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ABSTRACT

We provide additional information on our recent study of the electromagnetic emission produced during the
inspiral and merger of supermassive black holes when these are immersed in a force-free plasma threaded by
a uniform magnetic field. As anticipated in a recent letter, our results show that although a dual-jet structure is
present, the associated luminosity is ∼ 100 times smaller than the total one, which is predominantly quadrupo-
lar. We here discuss the details of our implementation of the equations in which the force-free condition is not
implemented at a discrete level, but rather obtained via a damping scheme which drives the solution to satisfy
the correct condition. We show that this is important for a correct and accurate description of the current sheets
that can develop in the course of the simulation. We also study in greater detail the three-dimensional charge
distribution produced as a consequence of the inspiral and show that during the inspiral it possesses a complex
but ordered structure which traces the motion of the two black holes. Finally, we provide quantitative estimates
of the scaling of the electromagnetic emission with frequency, with the diffused part having a dependence that

is the same as the gravitational-wave one and that scales as Lnon−coll

EM
≈ Ω10/3−8/3, while the collimated one

scales as Lcoll

EM
. Ω5/3−6/3, thus with a steeper dependence than previously estimated. We discuss the impact

of these results on the potential detectability of dual jets from supermassive black holes and the steps necessary
for more accurate estimates.

1. INTRODUCTION

The gravitational interaction among galaxies, most of
which are supposed to host a supermassive black hole (BH),
with M ≥ 106M⊙ (Shankar et al. 2004; Lou & Jiang 2008),
is a well established observational fact (Gopal-Krishna et al.
2003; Ellison et al. 2011; Mohamed & Reshetnikov 2011;
Lambas et al. 2012). Moreover, in a few documented astro-
physical cases, strong indications exist to believe that a bi-
nary merger among supermassive black holes has occurred or
is ongoing (Rodriguez et al. 2006; Komossa et al. 2003; Dotti
et al. 2009).

A strong motivation for studying supermassive binary black
holes (SMBBHs) comes from the fact that their gravitational
signal will be detected by the planned Laser Interferomet-
ric Space Antenna (eLISA/NGO) (Amaro-Seoane et al. 2012;
Binétruy et al. 2012). When combined to the usual electro-
magnetic (EM) emission, the detection of gravitational waves
(GW) from these systems will provide a new tool for test-
ing a number of fundamental astrophysical issues (Cornish
& Porter 2007; Haiman et al. 2009; Phinney 2009). For this
reason, SMBBHs are currently attracting a widespread in-
terest, both from an observational and a theoretical point of
view (Rezzolla 2009; Reisswig et al. 2009; Kesden et al. 2010;
Kocsis et al. 2011; Tanaka et al. 2012; Barausse 2012). Ac-
cording to the simplest picture that has gradually emerged
through a series of semi-analytical studies and numerical
simulations (Milosavljeć & Phinney 2005; MacFadyen &
Milosavljević 2008; Roedig et al. 2011; Bode et al. 2012),
the accretion disc formed around the two merging BHs, com-
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monly referred to as the “circumbinary” accretion disc, can
follow the dynamical evolution of the system up until the
dynamical timescale for the emission of GWs, which scales
like ∼ D4, where D is the separation of the binary, becomes
shorter than the viscous timescale, which instead scales like
∼ D2. When this happens, the circumbinary accretion disc
is essentially decoupled from the binary, which rapidly en-
ters the final stages of the inspiral. Under these conditions,
neglecting the inertia of the accreting fluid can be regarded
as a very good approximation. In contrast, magnetic fields
generated by the circumbinary accretion disc could play an
important role and the dynamics of the plasma in the inner re-
gion can then be described within the force-free (FF) approxi-
mation. These physical conditions are indeed similar to those
considered in the seminal investigations of BH hole electrody-
namics of Blandford and Znajek (Blandford & Znajek 1977),
who addressed the question of whether the rotational energy
of an isolated BH hole can be extracted efficiently by a mag-
netic field. After the first two-dimensional investigations of
Komissarov and Barkov (Komissarov 2004; Komissarov &
Barkov 2009), the numerical study of BH magnetospheres has
now entered a mature phase in the context of SMBBHs evo-
lution.

In an extensive analysis, but still in the absence of currents
and charges, i.e. in electrovacuum, Mösta et al. (2010) showed
that, even though the EM radiation in the lowest ℓ = 2 and
m = 2 multipole reflects the gravitational one, the energy
emitted in EM waves is ∼ 13 orders of magnitude smaller
than that emitted in GWs for a reference binary with mass
M = 108 M⊙ and a magnetic field B = 104 G, thus casting
serious doubts about a direct detection of the two different sig-
nals. However, a series of more recent numerical simulations
in which currents and charges are taken into account, have
suggested the intriguing possibility that a mechanism similar
to the original one proposed by Blandford and Znajek may
be activated in the case of binaries (Palenzuela et al. 2009,
2010; Palenzuela et al. 2010b,a; Moesta et al. 2012) (note that
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Palenzuela et al. (2010b,a); Moesta et al. (2012) also make use
of a FF approximation). In particular, the Blandford-Znajek
mechanism is likely to be valid under rather general condi-
tions, namely even if stationarity and axisymmetry are relaxed
and even if a nonspinning BH is simply boosted through a uni-
form magnetic field. Moreover, for such uniform magnetic
field, the emitted EM flux shows a high degree of collima-
tion, making the EM counterpart more easily detectable. A
less optimistic view has emerged recently in Moesta et al.
(2012) (hereafter paper I), where we have shown, through
independent calculations in which the EM emission was ex-
tracted at much larger radii, that the dual-jet structure is in-
deed present but energetically sub-dominant with respect to
the non-collimated and predominantly quadrupolar emission.
In particular, even if the total luminosity at merger is ∼ 100
times larger than in Palenzuela et al. (2010b), the energy flux
is only ∼ 8− 2 times larger near the jets, thus yielding a col-
limated luminosity that is ∼ 100 times smaller than the total
one. As a result, paper I indicated that the detection of the
dual jets at the merger is difficult if not unlikely.

Here we provide additional information on the results pre-
sented in paper I and discuss the details of our implementa-
tion of the equations in which the FF condition is obtained
via a damping scheme which drives the solution to satisfy the
correct condition. We show that this is important for a correct
and accurate description of the current sheets that can develop
in the course of the simulation. We also study in greater de-
tail the three-dimensional charge distribution produced as a
consequence of the inspiral and show that during the inspiral
it has a complex structure tracing the motion of the two BHs.
Finally, we provide quantitative estimates of the scaling of the
EM emission with frequency, with the diffused part having a
dependence that is the same as the gravitational-wave one and

that scales as Lnon−coll

EM
≈ Ω10/3−8/3, while the collimated

one scales as Lcoll

EM
. Ω5/3−6/3, thus with a steeper depen-

dence than previously estimated by Palenzuela et al. (2010b).
The plan of the paper is the following. In Sect. 2 we de-

scribe the system of equations considered in our analysis,
with particular emphasis on the treatment of the FF condition,
while in Sect 3 we discuss the different routes to the calcu-
lation of the EM radiated quantities. In Sect. 4 we present
the astrophysical setup of a BH binary merger, while Sect. 5
compares different approaches for the enforcement of the FF
condition. Section 6 is devoted to the presentation of the re-
sults, and, in particular, to the computation of the luminosity.
Finally, Sect. 7 contains the conclusion of our work and the
prospects for the detection of an EM counterpart to SMBBHs.

In the rest of the paper, we set c = G = 1, adopt the stan-
dard convention for the summation over repeated indices with
Greek indices running from 0 to 3, Latin indices from 1 to 3,
and make use of the Lorentz-Heaviside notation for the EM
quantities, in which all

√
4π factors disappear.

2. EVOLUTION EQUATIONS

We solve the combined system defined by the Einstein and
Maxwell equations and model either an isolated rotating BH
or a BH binary inspiralling in quasi-circular orbits. In both
cases we assume that there is an external FF magnetic field.
More specifically, we solve the Einstein equations

Rµν − 1

2
Rgµν =8πTµν , (1)

where Rµν , gµν and Tµν are the Ricci, the metric and the
stress-energy tensors, respectively. In addition, we solve the

following extended set of Maxwell equations (Komissarov
2007; Palenzuela et al. 2009),

∇µ(F
µν + gµνΨ)= Iν − κnνΨ , (2)

∇µ(
∗Fµν + gµνΦ)=−κnνΦ , (3)

where Fµν is the Faraday tensor, ∗Fµν is its dual, Iµ is the
four-current, and we have introduced a 3+1 slicing of space-
time, with nµ being the unit (future oriented) timelike vector
associated with a generic normal observer to the spatial hy-
persurfaces.

The set of Maxwell equations (2) and (3) is referred to as
“extended” because it incorporates the so-called divergence-
cleaning approach, originally presented in Dedner et al.
(2002) in flat spacetime, and which amounts to introducing
two additional scalar fields, Ψ and Φ, that propagate away the
deviations of the divergences of the electric and of the mag-
netic fields from the values prescribed by Maxwell equations.
Such scalar fields are initialized to zero, but are driven into
evolution as soon as violations of the EM constraints are pro-
duced. The total stress-energy tensor is composed of a term
corresponding to the EM field

Tµν
f ≡ Fµ

λF
νλ − 1

4
(FλκFλκ)g

µν , (4)

and of a term due to matter, Tµν
m . However, because the EM

field is assumed to be FF, Tµν
f ≫ Tµν

m , and the total stress-

energy tensor is then assumed to be given entirely by (4),
namely Tµν ≈ Tµν

f . In the rest of our discussion we will

use the expression “electrovacuum” to denote the case when
currents and charges of the Maxwell equations are zero. Such
a scenario was extensively studied in Mösta et al. (2010) and
it will be used here as an important reference. In what follows
we discuss in more detail our strategy for the solution of the
Einstein equations and of the Maxwell system in a FF regime.

