactly half of this
error. To see how, note that analogous to Ref. [18], for
any physical MZI

T (θ, φ) = S(π4 )

[
eiθ 0
0 1

]
S(π4 )

[
eiφ 0
0 1

]
(11)

there exist (ψ1, ψ2) such that T is represented by a sym-
metric splitter with phase shifts on its outputs:

T =

[
eiψ1 0

0 eiψ2

] [
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

]
︸ ︷︷ ︸

Tsym(θ)

(12)

These output phase shifts get corrected in subsequent self-
configuration steps. Therefore, the residual error to ma-
trix U comes entirely from the errors in the Tsym blocks

‖∆U‖2 =
∑
mn

‖T ′sym(θmn)∆θmn‖2 =
1

2

∑
mn

∆θ2
mn (13)

which averages to Ec =
√
Nσdac/2. With B ≥ 10 bits of

precision, one can scale to N ≈ 1000 with matrix errors
of at most a few percent.
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D.3 Statistical Origin of Scattering Loss Varia-
tions

Sidewall roughness scattering dominates loss in tightly
confined silicon waveguides. This loss is calculated with
the volume-current method, where boundary perturba-
tions lead to current sources that scatter into the far field.
Lacey and Payne show that, in two dimensions, the loss
is given by [37, Eq. 16a]:

α = C

∫ π

0

R̃
(
β − n0k0 cos θ

)
dθ (14)

where k0 = ω/c, β = neffk0, n0 is the cladding index,
and C is a constant of proportionality. The loss de-
pends on the roughness statistics through R̃(k), which
is the Fourier transform of the autocorrelation function
R(u) = 〈f(z)f(z + u)〉 of the sidewall perturbation f(z).
The integral in Eq. (14) corresponds to the sum over the
amplitudes of all scatterers R(∆kz) that phase-match the
guided mode kz = β to free-space modes kz = n0k0 cos θ
that lie within the light cone |kz| < n0k0.

While Eq. (14) is usually used to calculate the average
waveguide loss, sidewall roughness is a statistical quantity
and short waveguides will have large relative roughness
variations. We can also use Eq. (14) to calculate the
statistical loss properties of finite-length waveguides by
replacing the loss perturbation with a periodic function:

f (L)(z) =
∑
m>0

√
πR̃(km)fme

ikmz + c.c. (15)

Here km = 2πm/L is the mth Fourier series mode, while
fm is a complex-valued Gaussian with unit norm in both
quadratures, i.e. 〈Re[fm]2〉 = 〈Im[fm]2〉 = 1, so that
〈|fm|2〉 = 2. We calculate the autocorrelation and its
spectral function:

R(L)(u) =
2π

L

∑
m

R̃(km)|fm|2 cos(kmu) (16)

R̃(L)(k) =
π

L

∑
m

R̃(km)|fm|2δ(k − km) (17)

Note that in the limit L → ∞, R̃(L)(k) → R̃(k) in the
sense of distributions, i.e. for any smooth g(k), we have∫
R̃(L)(k)g(k)dk →

∫
R̃(k)g(k)dk, as the former becomes

a Riemann sum for the latter and the statistical fluctua-
tions of |fm|2 average out when many modes are summed.

We can rewrite Eq. (14) as follows:

α = C

∫ β+n0k0

β−n0k0

R̃(k)
1√

(n0k0)2 − (β − k)2︸ ︷︷ ︸
w(β−k)

dk (18)

Following Eq. (17), the scattering loss becomes a discrete
sum:

α = C
π

L

∑
m

R̃(km)|fm|2w(β − km) (19)

L = 50 100 200 400 µm
∆α/α 0.106 0.080 0.060 0.044
αL 0.01 0.02 0.04 0.08 dB

∆αL 0.0011 0.0016 0.0023 0.0036 dB
σ` 2.5 3.7 5.5 8.2 ×10−4

Table 1: Mean and statistical variation of waveguide loss for
a range of lengths, assuming α = 2 dB/cm loss. Ratio ∆α/α
comes from Eq. (25). Normalized nonunitary error magnitude
σ` is given by σ` = ∆αL/(4.34 dB).

