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Accurate Single-Phase Fault-Location Method for
Transmission Lines Based on K-Nearest Neighbor

Algorithm Using One-End Voltage
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Abstract—In this paper, some useful features are extracted from
voltage signals measured at one terminal of the transmission line,
which are highly efficient for accurate fault locating. These features
are the amplitude of harmonic components, which are extracted
after fault inception through applying discrete Fourier transform
on one cycle of three-phase voltage signals and then are normalized
by a transformation. In this paper, the location of single-line-to-
ground faults as the most probable type of fault in the transmission
networks is considered. The SLG fault locator, which is designed
based on the simple algorithm of k-nearest neighbor ( -NN) in re-
gression mode, estimates the location of fault related to the new
input pattern based on existing available patterns. The proposed
approach only needs the measured data from one terminal; hence,
data communication between both ends of the line and synchro-
nization are not required. In addition, current signals are not used;
therefore, the proposed approach is immune against current-trans-
former saturation and its related errors. Tests conducted on an un-
transposed transmission line indicate that the proposed fault lo-
cator has accurate performance despite simultaneous changes in
fault location, fault inception angle, fault resistance, and magni-
tude and direction of load current.

Index Terms—Fault location, Fourier transform, k-nearest
neighbor, single-line-to-ground fault, transmission line.

I. INTRODUCTION

A
CCURATE fault locating of permanent and temporary

faults is of high importance from the aspects of quick re-

pairs and troubleshooting, identification of weak points of the

transmission line, and adoption of required measures for de-

creasing fault occurrence probability at those locations [1]. Ex-

isting approaches for fault locating in transmission lines can be

categorized into two main groups of approaches based on hard

computing and soft computing. In recent years, there have been

considerable efforts to improve and develop the fault-locating

approaches based on hard computing using analytical models or

traveling-wave theory. Parallel to these efforts, there has been a

substantial amount of research on implementing soft computing

techniques to solve the fault-location problem, due to the flexi-

bility and capability of these techniques in facing the complexity

of the problem. Learning machines are considered as the tools
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of performing soft computations in the fault-location problem.

In the learning-based approaches, it is possible to train machine

according to existing real patterns or patterns generated using

reality-based simulation techniques. In this mode, the learning

algorithm is responsible for the task of discovering hidden rules

and complicated relationships between features of the patterns.

Selecting or extracting appropriate features and imple-

menting an efficient learning algorithm are two pivotal issues

in the fault-locating approaches based on machine learning.

Low sensitivity to changes in the effective parameters, such

as magnitude and direction of prefault current, fault resistance

and fault inception angle, and high correlation with the fault

location can be mentioned as some positive characteristics of

the extracted features for fault locating. Furthermore, using

only measured data from one end of the line can bring about

a decrease in expenses resulting primarily from requirements

for transmitting and synchronizing measured data of both

terminals. In addition, among single-ended measurement data,

voltage signals have some advantages over current signals.

Using the current signals may be associated with a decrease

in fault locating accuracy level caused by the existence of a

significant dc component, saturation of current transformer,

and high sensitivity of the extracted features to magnitude and

direction of prefault current. In [2], an approach was presented

for ground fault locating in transmission lines, which was based

on high-frequency voltage transients measured at one end of

the lines. The presented approach in [2] requires a very high

sampling frequency and its fault locating accuracy decreases

noticeably with a decrease in the sampling frequency.

Several learning tools and methods have been implemented

for fault locating, including the multilayer perceptron neural

network (MLPNN) [3]–[12]; radial basis function neural net-

work (RBFNN) [13]–[15]; support vector machine (SVM) [16],

[17]; extreme learning machine (ELM) [17]; Elman recurrent

network [18]; fuzzy inference system (FIS) [19]–[22]; fuzzy

neural network (FNN) [20]–[25]; and adaptive structural neural

network (ASNN) [26]. These tools have a limitation on the

dimension of input space, which can be trouble when a large

number of potential features like high-frequency components of

current or/and voltage signals are used. They are not practically

capable of appropriate learning patterns with a high number

of features due to enlargement of the structure and an extreme

increase of the number of learning parameters [10]. On the

other hand, dimension reduction using linear transforms or

experimental selection of some features may result in elimi-

nation of some useful information. Using energies of limited
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frequency bands out of the output spectrum resulting from ap-

plying Fourier transform [13], [23] or the application of energy

and entropy of coefficients obtained from wavelet transform

(WT) [10], [18] may conceal some useful information. Further-

more, applying principal components analysis (PCA), which

was suggested in [26] and [27] for reducing the input space

dimension and for identifying dominant patterns of processed

signals by WT, is only appropriate for linear-separable data and

can cause the elimination of existing nonlinear relationships

between the features [28].

The single-line-to-ground (SLG) fault is the most probable

type of fault, which can occur in transmission lines. Its occur-

rence probability at the voltage level of 300–500 kV is about 14

times more than that of the double-phase-to-ground fault [1].