2.1. The Einstein Equations

For the solution of the Einstein equations we make use
of a three-dimensional finite-differencing code that adopts
a conformal-traceless “3 + 1” BSSNOK formulation of the
equations (see Pollney et al. (2007) for the full expressions in
vacuum and Baiotti et al. (2008) for the case of a spacetime
with matter). The code is based on the Cactus Computa-
tional Toolkit (Allen et al. 2000) and employs adaptive mesh-
refinement techniques via the Carpet-driver (Schnetter et al.
2004). For compactness we will not report here the details
regarding the adopted formulation of the Einstein equations
and the gauge conditions used, which can however be found
in Pollney et al. (2007, 2011).

We also note that recent developments, such as the use
of 8th-order finite-difference operators or the adoption of a
multiblock structure to extend the size of the wave zone have
been recently presented in Pollney et al. (2009, 2011). Here,
however, in order to limit the computational costs and be-
cause a very high accuracy in the waveforms is not needed, the
multiblock structure was not used and we have used a fourth-
order finite-difference operator with a third-order Implicit-
Explicit Runge-Kutta integration in time (see subsection 2.3).

2.2. The Maxwell Equations

The Maxwell equations (2)–(3) take a more familiar form
when expressed in terms of the standard electric and magnetic
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fields as defined by the following decomposition of the Fara-
day tensor in a 3+1 foliation

Fµν =nµEν − nνEµ + ǫµναβ Bα nβ , (5)

∗Fµν =nµBν − nνBµ − ǫµναβ Eα nβ , (6)

where the vectors Eµ and Bµ are purely spatial (i.e. Eµnµ =
Bµnµ = 0) and correspond to the electric and magnetic fields
measured by the normal (Eulerian) observers. The two ex-
tra scalar fields Ψ and Φ introduced in the extended set of
Maxwell equations lead to two evolution equations for the
EM constraints, which, we recall, are given by the divergence
equations

∇iE
i = q , (7)

∇iB
i = 0 , (8)

where the electric current has been decomposed in the electric
charge density q ≡ −nµI

µ and the spatial current Ji ≡ Ii.
More specifically, these evolution equations describe damped
wave equations and have the effect of controlling dynamically
the possible growth of the violations of the constraints and of
propagating them away from the problematic regions of the
computational domain where they are produced.

In terms of Eµ and Bµ, the 3 + 1 formulation of equations

(2)–(3) becomes (Palenzuela et al. 2010a),

Dt E
i − ǫijk∇j(α Bk ) + αγij∇j Ψ = αK Ei − αJ i , (9)

Dt B
i + ǫijk∇j(αEk ) + αγij∇j Φ = αK Bi , (10)

Dt Ψ+ α∇iE
i = α q − ακΨ , (11)

Dt Φ+ α∇iB
i = −ακΦ , (12)

Dt q +∇i(αJ
i ) = αK q , (13)

where Dt ≡ (∂t − Lβ) and Lβ is the Lie derivative along
the shift vector β and K is the trace of the extrinsic curva-
ture. The charge density q can be computed either through the
evolution equation (13) or by inverting the constraint equa-
tion (7). For simplicity, we choose the latter approach, which
ensures that the constraint (12) is automatically satisfied if
Ψ = 0 initially and effectively removes the need for the po-
tential Ψ.

Exploiting now that the covariant derivative in the second
term of equations (10)–(11) reduces to a partial derivative, i.e.

ǫijk∇jBk = ǫijk(∂jBk + Γl
jkBl) = ǫijk∂jBk, (14)

and using a standard conformal decomposition of the spatial
3-metric

γ̃ij = e4φγij , φ =
1

12
lnγ , (15)

we obtain the final expressions for the extended Maxwell
equations that we actually evolve

Dt E
i − ǫijk e4φ [ (∂j α ) γ̃ck B

c + α ( 4 γ̃ck ∂j φ + ∂j γ̃ck )B
c + α γ̃ck ∂j B

c ] = αK Ei − αJ i , (16)

Dt B
i + ǫijk e4φ [ (∂j α ) γ̃ck E

c + α ( 4 γ̃ck ∂j φ + ∂j γ̃ck )E
c + α γ̃ck ∂j E

c ] + α e−4φ γ̃ij ∇j Φ = αK Bi , (17)

Dt Φ+ α∇iB
i = −ακΦ . (18)

Clearly, the standard Maxwell equations in a curved back-
ground are recovered for Φ = 0, so that the Φ scalar can then
be considered as the normal-time integral of the standard di-
vergence constraint (8), which propagates at the speed of light
and is damped during the evolution.

As mentioned above, the coupling of the Einstein to the
Maxwell equations takes place via the inclusion of a nonzero
stress-energy tensor for the EM fields which is built in terms
of the Faraday tensor as dictated by (4). More specifically,
the relevant components of the stress-energy tensor can be
obtained in terms of the electric and magnetic fields, that is
as

τ ≡ nµnνT
µν =

1

8π
(E2 +B2) , (19)

Si ≡ −nµT
µ
i =

1

4π
ǫijkE

jBk , (20)

Sij ≡ Tij =
1

4π

[

−EiEj −BiBj +
1

2
γij (E

2 +B2)

]

,

(21)

where E2 ≡ EkEk and B2 ≡ BkBk. The scalar function
τ can be identified with the energy density of the EM field,
while the energy flux Si is the Poynting vector.

As already discussed in the Introduction, we remark again
that the EM energies that will be considered here are so small

when compared with the gravitational binding ones that the
contributions of the stress-energy tensor to the right-hand-
side of the Einstein equations (1) are effectively negligible
and thus can be set to zero, reducing the computational costs.
The fully coupled set of the Einstein-Maxwell equations was
considered in Palenzuela et al. (2009, 2010) and the compar-
ison with the results obtained here suggests that for the fields
below . 108 G, the use of the test-field approximation is fully
justified.

2.3. Numerical Treatment of the Force-Free Conditions

As commented before, within a FF approximation the
stress-energy tensor is dominated by the EM part and the con-
tribution coming from the matter can be considered zero. Fol-
lowing Palenzuela et al. (2010a), the conservation of energy
and momentum, ∇νT

µν = 0, implies that also the Lorentz
force is negligible, i.e.

0 = ∇νT
µν ≈ ∇νT

µν
f = −FµνIν . (22)

which can also be written equivalently in terms of quantities
measured by Eulerian observers as

EkJk = 0 , (23)

qEi + ǫijkJjBk = 0 . (24)
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Computing the scalar and vector product of the equations
above with the magnetic field Bi, we obtain

EkBk = 0 , (25)

J i = q
ǫijkEjBk

B2
+ JB

Bi

B2
. (26)

The first relation (25) implies that the electric and magnetic
fields are orthogonal, while expression (26) defines the cur-
rent, whose component parallel to the magnetic field, namely
JB ≡ J iBi, needs to be defined via a suitable Ohm law.
From the numerical point of view, specific strategies must be
adopted in order to enforce the FF constraints expressed by
Eqs. (25)–(26). In fact, even though such constraints are ex-
actly satisfied at time t = 0, there is no guarantee that they
will remain so during the evolution of the system.

The approach introduced by Palenzuela et al. (2010a) to en-
force the constraints (25)–(26) consists in a modification of
the system at the discrete level, by redefining the electric field
after each timestep in order to remove any component parallel
to the magnetic field. In other words, after each timestep the
newly computed electric field is “cleaned” by imposing the
following transformation (Palenzuela et al. 2010a)

Ei → Ei − (EkBk)
Bi

B2
. (27)

In addition, the current is computed from Eq. (26) after setting
JB = 0. An alternative approach, introduced in Komissarov
(2011) and then in Lyutikov (2011), uses the Maxwell equa-

tions to compute Dt(E
kBk), which has to vanish according

to Eq. (25). Using Eqs. (10)–(11) it is then easy to obtain the
following prescription for JB

JB =
1

α

[

Biǫ
ijk∇j(αBk)− Eiǫ

ijk∇j(αEk)
]

. (28)

Without further modifications, however, this approach leads
to large violations of the FF constraint (25) in long-term nu-
merical simulations, as it does not provide a mechanism for
imposing the constraint at later times.

As we will show later on, both approaches (27) and (28)
are not fully satisfactory and, as a consequence, we here
present an alternative method, which takes inspiration from
the treatment of currents (and related stiff source terms) in
resistive magnetohydrodynamics. The idea of introducing a
suitable Ohm law was proposed in Komissarov (2004) and
then in Palenzuela et al. (2010a), but it has not been used so
far in numerical simulations, due to the presence of stiff terms
which appear as a result. In practice, our continuum approach
is equivalent to the insertion of suitable driver terms, so that
the parallel component JB is computed from an Ohm law of
the type

JB = σBE
kBk, (29)

where σB is the anisotropic conductivity along the magnetic
field lines. This additional term in the current acts like a
damping term in the evolution ∂t(E

kBk), and enforces the
constraint (25) on a time scale 1/σB . For σB sufficiently
large, one can ensure that the FF constraint (25) is always sat-
isfied. In the simulations presented in this paper, we choose
σB > 1/∆t, where ∆t is the timestep on the finest refine-
ment level. The resulting hyperbolic system with stiff terms
is solved using a third-order Implicit-Explicit Runge Kutta

(RKIMEX) time integration method with the technical im-
plementation following the one discussed in Palenzuela et al.
(2009) and with additional details presented in Appendix A.