Note that α depends linearly on the |fm|2, which are i.i.d.
random variables. Applying the moments 〈|fm|2〉 = 2,
〈(∆|fm|2)2〉 = 4, we can calculate the mean and variance
of α. These yield discrete sums

〈α〉 = C
π

L

∑
m

R̃(km)〈|fm|2〉w(km) (20)

〈∆α2〉 = C2 π
2

L2

∑
m

R̃(km)2〈(∆|fm|2)2〉w(km)2 (21)

that may be replaced with integrals in the limit of mod-
erately large L:

〈α〉 → C

∫
R̃(k)w(k)dk, 〈∆α2〉 → 2πC2

L

∫
R̃(k)2w(k)2dk

(22)

To solve Eqs. (22), we need to specify roughness model.

For example, a Gaussian model R(s) = e−s
2/2L2

c would

yield R̃(k) ∼ e−k2L2
c/2 while an exponential model R(s) =

e−|s|/Lc would yield R̃(k) ∼ 1/(1 + k2L2
c). In both cases

the model is characterized by a scatterer size Lc. Here we
assume that the scatterers are much smaller than the op-
tical wavelength Lc � λ, so that we can approximate the
spectral density as a constant R̃(k)→ R0, and the model
details become irrelevant (in practice Lc ∼ λ is possible,
but the results will be qualitatively similar). Making this
assumption, we find 〈α〉 = πR0C, while the expression
for 〈∆α2〉 formally diverges:

〈∆α2〉 =
2πR2

0

L

∫ n0k0

−n0k0

1

(n0k0)2 − k2
dk →∞ (23)

However, this divergence is merely logarithmic, and the
integral is actually just the approximation to a discrete
sum Eq. (21) over a mode set with spacing 2π/L. There-
fore, one should actually impose a cutoff and shrink the
bounds of the integral to ±(n0k0 − π/L), in which case
Eq. (23) reduces to

〈∆α2〉 =
2πR2

0C
2

n0k0L
log(2n0k0L/π) =

λR2
0C

2

n0L
log(4n0L/λ)

(24)
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Mesh∗ MVMs CFLOPs Caveats†

Progressive [53] R N2 N3 (D)
RELLIM [16, 22] R C N–N2 N3 (D)
In-situ [17] R C NT N3T (D)
SGD [15] R C BT N2BT (C)
Numerical [13, 14] R C NT N3T (C)
Local [18] R C – N2 (C)
Direct [24] R N2 N3 (S)
Ratio [24] R N2 N3

This work R C N2 N3

Table 2: Comparison of a representative sample of optimization algorithms. Scaling of computational cost plotted for in-situ
resources (number of MVM calls), and in-silico resources (CFLOPs), where N is the mesh size, T is the number of optimization
steps, and B is the SGD batch size. ∗Mesh types: (R)eck, (C)lements. †Caveats include (D) requires internal detectors, (C)
requires pre-calibration of errors, (S) stability issues in presence of errors.

where λ = 2π/k0 is the optical wavelength. Although 〈α〉
and 〈∆α2〉 are functions of model-dependent constantsR0

and C, their ratio depends only on the refractive index,
wavelength, and length of the waveguide segment:

〈∆α〉rms

〈α〉
=

1

π

√
log(4n0L/λ)

n0L/λ
(25)

Table 1 lists expected losses and their variance for a
range of phase shifter lengths and a typical waveguide
loss of 2 dB/cm. The ratio ∆α/α . 0.1 is also consistent
with wafer-scale measurements of waveguide loss varia-
tions [38]. Note that σ` < 10−3 for reasonable phase
shifter lengths, so the expected error Ec =

√
Nσ` is at

most a few percent even for meshes as large as N = 256.