In this paper, an approach based on machine learning is pro-

posed for locating the SLG faults in transmission lines. The

fault-locating patterns comprise features which are extracted

from the single-ended voltage data. The extracted features do

not require very high sampling frequency and in addition to

low sensitivity to changes in the effective parameters, such as

fault resistance, fault inception angle, and load current, they

are highly dependent on the fault location. The harmonic com-

ponents are extracted by applying discrete Fourier transform

(DFT) on the three-phase voltage signals and are utilized for

generating the input features of the fault locator. Since a wide

range of frequency components is considered for generating the

patterns, there are relatively large numbers of patterns’ features.

It is the first time, where such a large number of features have

been used directly for fault locating. In this paper, the simple

-nearest neighbor ( -NN) algorithm is utilized in regression

mode, which can manage the large number of patterns’ features.

The -NN algorithm was implemented in regression mode for

fault locating in radial distribution networks [29].

The rest of this paper is organized as follows. In Section II, a

brief explanation is presented regarding the -NN algorithm in

regression mode. In Section III, the main ideas of the proposed

approach for fault locating are explained. In Section IV, training

and test patterns, which consist of various combinations of fault

conditions in a study system, are generated. The simulations are

carried out using PSCAD/EMTDC software [30]. After that, the

proposed method is examined using the generated training and

test patterns, and the fault locating test results are presented. The

evaluation is followed by the conclusion in Section V.

II. REGRESSIONAL -NN ALGORITHM

The -NN algorithm is a simple and efficient algorithm for

estimating class or target variable of input patterns based on

existing available patterns. In this algorithm, only saving the

training patterns is required and the estimation is achieved lo-

cally based on some near patterns. The -NN algorithm, despite

its simplicity, can demonstrate suitable performance in the es-

timation of functions [29]. The -NN estimator in regression

Fig. 1. Schematic of the transmission line in the system under study.

problems can be defined based on the average of the target vari-

ables in near neighborhood of the pattern in question, as the

following equation [31]–[33]:

(1)

where is the estimation of the target variable of the new

pattern is the target variable of the existing pattern ,

and is a set of existing patterns in the near neighbor-

hood of the new pattern . Generally, the patterns which are

closest to the input pattern have higher importance in estimation

of the target variable of that input pattern. Therefore, taking the

average can be carried out based on the weights dependent on

distances between the neighbors and the new input pattern, as

the following equation [32]:

(2)

where is the distance between the existing pattern

and the new pattern , and is the weighting function

or kernel function. The formulation of Euclidean distance

and Gaussian function as one of the most common applicable

weighting functions are expressed as follows [32]:

(3)

(4)

III. MAIN IDEA AND GENERALITIES

A. Harmonic Components of Voltage Signals

Fig. 1 indicates the schematic of a 400-kV, 100-km-long un-

transposed double-end fed single-circuit transmission line. The

source impedance of measuring and remote ends for the system

frequency of 50 Hz are and

, respectively. The specification data of the

transmission line, which are simulated under the frequency-de-

pendent model, are presented in Table IX. The sampling fre-

quency is adopted to be 80 kHz. The Nyquist criterion dictates

the use of a low-pass antialiasing filter for the data-acquisition

system to avoid aliasing.

Fig. 2 shows three-phase voltage signals for an SLG fault in

about 0.163 s and at 25 km from the measuring end. As can

be seen in the voltage signals after fault inception, there are

some transients that result from fault-induced traveling waves.
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Fig. 2. Three-phase voltage signals measured at the measuring end under the
SLG fault (A-G) at 25 km.

These fault-generated transient signals can offer useful informa-

tion about the fault location.

In this paper, harmonic components of voltage signals are ex-

tracted by applying DFT on one cycle of data after fault incep-

tion and are used for fault locating. A transform with the fol-

lowing equation is applied for normalizing and producing more

efficient features [34]

(5)

In transform (5), is the selected maximum harmonic order,

and is an index which can take values from 2 to . In addition,

and are the amplitude of the harmonic order at

frequency before and after transformation, respectively. The

harmonic orders of the phase voltage signal from second up to

th are considered in the transformation. It is worth noticing

that this transformation is carried out on the harmonic spectrum

obtained from each phase signal separately.

Figs. 3 and 4 illustrate normalized harmonic spectra (from

2nd to 300th orders) of the voltage signal of faulted phase under

SLG faults (A-G) at distances of 25 km and 75 km from the

measuring end, respectively. In Figs. 3(a) and 4(a), the fault in-

ception angle is assumed to be 45 and the fault resistance

is changed from 0.01 to 30 . Furthermore, in Figs. 3(b) and

4(b), while the fault resistance is taken 10 , the fault inception

angle (FIA) varies from 18 to 90 . As can be seen in Figs. 3 and

4, the normalized harmonic spectra follow a unique pattern for

each specific fault location. Moreover, it can be observed that

these patterns have nearly low sensitivity to variations of fault

resistance and fault inception angle.

B. k-NN Fault Locator

The SLG fault locator is designed based on the -NN algo-

rithm. Each of the patterns includes the normalized harmonic

spectra of voltage of the faulted and healthy phases. The

harmonic spectra are obtained through application of DFT on

one cycle of the measured voltage signals after fault inception.