An additional problem in the numerical treatment of the FF
approach is represented by the development of current sheets,
namely of regions where the electric field becomes larger than
the magnetic field, such that the condition

B2 − E2 > 0 , (30)

is violated. If this happens, and in the absence of a proper
Ohm law responsible for the resistive effects, the Alfven wave
speed becomes complex and the system of FF equations is no
longer hyperbolic (Komissarov 2004). Under realistic con-
ditions, one expects that in these regions an anomalous and
isotropic resistivity would restore the dominance of the mag-
netic field. A solution to this problem was proposed in Komis-
sarov (2006), where the velocity of the drift current was mod-
ified in order to ensure that it is always smaller than the speed
of light. This leads to the following prescription for the cur-
rent

J i = q
ǫijkEjBk

B2 + E2
+ JB

Bi

B2
, (31)

which should be compared with Eq. (26) and has the net result
of underestimating the value of the current.

An alternative solution to the numerical treatment of current
sheets consists in a modification of the system again at the
discrete level (Palenzuela et al. 2010a). In practice, after each
timestep a correction is applied “by hand” to the magnitude of
the electric field in order to keep it smaller than the magnetic
field, i.e.

Ei → Ei

[

(1−Θ) + Θ

√

B2

E2

]

, (32)

with Θ = 1 when B2 − E2 < 0 and Θ = 0 otherwise.
Our strategy, however, differs from both the previous ones

and follows the same philosophy behind the choice of the
driver defined by Eq. (29). We therefore introduce a second
driver in Ohm law, which will act as a damping term for the
electric field in those cases when E2 > B2. This additional
term, combined with the prescription for the parallel part of
the current (29), leads to the following effective Ohm law

J i = q
ǫijkEjBk

B2
+ σB(E

kBk)
Bi

B2
− σB(B

2 − E2)EiE
2

B2
.

(33)

Expression (33) shows therefore that in normal conditions,
i.e. when B2 − E2 & 0, the last term introduces a very small
and negative current along the direction of the electric field.
However, should a violation of the condition (30) take place,
a positive current is introduced, which reduces the strength of
the electric field and restores the magnetic dominance.

In Sect. 5 we will compare the different prescriptions for the
enforcement of the FF condition and show that, in contrast to
recipes (27) and (32), our suggestions (29) and (33) yield both
and accurate and a smooth distribution of the EM currents.

3. ANALYSIS OF RADIATED QUANTITIES

The calculation of the EM and gravitational radiation gen-
erated during the inspiral, merger and ringdown is an impor-
tant aspect of this work as it allows us to measure the amount
correlation between the two forms of radiation. We compute



5

the gravitational radiation via the Newman-Penrose curvature
scalars. In practice, we define an orthonormal basis in the

three dimensional space (r̂, θ̂, φ̂), with poles along ẑ. Using

the normal to the slice as timelike vector t̂, we construct the
null orthonormal tetrad {l,n,m,m}

l =
1√
2
(t̂+ r̂), n =

1√
2
(t̂− r̂), m =

1√
2
(θ̂ + iφ̂) ,

(34)
with the bar indicating a complex conjugate. Adopting this
tetrad, we project the Weyl curvature tensor Cαβγδ to ob-

tain Ψ4 ≡ Cαβγδn
αm̄βnγm̄δ , that measures, ideally at

null infinity, the outgoing gravitational radiation. For the
EM emission, on the other hand, we use two equivalent ap-
proaches to cross-validate our measures. The first one uses
the Newman-Penrose scalars Φ0 (for the ingoing EM radia-
tion) and Φ2 (for the outgoing EM radiation), defined using
the same tetrad (Teukolsky 1973)

Φ0 ≡ Fµν lνmµ , Φ2 ≡ Fµνmµnν . (35)

By construction, the Newman-Penrose scalars Ψ4,Φ0,Φ2 are
dependent on the null tetrad (34), so that truly unambiguous
scalars are measured only at very large distances from the
sources, where inertial observers provide preferred choices.
Any measure of these quantities in the strong-field region is
therefore subject to ambiguity and risks to produce mislead-
ing results. As an example, the EM energy flux does not show
the expected 1/r2 scaling when Φ2 and Φ0 are measured at
distances of r ≃ 20M , as used in Palenzuela et al. (2010b,a),
which is instead reached only for r & 100M . As we will
show in Sect. 6, this fact is responsible for significant differ-
ences in the estimates of the non-collimated EM emission.

The use of a uniform magnetic field within the compu-
tational domain has a number of drawbacks, most notably,
nonzero initial values of Φ2,Φ0. As a result, great care has
to be taken when measuring the EM radiation. Fortunately,
we can exploit the linearity in the Maxwell equations to dis-
tinguish the genuine emission induced by the presence of
the BH(s) from the background one. Following Teukolsky
(1973), we compute the total EM luminosity as a surface in-
tegral across a 2-sphere at a large distance

L
EM

= lim
r→∞

1

2π

∫

r2
(

|Φ2|2 − |Φ0|2
)

dΩ , (36)

which results straightforwardly from the integration of the
component of EM stress-energy tensor (4) along the time-
like vector nµ and the normal direction to the large 2-sphere
[namely, the flux of the Poynting vector in Eq. (19) through
the 2-sphere]. The term Φ0 in (36) has been maintained (it dis-
appears at null infinity) to account for the possible presence
of an ingoing component in the radiation at finite distances.
In particular, Eq. (36) shows that the net flux is obtained by
adding (with the appropriate sign) the respective contributions
of the outgoing and ingoing fluxes. More specifically, in terms
of the complex scalars Φ2 and Φ0, the outgoing net flux is ob-
tained by subtracting the square of their respective moduli. In
the specific scenario considered here, where a nonzero nonra-
diative component of the magnetic field extends to large dis-
tances, expression (36) must be modified. More specifically
we rewrite it as

L
EM

= lim
r→∞

1

2π

∫

r2
(

|Φ2 − Φ2,B|2 − |Φ0 − Φ0,B|2
)

dΩ ,

(37)

where Φ2,B and Φ0,B are the values of the background scalars
induced by the asymptotically uniform magnetic field solu-
tion in the time dependent spacetime produced by the binary
BHs. Under assumption of a vanishing net ingoing radia-
tion, i.e. Φ0 ≈ Φ0,B and of stationarity of the background
field, i.e. Φ2,B ≈ Φ0,B, expression (37) can also be rewritten
as (Neilsen et al. 2011; Ruiz et al. 2012)

L
EM

= lim
r→∞

1

2π

∫

r2
(

|Φ2 − Φ0|2
)

dΩ . (38)

Although (38) does not represent, at least in a strict physical
and mathematical sense, a valid expression for the emission
of EM radiation in generic scenarios, it can provide a useful
recipe whenever the assumed approximations made above are
actually fulfilled. In Sect. 6 we will assess to what degree
this is the case for the specific scenario and model considered
here.

The choice of the background values of the Newman-
Penrose scalars Φ2,B and Φ0,B plays a crucial role in mea-
suring correctly the radiative EM emission, since these quan-
tities are themselves time dependent and cannot be distin-
guished, at least a-priori, from the purely radiative contribu-
tions. This introduces an ambiguity in the definition of Φ2,B

and Φ0,B, which can however be addressed in at least two
different ways. The first one consists in assuming that the
background values are given by the initial values, and further
neglecting their time dependence, namely setting

Φ2,B = Φ2(t = 0) , Φ0,B = Φ0(t = 0) . (39)

Since all the m = 0 multipoles of the Newman-Penrose
scalars are not radiative, a second way to resolve the ambi-
guity is to remove those multipole components from the esti-
mates of the scalars, namely, of defining

Φ2,B = (Φ2)ℓ,m=0 , Φ0,B = (Φ0)ℓ,m=0 , (40)

where (Φ2)ℓ,m=0 refer to the m = 0 modes of the multipo-
lar decomposition of Φ2 (ℓ ≤ 8 is sufficient to capture most
of the background). Note also that because the m = 0 back-
ground is essentially time-independent (after the initial tran-
sient), the choice (40) is effectively equivalent to the assump-
tion that the background is given by the final values of the
Newman-Penrose scalars as computed in an electrovacuum
evolution of the same binary system. While apparently differ-
ent, expressions (39) and (40) lead to very similar estimates
(see Sect. 6.1) and, more importantly, they have a simple in-
terpretation in terms of the corresponding measures that they
allow.