E Algorithmic Efficiency

A large number of photonic mesh programming algo-
rithms have been proposed in the literature; see generally
Appendix B of Ref. [24]. Table 2 summarizes some of
the leading approaches in terms of both their computa-
tional cost, generality (applicable mesh geometries). This
list is not exhaustive, but gives a representative sample
that illustrates the tradeoffs in the field. With the ex-
ception of the algorithms recently reported by us [24], to
date all optimization schemes require either (1) accurate
pre-calibration of the hardware errors, or (2) O(N2) in-
ternal photodetectors used to monitor power at interme-
diate points on the mesh. Our algorithm uniquely lacks
both requirements, so it can be performed on uncalibrated
“zero-change” photonic hardware, requiring only coher-
ent control of the input fields and coherent detection at
the outputs, and works for both Reck and Clements
meshes.

Even in absence of these considerations, our algorithm
is competitive against in terms of computational re-
sources. The required resources of an algorithm depend
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Figure 13: Convergence of L-BFGS-B for an imperfect
Clements mesh (64×64, σ = 0.02), minimizing the L2 norm.
The convergence curve depends on the initial solution, and is
compared with the result from self-configuration. (a) Plot in
terms of in-situ MVMs to solution. (b) In-silico CFLOPs to
solution.

on whether it is performed in situ (for correction of un-
known errors) or in silico (for known, calibrated errors).
For in-situ algorithms, the number of matrix-vector mul-
tiplication (MVM) calls is most relevant. Our algorithm
takes approximately 2N2 calls (4 calls per MZI), which is
comparable to progressive self-configuration and the ini-
tial RELLIM proposal [22, 53] (although RELLIM with
internal detectors can be parallelized to run in O(N) time
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[16]). Alternatively, numerical optimization with T time
steps takes 3NT calls (three calls per step, first to es-
timate U , next to back-propagate U − Û , and finally a
forward-pass step to compute the gradient with respect
to phase shifts [17]). Fig. 13(a) shows the convergence
of a 64 × 64 Clements mesh in terms of MVMs un-
der the L-BFGS-B algorithm [54]. Convergence depends
strongly on the mesh initialization [15]. Initializing to
Haar-random unitaries is a significant improvement over
random phase shifts, since a mesh with random phase
shifts has a banded structure that leads to vanishing gra-
dients with respect to matrix elements far from the diag-
onal. Even with Haar initialization, the algorithm takes
thousands of steps and millions of MVMs to converge to
the accuracy Ec reached by our algorithm. Initializing
to the phases of an ideal (error-free) Clements mesh
helps considerably, but optimization still takes 10× more
calls. However, for Clements meshes it appears that the
global minimum can be as much as 5× lower than the self-
configuration result; as a result, numerical optimization
may still be helpful as a refinement technique, where the
mesh is initialized using self-configuration, followed by a
numerical procedure to improve this solution.

Since a single optimization step requires N MVM calls,
stochastic gradient descent (SGD) has been proposed as a
solution to speed up matrix optimization, where a batch
of B < N random columns are used rather than the
whole matrix. However, SGD tends to trade off batch
size for iteration count, so the overall resource require-
ment is higher [15].

Fig. 13(b) shows the performance gap with respect to
the in-silico case, where accurate calibration of the er-
rors (α, β) allows the phases (θ, φ) to be computed nu-
merically. Here, optimization protocols require O(N3)
complex floating point operations (CFLOPs), equivalent
to one matrix-matrix multiplication per time step, lead-
ing to a scaling of N3T (SGD scales as N2BT ). Self-
configuration runs by performing approximately N2/2
Givens rotations with 4N CFLOPs each, for a total of
2N3 CFLOPs, and thus runs about 102× faster. As
before, numerical optimization can still be helpful as a
means for further refinement of the solution.

However, for in silico optimization, the local correction
method [18] is superior, as it takes only N2 CFLOPs and
is parallelizable to N time steps.
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