The second approach that we have followed for the compu-
tation of the emitted luminosity is the evaluation of the flux
of the Poynting vector across a 2-sphere at large distances in
terms of the more familiar 3+1 fields Ei and Bi in Eq. (19).
Of course, also such evaluation is adequate only far from the
binary. The purpose of implementing both versions of the lu-
minosity calculation, that are conceptually equivalent but dif-
fer in the technical details, is precisely to quantify the error
introduced by evaluating the flux at large but finite distances
via the Newman-Penrose scalars Φ2 and Φ0. Also in this case,
to account for the background non-radiative contribution due
to our choice of uniform magnetic field (and using again the
linearity in the Maxwell equations), we need to remove the

background values of the EM fields Ej
B
, Bj

B
. The relevant

part of the Poynting vector is then computed as

Si =
√
γǫijk(E

j − Ej
B
)(Bk −Bk

B) , (41)
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where, consistently with expression (39), we set

Ek
B = Ek(t = 0) = 0 , Bk

B = Bk(t = 0) 6= 0 . (42)

As we will show in Sect. 6.2, and 6.1, we have verified that
the measures of the EM luminosity obtained using Eq. (39)
or Eq. (40) reproduces well the corresponding ones obtained
using the Poynting vector in Eq. (41).

4. ASTROPHYSICAL SETUP AND INITIAL DATA

As mentioned in the Introduction, the astrophysical sce-
nario we have in mind is represented by the merger of super-
massive BHs binaries resulting from galaxy mergers. More
specifically, we consider the astrophysical conditions during
and after the merger of two supermassive BHs, each of which
is surrounded by an accretion disc. As the merger between
the two galaxies takes place and the BHs get closer, a sin-
gle “circumbinary” accretion disc is expected to form, reach-
ing a stationary accretion phase. During this phase, the bi-
nary evolves on the dynamical viscous timescale τd of the
circumbinary accretion disc, which is regulated by the abil-
ity of the disc to transport its angular momentum outwards
(either via shear viscosity or magnetically-mediated instabili-
ties). On a much longer radiation-reaction timescale τ

GW
, the

system looses both energy and angular momentum through
the emission of GWs, hence progressively reducing the bi-
nary separation D. As a consequence, for most of the evo-
lution the disc slowly follows the binary as its orbit shrinks.
However, because τ

GW
and τd have a very different scaling

with D, more specifically τ
GW

∼ D4 while τd ∼ D2, at
a certain time the timescale τGW becomes smaller than τd.
When this happens, the disc becomes disconnected from the
binary, the mass accretion rate reduces substantially and the
binary performs its final orbits in an “interior” region which
is essentially devoid of gas (Armitage & Natarajan 2002; Liu
et al. 2003; Milosavljeć & Phinney 2005). This represents
the astrophysical scenario in which our simple model is then
built.

Although poor in gas, the inner region is coupled to the
circumbinary disc via a large-scale magnetic field, which we
assume to be anchored to the disc. The inner edge of the
disc is at a distance of ∼ 103 M and is effectively outside
of our computational domain, while the binary separation is
only of D ∼ 10M . For simplicity, and because a large-scale
dipolar field will appear as essentially uniform on the orbital
lenghtscale of the binary during the final stages of the inspi-
ral, we use an initially uniform magnetic within the computa-
tional domain. More specifically, the initial magnetic field has
Cartesian components given simply by Bi = (0, 0, B0) with

B0 M = 10−4 in geometric units or B0 ∼ 108 G for a binary

with total mass M = 108 M⊙
5. Furthermore, because we

consider the initial conditions to represent a tenuous plasma
electrically neutral, the charges, electric currents and the ini-
tial electric field are all assumed to be zero, i.e. Ei = 0 = q.

We note that although reasonable, the assumption of a
large-scale uniform magnetic field has a deep impact on the
results obtained and more realistic magnetic-field topologies
will be considered in our future work. As mentioned earlier,
although astrophysically large, the initial magnetic field con-
sidered here has an associated EM energy which is several or-
ders of magnitude smaller than the gravitational-field energy

5 Smaller values of the magnetic field would lead to a less accurate es-
timates of the EM fields, but have also been considered. No appreciable

differences have been measured when using a magnetic field B0 M = 10−6

and can be are treated as a test-field. On the other hand, the
combination of very low densities and strong magnetic fields,
makes the FF approximation rather appropriate for capturing
the dynamics of the tenuous plasma.

4.1. Initial Data and Grid Setup

We construct consistent BH initial data via the “puncture”
method as described in Ansorg et al. (2004). We consider
binaries with equal masses but with two different spin config-
urations: namely, the s0 binary, in which both BHs are non-
spinning, and the s6 binary, in which both BHs have spins
aligned with the orbital angular momentum. We use these
two configurations to best isolate the effects due to the binary
orbital motion from those related to the spins of the two BHs.

We note that similar initial data were considered by Koppitz
et al. (2007); Pollney et al. (2007); Rezzolla et al. (2008c,b,a)
but we have recalculated them here using both a higher-
resolution and improved initial orbital parameters. More
specifically, we use post-Newtonian (PN) evolutions follow-
ing the scheme outlined in Husa et al. (2008), which pro-
vides a straightforward prescription for initial-data parame-
ters with small initial eccentricity, and which can be inter-
preted as part of the process of matching our numerical cal-
culations to the inspiral described by the PN approximations.
The free parameters of the puncture initial data are then: (i)
the puncture coordinate locations, (ii) the puncture bare mass
parameters, (iii) the linear momenta, and (iv) the individual
spins. The parameters of the models adopted in the numer-
ical simulations can be found in Koppitz et al. (2007); Poll-
ney et al. (2007); Rezzolla et al. (2008c,b,a). In brief, the
initial separation is D = 8M for all of them, where M is

the total initial BH mass6, chosen as M = 1, while the in-
dividual asymptotic initial BH masses are Mi = 1/2. In

addition, the EM field is initialized to Bi = (0, 0, B0) with

B0 ∼ 10−4/M ∼ 108(108M⊙/M)G and Ei = 0.
The numerical grids consists of 9 levels of mesh refinement,

with a fine-grid resolution of ∆x/M = 0.025. The wave-
zone grid, in which our wave extraction is carried out, has
a resolution of ∆x/M = 1.6 and extends from r = 24M
to r = 180M . Finally, the outer (coarsest) grid extends
up to a distance of ∼ 820M in each coordinate direction.
Shorter, higher-resolution simulations have also been carried
out to perform consistency checks. Finally, in addition to
BHs in a binary system, we have also considered spinning
and nonspinning isolated BHs as testbeds for our implemen-
tation of the FF condition. In this case, the numerical grids
consists of 7 levels of mesh refinement, with a fine-grid res-
olution of ∆x/M = 0.04 and a coarse-grid resolution of
∆x/M = 2.56, placing the outer boundary at a distance of
∼ 410M in each coordinate direction.

5. ACCURATE FORCE-FREE ENFORCEMENT

As mentioned in Sect. 2.3, several different approaches are
possible to enforce the FF conditions (25)–(26) in the plasma.
The important advantage of the discretized approach intro-
duced by Palenzuela et al. (2010a) is that, at least globally, it
gives the desired result of a FF solution. In fact, since this
approach acts “by hand” on the EM fields and converts them
to values which would yield a FF regime, one is guaranteed
that the constraints (25), (26) and (30) are satisfied. However,

6 Note that the initial ADM mass of the spacetime is not exactly 1 due to
the binding energy of the BHs.
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FIG. 1.— Top row: Orthogonality condition (left panel) and current-sheet condition (right panel) for a single spinning BH (dimensionless spin parameter

a = J/M2 = 0.7), using different prescriptions for the current: fully discrete approach (light-blue solid line), driver1 plus discrete2 (red dotted line),
driver1 plus continuum (dark-blue dashed line), driver1 plus driver2 (black long-dashed line). Bottom row: The same as in the top row, but for the
equal-mass nonspinning binary BH system s0.

a potential disadvantage of such approach is also that there is
no guarantee that the solution that is forced locally with the
transformations (27)–(32) is compatible with the solutions in
their neighborhoods and thus, that it leads to a smooth and
accurate representation of the EM fields in the presence of
current sheets7. As we will show below, this concern is in-
deed well grounded, but it can be resolved effectively through
the “driver” approach proposed here.

To compare the different FF prescriptions we have consid-
ered the simpler setup of a single spinning BH as this allows
us to concentrate on stationary solutions and hence to isolate
the potential drawbacks of the different prescriptions, which
in a binary would otherwise be confused with the actual dy-
namics of the EM fields. Figure 1 reports the time evolu-
tion of the 2-norms of the scalar product EiBi i.e. ||EiBi||2
(left column) and of the fractional 2-norm of (B2 − E2),
i.e. 1−||B2−E2||2/(||B2−E2||2)t=0 (right column), mon-
itoring possible deviations from the orthogonality condition
of Eq. (25) and from the current-sheet condition of Eq. (30).
The top row of Fig. 1, in particular, refers to a single spinning

7 Indeed, it is a common experience that any local numerical modification
of the solution, e.g. in terms of boundary conditions, is likely to be incompat-
ible with the solution in the bulk.

BH, while the bottom row has been obtained in the case of the
nonspinning BH binary s0.

The different curves correspond to the various combina-
tions in the specification of the current and in the treatment
of the FF constraints. In particular, the labels in the legend of
Fig. 1 refer to the following choices:

• discrete1: denotes the first step of the “discrete” ap-
proach of Palenzuela et al. (2010a), which amounts to
adopting Eq. (26) with JB = 0 for the current and to
Eq. (27) for ensuring the FF constraint (25).

• driver1: denotes the first step of our “driver” approach
and which amounts to adopting Eq. (26) with the paral-
lel component of the current specified by Eq. (29).

• discrete2: denotes the second step of the “discrete”
approach of Palenzuela et al. (2010a), which amounts
to the modification of the electric field according to
Eq. (32).

• driver2: denotes the second step of our “driver” ap-
proach and which amounts to adopting Eq. (33) for the
current.
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• continuum: denotes the continuum approach in which
the current is specified by Eq. (31).

As it is evident from Fig. 1, all of the methods satisfy
the orthogonality condition (25) essentially to machine pre-
cision (left column). Not surprisingly, the discrete prescrip-
tions discrete1 (combined with discrete2) is particularly
efficient in removing any component of the electric field par-
allel to Bi, either in isolated BHs (top row) or in the case of
an inspiralling binary (bottom row). In this latter case, the
bump of EiB

i at t ∼ 400M simply corresponds to the time
of the merger and the constraint decreases after that. Simi-
larly, the right column of Fig. 1 shows that all prescriptions are
also able to enforce to comparable precision the current-sheet
condition of Eq. (30), but also that the discrete recipe (32)
is slightly less effective in the case of an inspiralling binary
(bottom right panel).

The main conclusion to draw from Fig. 1 is that, at least
globally, all methods provide a comparable and actually very
good enforcement of the FF conditions. Their local per-
formance, however, is rather different and this is shown in
Fig. 2, which reports the electrical currents as computed for
a representative configuration of a single spinning BH with
dimensionless spin a = J/M2 = 0.7. In the top panels
we have reported the current vectors in the plane (x, y, z =
1.92M), while in the bottom ones the currents in the plane
(x, y = 0, z). The two columns, on the other hand, con-
trast the currents when computed using the discrete1 and
discrete2 approaches (left column) or when computed us-
ing our driver1 and driver2 approaches (right column).

A rapid comparison is sufficient to highlight that although
both approaches yield a FF-condition, the solution is very dif-
ferent, particularly on small scales. More specifically, when
the combination of methods driver1–driver2 is adopted
(right column), strong meridional currents are clearly visible
and form a jet-like structure, with negative currents in the cen-
tral parts of the jet and positive ones on the edges of the jet.
This current distribution is what is expected and it resembles
the typical structure of the FF magnetosphere of a rotating BH
obtained through the solution of the Grad-Shafranov equation
(see, for instance, Fig. 7 in Beskin (1997)). On the other hand,
the corresponding currents when the prescriptions discrete1
and discrete2 are used (right column) do not show evident
signs of descending currents and, rather, they show unphysical
features around the BH and discontinuities along the ∼ ± 45◦

diagonals when seen in the (x, z) plane. In addition, the cur-
rents tend to be predominantly contained in planes which are
parallel to the (x, y) plane (see top row) and thus do not show
the circulations which are instead captured with our drivers
approach.

Overall, the comparison presented in Fig. 2 confirms our
suspicions that, while providing a solution which is globally
FF, the prescriptions discrete1 and discrete2 are not guar-
anteed to yield solutions that are locally accurate and can ac-
tually lead to solutions with large discontinuities. For these
reasons we believe that our approaches driver1–driver2
should be preferred in treatments of FF electrodynamics. As a
final remark we also note that our prescriptions (29) and (33)
also provide a (small) saving in computational costs. Since
we use an algebraic prescription for the current which auto-
matically drives the solution to the FF regime, we do not need
to perform the expensive checks at every gridpoint that come
with the approach suggested in Palenzuela et al. (2010a).

6. FORCE-FREE ELECTRODYNAMICS OF BBH MERGERS

After having discussed the details of our implementation of
the FF conditions and having shown its higher accuracy with
respect to alternative suggestions in the literature, in what fol-
lows we concentrate our discussion on the FF electrodynam-
ics accompanying the inspiral and merger of BH binaries. In
particular, we will discuss the subtleties which emerge with
the subtraction of the background radiation, the spatial distri-
bution of the charge density, the EM and gravitational wave
zones, and the scaling of the EM luminosity with frequency.

6.1. Subtraction of Background Radiation

As anticipated in Sect. 3, our measure of EM radiation is
influenced by the choice of a uniform initial magnetic field
within the computational domain, which leads to nonzero ini-
tial values for Φ2 and Φ0. Hence, a proper identification of
this background radiation is essential for the correct measure
of the emitted luminosity and to characterize its properties.

The generic expression (37) for the EM luminosity can be
evaluated in combination with (39), that is, by setting as back-
ground values those of the Newmann-Penrose scalars Φ2 and
Φ0 at the initial time. Note that initial values of these scalars
are the same they have in an electrovacuum scenario (they are
indeed the same considered in Mösta et al. (2010)), and thus
the “background-subtraction” corresponds in this case to the
subtraction of the EM emission coming from a magnetic field
which is asymptotically uniform. Of course, the initial time
is as good as any other time and we could in principle choose
Φ2,B and Φ0,B at any time t > 0. In this case, however, we
would have to deal with the additional complication that for
any choice other than t = 0, the background radiation will
also have an azimuthal modulation as a result of the orbital
motion and hence it it will not be simply an m = 0 back-
ground.

The angular distribution of the emitted radiation when pro-
jected onto a 2-sphere, in fact, shows the presence of two jets
but also of two extended lobes, which rotate at the same fre-
quency of the binary and that provide the bulk of the EM emis-
sion. (see Fig. 1 of paper I). As a result, any background sub-
traction at t 6= 0 will also have an m = 2 component which
will interfere with the m = 2 evolution of the emitted flux, in-
troducing a modulation on the emission. The latter, however,
will average over one orbit, leading to a net emitted luminos-
ity which is the same obtained when using Φ2,B = Φ2(t = 0)
and Φ0,B = Φ0(t = 0). We have verified that this is indeed
the case by using background values at different times and ob-
tained values of the luminosity which can be instantaneously
different, but that once integrated over time yield the same
emitted EM energy. As a result, the background choice (39),
represents by far the most convenient one.

We have also mentioned in Sect. 3 that an alternative and
equivalent estimate of the emitted EM luminosity can be ob-
tained after removing the non-radiative parts of the emission
[cf. expression (40)]. In order to isolate the radiative contribu-
tions from the non-radiative ones, we have reported in Fig. 3
the evolution of the real (thick lines) and of the imaginary
(thin lines) parts of the ℓ = 2, m = 0 and ℓ = 2, m = 2
modes of Φ2 and Φ0. These modes are obtained from the pro-
jection of the Faraday tensor onto the tetrad (35). Note that
the only modes that have a regular time modulation, and are
therefore radiative, are (Φ2)22 and (Φ0)22, while the real parts
of the (Φ2)20 and (Φ0)20 are essentially constant in time, indi-
cating that these are not radiative modes, and could represent
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FIG. 2.— Comparison of the electric currents for a single spinning BH with dimensionless spin parameter a = J/M2 = 0.7 on the plane (x, y, z = 1.92M)
(top row) and on the plane (x, y = 0, z) (bottom row). All panels refer to the same time t = 102M , when the solution has reached a stationary state.
The currents are computed either through the fully discrete approach of discrete1–discrete2 (left column) or through our continuous driver1–driver2
approach (right column). While both solutions satisfy the FF-condition, it is clear that the use of the drivers provides also an accurate solution.

a way to measure the background radiation. The imaginary
parts of (Φ2)20 and (Φ0)20, on the other hand, do show a reg-
ular evolution in time and a ringdown, but their values are
much smaller (i.e. two orders of magnitude or more) and do
not play a significant role in estimating the total radiation.

As a result, we can write expression (40) explicitly as

Φ2,B ≃ Re(Φ2)20 , Φ0,B ≃ Re(Φ0)20 , (43)

and in doing so we obtain an estimate that is very similar re-
sults to the ones reported in Neilsen et al. (2011), where ex-
pression (38) was used.

As discussed in Sect. 3, the use of Eq. (38) as an es-
timate of the emitted luminosity is subject to the validity
of the assumption Φ2,B ≈ Φ0,B, or after using (43), of
Re(Φ2)20 ≈ Re(Φ0)20. This condition is true only as a first
rough approximation, as shown in the right panel of Fig. 3,
which reports the evolution of Re(Φ2)20 (red dotted line) and
of Re(Φ0)20 (black dashed line), as extracted at 100M for
the non-spinning binary s0. Clearly, these two multipoles are
almost constant in time and comparable, but not identical and
their difference then affects the validity of expression (38).
This consideration, together with the fact that expression (38)
represents an approximation which needs to be validated a-

posteriori, lead us to the conclusion that Eq. (37) represents a
more accurate and robust measure of the emitted luminosity
in the scenario and model considered here.

6.2. Properties of the EM Luminosity

Having clarified our strategy in the subtraction of the back-
ground radiation, we present in Fig. 4 a comparison of the
evolution, measured in hours before the merger, of the lumi-
nosities as computed with expression (37) and either the pre-
scriptions (39) or (40) for the background subtraction.

More specifically, the thick lines refer to the total luminos-
ity, while the thin ones to the luminosity in a polar cap of
5◦ semi-opening angle, measured using either expression (39)
(red solid line), expression (40) (blue dotted line), or through
the expression in terms of the Poynting vector (41) (black
dashed line). The left panel refers to the binary of nonspinning
BHs (i.e. s0), while the right one to the binary with spinning
BHs (i.e. s6). In both cases the extraction is made at a dis-
tance of 100M and the values in cgs units refer to a binary
with a total M = 108 M⊙ and a magnetic field B0 = 104 G.
Such magnetic-field strengths match the values a estimated
from radio observations of parsec-scale jets in active galactic
nuclei (O’Sullivan & Gabuzda 2009).
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FIG. 3.— Left Panel: Evolution of the real (thick lines) and imaginary (thin lines) parts of the ℓ = 2,m = 0 and ℓ = 2,m = 2 modes of Φ2 and Φ0, extracted
at 100M for the non-spinning binary s0. Right Panel: The same as in the left panel but with a scale appropriate to highlight the evolution of Re(Φ2)20 (red
dotted line) and of Re(Φ0)20 (black dashed line). Both are almost constant in time and comparable, but not identical.

FIG. 4.— Time evolution measured in hours before the merger of the EM luminosity at 100M when M = 108 M⊙ and B0 = 104 G. The thick lines
refer to the total luminosity, while the thin ones to the luminosity in a polar cap of 5◦ semi-opening angle, measured using either expression (39) (red solid line),
expression (40) (blue dotted line), or the flux using the Poynting vector in (41) (black dashed line). The left panel refers to the binary of nonspinning BHs (i.e. s0),
while the right one to the binary with spinning BHs (i.e. s6). Note that in this latter case a certain eccentricity is detectable in the EM luminosity, although it is
much smaller in the GW luminosity.

As expected the three measures match very well and, in par-
ticular, the measure made with expression (39) is remarkably
close to the one obtained in terms of the Poynting vector (41),
that we consider the most robust measure since it involves di-
rectly our primary evolution variables Ei and Bi. After the
merger, both luminosities converge to a constant value which
is larger than one coming from the polar-cap region (cf. thin
lines). This is due to the fact that the background-subtraction
refers to a pure electrovacuum-condition (i.e. uniform mag-
netic field in a flat spacetime) and thus it does not provide an
accurate description of an isolated spinning BH. Subtracting
as background that of a single BH in electrovacuum would
bring the two curves down to the values of the polar cap,
but we have not shown this in Fig. 4 to avoid a cluttering of
curves. Note also that the measure made with expression (40)
is effectively subtracting the initial background emission and,

at the same time, also including some incoming radiation
(this is true also for the measures presented by Palenzuela
et al. (2010b,a)). As a result, this measure is always (slightly)
smaller than the one obtained with either prescriptions (39) or
(41). For the same reason, the contributions coming from the
dual jets will appear comparatively larger when using (40).

Figure 4 also shows that the differences in the luminosities
coming from the polar-cap region, are instead much smaller
and hardly noticeable. The reason behind this very good
agreement is simple: being integrated over a small solid an-
gle these luminosities are not influenced by the dissimilari-
ties that the different prescriptions show instead in the emit-
ted luminosity. Overall, Fig. 4 shows that, as the merger takes
place, both the diffused and the collimated EM luminosity in-
crease steeply, reaching values at the merger which are about
50 times larger than the corresponding ones a few orbits be-
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fore the merger. The growth in the diffused luminosity, how-
ever, is larger than the one in the collimated luminosity and
the difference in the two, which was already present at the be-
ginning of the simulations, increases as the inspiral proceeds.
As a result, at the merger the non-collimated (total) emission
is ∼ 100 times larger than the collimated one, reaching values

L
EM

≃ 1045 erg/s for a 108 M⊙ binary8.
A few comments should be reserved about the different spa-

tial distributions of the EM fluxes that come with the different
prescriptions for the subtraction of the background radiation
and that are erased when computing the luminosities as inte-
gral quantities. First of all we note that the EM flux in (37) is
not necessarily positive on the 2-sphere and that (small) neg-
ative contributions can appear (see Fig. 1 of paper I and the
corresponding colorbar). These emissions, however, do not
represent a radiative field and average to zero over one orbit
(this point was already remarked in Palenzuela et al. (2010),
where a toy model within the membrane paradigm was used
for the binary). This non-radiative part is far from being un-
interesting as it could lead to a different secondary emission
as the EM fields interact with the plasma. Unfortunately, by
construction, it is impossible to investigate such an emission
within our FF approach, but this is clearly an aspect of this re-
search that deserves further investigation. Second, as already
remarked in paper I, while the EM fluxes do contain a dual-jet
structure and even if the fluxes at the jets are ∼ 8 − 2 times
larger than elsewhere, the global spatial distribution it is effec-
tively dominated by a non-collimated emission of quadrupolar
nature, drastically changing the prospects of the detectability
of the dual jets (see also discussion below). Finally, the lo-
cal EM flux from the jets can in principle be enhanced if the
BHs are spinning and, indeed, within a Blandford-Znajek pro-
cess one expects that the luminosity from the jets increases
quadratically with the spin of the BH (Blandford & Znajek
1977; Palenzuela et al. 2010b). The differences introduced
by the spin are reported in the right panel of Fig. 4, which
refers to the binary s6 and thus with BHs having a dimen-
sionless spin of J/M2 ≃ 0.6. Clearly, both the collimated
and the non-collimated emission show a behaviour which is
similar to the one seen for the s0 binary, with only a 50% en-
hancement of the EM radiation, both in the total and in the
collimated emission (note that the two panels in Fig. 4 have
the scale). This result is the consequence of the fact that most
of the radiation that is produced is diffused and produced by
the interaction between the BH orbital motion and the back-
ground magnetic field. Indeed, we find that the emission in the
electrovacuum evolution as computed in Mösta et al. (2010) is
comparable to the FF one (this is different from what reported
in Palenzuela et al. (2010b,a)). The local spin-enhancement
in the dual jets is therefore present, but still much smaller that
the diffused emission, which remains the predominant one at
these separations.

It is always useful to remark that by construction the
Newman-Penrose scalars, either for the gravitational sec-
tor, i.e. Ψ4, or for the EM one, i.e. Φ0,Φ2, provide non-
ambiguous quantities only at very large distances from the
sources, that is, in the corresponding “wave zone”. It is ob-
vious then that any measure of such radiation quantities in
the strong-field region, risks to be incorrect. Less obvious is
however the fact that the wave zones can be different whether

8 Note that the local flux of the collimated emission can be ∼ 8− 2 times
larger than the one in the diffused emission. However, being limited to a very
small solid angle, the corresponding luminosity is 100 times smaller.

FIG. 5.— Evolution of the EM (top panel) and the GW luminosity (bot-
tom panel) integrated over 2-spheres located respectively at r = 20 , 100,
and 180M . Thick lines refer to the diffused emission, while thin ones to
the emission from a polar cap of 5◦ semi-opening angle; the data refers to
the spinning s6 binary and both the EM and the GW luminosities are com-
puted including modes up to the ℓ = 8 multipole. Note that the gravitational
wave zone is already well defined at 100M , while the EM one is not even at
180M .

one is considering the gravitational or the EM radiation, with
the latter starting at considerably larger distances than the for-
mer. This is summarized in Fig. 5, which reports the EM (top
panel) and the GW luminosity (bottom panel) integrated over
2-spheres located respectively at r = 20 , 100, and 180M .
The data refers to the spinning s6 binary, with both the EM
and the GW luminosities having been computed including
modes up to the ℓ = 8 multipole; thick lines refer to the dif-
fused emission, while thin ones to the emission from a polar
cap of 5◦ semi-opening angle. Clearly, the estimates made at
r = 20M in both channels are rather different (and incor-
rect) from those made at larger radii, where the radiation has
reached its wave-like solution. Also striking is that while the
GW estimates at 100M and 180M are essentially indistin-
guishable (bottom panel), the corresponding ones in the EM
channel are not yet identical. This indicates firstly that the
GW zone is much closer than the EM one and reached already
at r ∼ 100M , and, secondly, that extraction radii larger than
r ∼ 200M should be considered when measuring the EM
radiation. We note that the evidence of a relative “proxim-
ity” of the gravitational wave zone to the strong-field dynam-
ical region of spacetime is somewhat surprising, but also in
substantial agreement with the bulk of evidence emerging in
favour of a description of the dynamics of the BHs which is
very well described by post-Newtonian or other approxima-
tion techniques. This good agreement is indeed perfectly un-
derstandable if the weak-field wave zone starts only a few tens
of M away from the BHs.

6.3. Frequency Scaling

As remarked already in paper I, an accurate measure of the
evolution of the collimated and non-collimated contributions
of the emitted energies is crucial to predict the properties of
the system when the two BHs are widely separated. This
measure, however, is all but trivial as it requires a reliable
disentanglement of the collimated emission from the non-
collimated one and from the background. We have seen in
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FIG. 6.— Left Panel: Frequency scaling for the nonspinning binary s0 of the GW luminosity rescaled of a factor 10−10 (black solid line), of the diffused
EM luminosity (red solid line), and of the collimated EM luminosity computed in a polar cap with a semi-opening angle of 5◦ (blue solid line). Note that the

diffused EM luminosity has a behaviour which is compatible with Ω10/3−8/3 as does as the GW luminosity. The collimated EM luminosity, on the other hand

has a scaling compatible with Ω5/3−6/3. Right Panel: The same as in the left panel but reporting only the GW emission and extrapolating back in the past to

determine when the collimated and the diffused emissions are comparable. For a binary with 108 M⊙ this happens ∼ 21 d before merger.

Fig. 4 how the total EM luminosities show a very similar evo-
lution as long as sensible subtractions of the background radi-
ation are used. We have also discussed that independently of
the choice made, the diffused emission is mostly quadrupolar
and hence with a dependence that is the same as the GW one,

i.e. ∼ Ω10/3, as already shown by Palenzuela et al. (2010);
Mösta et al. (2010). Figure 6 considers more closely this is-
sue by reporting in the left panel the change of the different
gravitational and EM luminosities in the orbital evolution as
a function of the GW frequency Ω

GW
. More specifically, we

report the diffused EM radiation as computed with expres-
sions (37) and (40) (red solid line) and the collimated emis-
sion when computed over a polar cap with a semi-opening
angle of 5◦ (blue solid line). Also shown is the evolution of
the GW luminosity (black solid line) scaled down of a factor
10−10 to make it comparable with the other luminosities (we
recall that the efficiency in GW emission is ∼ 13 orders of
magnitude larger as first shown in Mösta et al. (2010)). The
short-dashed, dotted and long-dashed lines show instead the
different scalings (note the figure is a log-log plot).

It is then straightforward to realize that at the separations
considered here the diffused emission shows a scaling with

frequency which is Lnon−coll

EM
≈ Ω10/3−8/3, thus compatible

with the scaling shown by the GW emission. The collimated
emission, however, has a slower growth, with a scaling that is

Lcoll

EM
. Ω5/3−6/3. This is different from the predicted scaling

of Lcoll

EM
≈ Ω2/3 suggested in Palenzuela et al. (2010b), and

that we show with a light-blue long-dashed line. This differ-
ence is probably due to the fact that the estimate in Palenzuela
et al. (2010b) was made by studying the behaviour of boosted
BHs and then extrapolating the result to the case of orbiting

BHs. The scaling ∼ Ω2/3 is clearly incompatible with our
data and we suspect the accelerated motion of the BHs to be
behind this difference and longer simulations will be useful to
draw robust conclusions.

Given that the diffused and the collimated emissions scale

differently with frequency and using the rough estimates

made above for their scaling at earlier times9, we can de-
termine the frequency (or time) when the collimated emis-
sion will be dominant relative to the diffused one. This is
shown in the right panel Fig. 6, which is the same as the left
one but where we extrapolate the scaling back in frequency.
Our rough estimate is therefore that the collimated emission
will be larger than the diffused one at an orbital frequency

Ω = 1

2
Ω

GW
≃ 3.2 × 10−5 Hz and thus ≃ 21 d before the

merger. If the conditions are optimal and the binary is ori-
ented in such a way that the dual-jet system points towards the
Earth, the luminosity from the binary would therefore be mod-
ulated on timescales τ . 1/Ω ≃ 8.6 h and smaller. While this
is an exciting possibility, we should also bear in mind that,
when extrapolated back to the time when it becomes domi-
nant, the collimated emission has also decreased by almost
one order of magnitude and to luminosities that are only of
the order of ∼ 1042 erg/s. Luminosities ∼ 1045 erg/s are
also typical of radio-loud galaxies and thus the determination
of an EM counterpart can be challenging if such sources are
near the candidate event. Clearly, the bottom line of these con-
siderations is that longer simulations need to be performed to
assess the early-inspiral scaling of the different luminosities
and more realistic scenarios need to be considered to assess
whether the collimated or the diffused emission can serve as
an EM counterpart to the merger of binary system of super-
massive BHs (see Giacomazzo et al. (2012) and Noble et al.
(2012) for some recent attempts).

6.4. Charge-Density Distribution

In this concluding Section we concentrate on the spatial
distribution of the charge density produced during the inspi-
ral and merger, providing information which is complemen-

9 In reality we expect the scaling with frequency to be different in the
different stages of the inspiral, just as it is the case for the GW emission.
However, as a first approximation we can assume that the frequency does not
change significantly in the early stages of the inspiral.



13

FIG. 7.— Small-scale two dimensional distribution of the charge density for a s6 binary in the early inspiral phase at t = 89M (left column), at merger
t = 672M (middle column), and at ringdown t = 800M (right column). The top panels show the charge density in the (x, y) plane, while the bottom ones in
the (x, z) plane. Visualizations artifacts appear as thin stripes at the boundaries between refinement levels; the data in those stripes is of course regular.

tary to the one already presented by Palenzuela et al. (2010);
Palenzuela et al. (2010b); Neilsen et al. (2011). We recall that
in our simulations the charge density is not an evolutionary
quantity, but, rather, it is computed from the constraint equa-
tion (7). We also recall that because we are very effective
in enforcing the FF condition (see discussion in Sect. 5), we
cannot fully explore the physical consequences of the charge
distribution we produce. This is because in the most inter-
esting regions of these distributions, that is, in those regions
with no (or very small) net charges and which are reminiscent
of the vacuum-gap regions in pulsar magnetospheres (Becker
2009), the electric field along the magnetic field will be zero
to machine precision and hence it will not be able to accelerate
particles to very high Lorentz factors (as instead is expected
in the polar regions of pulsar magnetospheres). To further
limit the amount of information that can be extracted directly
from our simulation is the fact that a FF code does not allow
for an unambiguous calculation of the plasma velocity, which
can only be estimated a-posteriori based on a certain number
of assumptions. As an example, Hirotani & Okamoto (1998)
argued that it is possible to compute the final Lorentz factor
of a plasma in a FF magnetosphere if there is a non-negligible
component of the parallel electric field and a radiation drag
dominated by Thompson scattering.

In spite of these limitations, the charge-density distribution
remains a very interesting quantity and we have reported it
in Figs. 7 and 8. The three top panels of Fig. 7, in partic-
ular, show the charge distribution on the (x, y) plane, while
the bottom ones on the (x, z) planes at three different in-
stants in the evolution of the spinning binary s6. More specif-
ically, in the early-inspiral phase (t = 89M ), at the merger
(t = 672M ), and at ringdown (t = 800M ). The colorcode
highlights the presence of positive (red) and negative (blue)
charges, which are produced both because of the orbital mo-

tion of the BHs, but also because of the intrinsic spin of the
BH. The first contribution can be appreciated from the first
two columns of Fig. 7, while the second contribution is the
only one responsible for the charge distribution in the last col-
umn. Much of this distribution of charges can be easily inter-
preted within the membrane paradigm (Thorne et al. 1986)
as the result of an effective Hall effect arising when the BH
horizon (i.e. the “membrane”) moves, either as a result the or-
bital motion or through its spinning motion, across a magnetic
field. In analogy with the classical Hall effect, a charge sep-
aration will be produced as shown in Fig. 7 (see also the dis-
cussion in Neilsen et al. (2011); Lyutikov (2011)). Note that
since they both refer to isolated spinning BHs (although with
different spins), the right column of Fig. 7 should be com-
pared with the right column of Fig. 2, which shows instead
the electric currents.

Additional information is shown in Fig. 8, where the
charge-density distribution is rendered in three dimensions at
the same representative times shown in the panels of Fig. 7
and on much larger lengthscales. This representation high-
lights that the distribution is far more complex than a sim-
ple dual-jet structure and is instead typical of a double helical
symmetry, similar to the pattern for the Poynting flux shown
in Palenzuela et al. (2010b,a). Although it is not possible to
investigate further, within a FF approach, the consequences of
this regular and alternate distribution of positive and negative
charges, it is clear that it can lead to rather intriguing particle
acceleration processes along the surfaces separating regions
of different charges. The resulting accelerated particles could
further cascade into less energetic charges and lead to a po-
tentially detectable emission.

It is worth remarking, however, that the charge-density dis-
tribution is not restricted to a small cylindrical area compris-
ing the two inspiralling BHs, as it may erroneously appear
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FIG. 8.— Top row: Large-scale three dimensional distribution of the charge density for the s6 binary in the early inspiral phase at t = 89M (left panel), at the
merger t = 672M (middle panel) and at ringdown t = 800M (right panel). In these panels only the largest values of the charge density are shown. Bottom
row: Three dimensional distribution of the charge density at ringdown only, t = 800M . Starting from the left, the panels show smaller and smaller values
of the charge density, revealing a much more extended conical-shape structure with a double-helical distribution of opposite charges. Clearly, charge-density
distribution is far more complex that what would be deduced from the top panels only.

from the top panels of Fig. 8, and which shows only the re-
gions where the charge density is the largest. Rather, it in-
volves the whole region in causal contact with the binary, as
shown in the lower panels of Fig. 8, which refer instead to
the ringdown phase only (t = 800M ). Starting from the left,
the different panels are drawn exhibiting increasingly smaller
values of the charge density and thus revealing a much more
extended conical-shape structure with a double-helical distri-
bution of opposite charges at its core. Additional investiga-
tions away from the FF regime will be necessary to assess the
astrophysical impact of these structures.

7. PROSPECTS AND CONCLUSIONS

Assessing the detectability of the EM emission from merg-
ing BH binaries is much more than an academic exercise. The
detection of EM counterpart, in fact, will not only act as a
confirmation of the GW detection, but it will also provide a
new tool for testing a number of fundamental astrophysical
issues Haiman et al. (2009). In particular, it will offer the
possibility of testing models of galaxy mergers and accretion
discs, of probing basic aspects of gravitational physics, and
of determining cosmological parameters once the redshift is
known (Phinney 2009).

Computing reliable estimates from this scenario is made
difficult by the scarce knowledge of the physical conditions
in the vicinity of the binary when this is about to merge. Nev-
ertheless, relying on a number of assumptions with varying
degree of realism, several investigations have been recently
carried out to investigate the properties of these EM coun-

terparts either during the stages that precede the merger, or
in those following it. As an example, several authors have
recently considered the interaction between the binary and a
dense gas cloud (Armitage & Natarajan 2002; van Meter et al.
2010; Bode et al. 2010; Farris et al. 2010; Lodato et al. 2009;
Chang et al. 2010; Farris et al. 2011; Bode et al. 2012; Gi-
acomazzo et al. 2012; Noble et al. 2012) even though astro-
physical considerations seem to suggest that during the very
final stages of the merger the SMBBH will inspiral in a rather
tenuous intergalactic medium. At the same time, scenarios
which do not involve dense matter distributions in the vicin-
ity of the binary have also been considered. In these cases, the
SMBBH is assumed to be inspiralling in electrovacuum and in
the presence of an external magnetic field which is anchored
to the circumbinary disc (Palenzuela et al. 2009; Mösta et al.
2010) and the energy emitted in EM waves is ∼ 13 orders of
magnitude smaller than the one emitted in GW for a typical
binary of supermassive BHs with mass M = 108 M in an
ambient magnetic field of 104 G (Mösta et al. 2010).

Furthermore, when charges and currents are considered
within a FF regime, the numerical results of Palenzuela et al.
(2010b,a) have shown that, if taking place in a uniform mag-
netic field, the merger event would be accompanied by the
electromagnetic emission from a dual jet structure, acting as
a fingerprint of the merger itself. A detailed analysis carried
out in Kaplan et al. (2011) addressed the problem of whether
such merger flares can be detected by ongoing and planned
wide-field radio surveys, such as the Square Kilometer Ar-
ray pathfinder (Johnston et al. 2007). The conclusion was
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that, owing to the short timescales associated to the merger,
no more than one event per year would be detectable by such
blind surveys. In a recent paper (Moesta et al. 2012) we have
revisited the estimates made in Palenzuela et al. (2010b,a)
and shown that while a dual-jet structure is present during
the inspiral, and while the fluxes can be larger near the jet,
the collimated luminosity is subdominant of a factor ∼ 100
with respect to the total luminosity, which is instead predom-
inantly quadrupolar. Furthermore, spin-related enhancements
are only very small and less than 50% when considering a
spinning binary with dimensionless spins J/M2 = 0.6.

Our results have been obtained adopting a consistent mea-
surement of the EM luminosity and an improved numerical
strategy for the treatment of the force-free condition, both
of which have been discussed in detail in this paper. More
specifically, we have shown that we do not implement the
force-free condition at a discrete level, but rather we obtain
it via a damping scheme which drives the solution to satisfy
the correct condition. This difference is important for a cor-
rect and accurate description of the current sheets that can de-
velop in the course of the simulation. We have also studied in
greater detail the three-dimensional charge distribution pro-
duced as a consequence of the inspiral and shown that it pos-
sesses a complex but ordered structure with a double-helical
distribution of opposite charges tracing the motion of the two
BHs.

Although our simulations show that the dual-jet structure
is subdominant on the timescale over which the simulations
have been carried out, they also indicate that the growth rates
of the collimated and diffused luminosities are different, thus
suggesting that sufficiently early in the inspiral the collimated
emission will be the dominant one. Computing accurately
these scaling rates is of course crucial since it allows for the
determination of the time during the inspiral in which the du-
als jets are dominant could modulate the emission if the binary
is suitably oriented. When considering the observational im-
plications of this possibility, O’Shaughnessy et al. (2011) has
concluded that future blind radio surveys like VAST (Banyer
et al. 2012) would easily detect the effects of these modula-
tions, with a frequency of up to one per day.

We have therefore provided the first quantitative estimates
of the scaling of the EM emission with frequency and shown
that the diffused part has a dependence that is very close to
the one exhibited by the GW luminosity and therefore of the

type Lnon−coll

EM
≈ Ω10/3−8/3. The collimated EM emission,

on the other hand, scales like Lcoll

EM
. Ω5/3−6/3, thus with

a steeper dependence than Lcoll

EM
≈ Ω2/3, as previously sug-

gested by Palenzuela et al. (2010b). In light of these scalings

and considering a nonspinning binary, we conclude that the
collimated emission will be larger than the diffused one at an
orbital frequency of ≃ 3.2× 10−5 Hz and thus ≃ 21 d before

the merger10. When this happens, the collimated luminosity
will be about an order of magnitude smaller than the one con-
sidered here and of the order of ∼ 1042 erg/s for a typical

108 M⊙ binary in a magnetic field of 104 G. Such a luminos-
ity is about 1000 times smaller than the typical luminosity of
radio-loud galaxies and thus determination of an EM counter-
part can be challenging if such sources are near the candidate
event.

As a concluding remark we note that while our study ad-
dresses several points which were not fully investigated be-
fore, it also leaves open a number of questions. One of
these questions is the efficiency of the secondary emission
that could be generated either by the diffused component or
by the collimated one. The richly complex structure of the
charge-density distribution, in fact, can be the site where even
small electric fields along the magnetic field lines would be
able to accelerate particles to very high Lorentz factors, lead-
ing to a secondary emission similar to the one expected in the
polar regions of pulsar magnetospheres. Unfortunately, how-
ever, our use of a FF condition (and our ability to maintain it
essentially to machine precision) prevents us from producing
such electric fields and hence the corresponding accelerations.
Another and related unresolved issue is the fate of the Poynt-
ing flux once it impacts the intergalactic medium. Even in the
optimistic case in which the majority of the Poynting flux is
converted into radio-emission via synchrotron processes, the
EM radiation (either collimated or diffused) will eventually
exit the evacuated central region around the binary and pene-
trate in the ambient medium. When this happens, part of the
Poynting flux will be converted into kinetic energy and repro-
cessed in several EM wavebands, not necessarily in the radio

range11. Clearly, longer simulations and more realistic sce-
narios are needed to shed further light on the properties of the
EM counterpart to the inspiral and merger of binary of super-
massive BHs.
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and charges. This work was supported in part by the DFG
grant SFB/Transregio 7; the computations were made at the
AEI and on the TERAGRID network (TG-MCA02N014).

APPENDIX

ON THE IMPLEMENTATION OF THE IMEX SCHEME

The prototype of the stiff system of partial differential equations can be written as

∂tU = F (U) + σR(U) , (A1)

where 1/σ > 0 is the relaxation time. In the limit σ → ∞ the system becomes stiff, since the relaxation of the stiff term R(U)
is very different from the time scale of the non-stiff part F (U).

The evolution of the electric field (17) becomes stiff for high values of the conductivity σB in the Ohm law (26). We perform

10 Clearly, this equivalence in the emission will take place much earlier

(and at smaller luminosities) if the scaling is less steep than ∼ Ω10/3.
11 Numerical MHD simulations in the context of jets from AGNs suggest

that in these case more than 70% of the Poynting flux can be converted into
kinetic energy leading to flows with Lorentz factors of the order of Γ ∼

10 (Komissarov et al. 2007).
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a split of its right-hand-side in potentially stiff terms and regular ones,

∂tE=FE +RE , (A2)

where

FE = ǫijk e4φ [ (∂j α ) γ̃ck B
c + α ( 4 γ̃ck ∂j φ + ∂j γ̃ck )B

c

+α γ̃ck ∂j B
c ] + LβE

i − αK Ei − α q
ǫijkEjBk

B2
,

RE =−αJB
Bi

B2
. (A3)

A solution for the magnetic field is obtained by evolving the equation (18) using only the explicit part of the Runge-Kutta
solver. The evolution of the electric field uses both the explicit part of the Runge-Kutta solver (see Table I) for the FE and the
implicit part for RE (see Table II), and leads to an approximate solution {E∗}. The full solution requires inverting the implicit
equation

E = E∗ + aii ∆tRE(E) . (A4)

which depends on the fields {B,E∗}.
In the case of the Ohm law (29) the stiff part is linear in E, so an analytic inversion can be performed

Ei=(Mk
i)−1Ek

∗ , (A5)

Mk
i= δk

i + aii ∆t α σB Bk
Bi

B2
. (A6)

However, in the case of the Ohm law (33), the inversion is more involved as the stiff part is not linear in E. We use the
following simplified inversion

Ei=(Mk
i)−1Ek

∗ , (A7)

Mk
i= δk

i + aii ∆t α σB

(

Bk
Bi

B2
+ δk

i(E2

∗ −B2)
E2

∗

B2

)

.

In the above equations, ∆t is the timestep and aii are the diagonal coefficients of the implicit part of the RKIMEX matrix,
whose tableau for the explicit and explicit-implicit IMEX-SSP3(4,3,3) L-stable scheme are reported below.

TABLE 1
TABLEAU FOR THE EXPLICIT IMEX-SSP3(4,3,3) L-STABLE SCHEME

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

TABLE 2
TABLEAU FOR THE IMPLICIT IMEX-SSP3(4,3,3) L-STABLE SCHEME

α α 0 0 0
0 -α α 0 0
1 0 1− α α 0

1/2 β η 1/2− β − η − α α

0 1/6 1/6 2/3

where

α=0.24169426078821 , β = 0.06042356519705 ,

η=0.12915286960590 .
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Milosavljeć, M., & Phinney, E. S. 2005, Astrophys. J., 622, L93
Moesta, P., Alic, D., Rezzolla, L., Zanotti, O., & Palenzuela, C. 2012,

Astrophys. J. Lett., 749, L32
Mohamed, Y. H., & Reshetnikov, V. P. 2011, Astrophysics, 54, 155
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