The fault location related to each new pattern can be estimated

through the -NN algorithm based on existing patterns. The

general procedure of the method is presented in Fig. 5.

If the line is untransposed, then separating -NN fault loca-

tors should be considered for each type of SLG fault (A-G, B-G,

Fig. 3. Normalized harmonic spectra of faulted phase voltage under the A-G
fault at a distance of 25 km. (a) Different fault resistances. (b) Different fault
inception angles.

Fig. 4. Normalized harmonic spectra of the faulted phase voltage under the
A-G fault at a distance of 75 km. (a) Different fault resistances. (b) Different
fault inception angles.

Fig. 5. General procedure of the proposed method for fault locating.

and C-G) for obtaining better accuracy. The time of fault signa-

ture appearance at the measuring end and the type of fault are
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Fig. 6. Normalized harmonic spectra of faulted phase voltage under the A-G
fault at distances of 10, 50, and 90 km.

considered as known information which can be obtained via a

variety of methods proposed in this field. Based on the methods

like the ones presented in [35] and [36], the fault transients can

be detected within a one-sample delay.

C. Determination of Maximum Frequency Level

For the selection of desired maximum frequency level, the

harmonic spectrum of voltage under the fault at a point close to

the measuring end should be inspected. Fig. 6 indicates the nor-

malized harmonic spectra of voltage of the faulted phase under

the A-G fault at distances of 10, 50, and 90 km from the mea-

suring end. As can be observed in this figure, the maximum am-

plitude of harmonic components related to the fault located at 10

km occurred in a higher frequency than those of the two other

fault locations. Therefore, considering Fig. 6, it seems that in the

system under study, the harmonic components up to frequency

level of 10 kHz are sufficient for generating efficient

features for fault locating.

IV. NUMERICAL STUDY

Simulations are carried out regarding the system of Fig. 1

through PSCAD/EMTDC software [30]. Here, the A-G type is

adopted out of a variety of SLG faults. The Matlab environment

is used for application of DFT and for implementation of the

-NN algorithm.

A. Generation of Training and Test Patterns

Training and test patterns are generated through changes of

fault location, fault resistance, fault inception angle, and mag-

nitude and direction of the prefault load current. Conditions

for generating the patterns are based on a mixture of various

states of the A-G fault incident. These conditions for training

and test patterns are accessible in Tables I and II, respectively.

According to the analysis carried out in Fig. 6, harmonic com-

ponents up to 200th order are considered for generating the pat-

terns. Hence, regarding the normalized spectra of three-phase

voltages (from 2nd to 200th orders), each pattern contains 597

features. Based on the conditions of Table I, a total number of

8050 training patterns are generated, and according to Table II,

a total number of 3840 test patterns are generated.

B. Parameter Adjustment for the k-NN Fault Locator

The only parameter of the introduced -NN algorithm is the

number of near neighborhoods used for the estimation of

target variables. For adjusting this parameter, first, the existing

training patterns are divided randomly into 10 subsets. Then, the

TABLE I
GENERATION CONDITIONS OF TRAINING PATTERNS

TABLE II
GENERATION CONDITIONS OF TEST PATTERNS

Fig. 7. Mean absolute error of fault locating in terms of � neighbors.

-NN algorithm is repeated 10 times for each value; in such a

way that in each execution, one of the subsets is adopted as the

test patterns set and all of the remaining subsets are considered

as a training pattern set (10-fold cross-validation). Fig. 7 indi-

cates the mean absolute error of fault locating under different

values of parameter . Based on the results presented in this

figure, parameter is selected to be 6.

C. Results and Discussion

The fault locations related to the test patterns generated based

on the conditions of Table II are estimated by the -NN algo-

rithm and using the available training patterns. Absolute error

in estimating the fault location can be calculated as

(6)

where is the fault location absolute error, is the estimated

fault distance from the measuring end, and is the actual

fault distance from the measuring end. The percentage of error

in estimating the fault location based on the total line length can

be calculated as

% (7)

where is the total length of the transmission line. The ob-

tained error values by using (6) can be adopted in terms of per-

centage, since the length of the transmission line under study is

100 km. The results of fault locating for different fault distances

are shown in Table III. There are a total number of 192 test pat-

terns for each fault distance. By examining the results presented

in Table III, it can be concluded that the proposed approach has

sufficient accuracy with respect to the fact that the generation



2364 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 27, NO. 4, OCTOBER 2012

TABLE III
RESULTS OF A-G FAULT LOCATING FOR DIFFERENT FAULT DISTANCES

TABLE IV
RESULTS OF A-G FAULT LOCATING FOR DIFFERENT FAULT INCEPTION ANGLES

conditions of the test patterns have differed from those of the

training patterns. The average prediction errors for all of the test

patterns are equal to 78.3 m; in other words, it is equivalent to

0.0783%. It is worth noting that the error value did not exceed

0.5 km in any case.

For investigating the effect of important parameters on the

accuracy, the related fault-location results as a function of fault

inception angle, fault resistance, and load current are presented

in Tables IV–VI, respectively. For each fault inception angle,

fault resistance, and load current, there are a total number of

480, 640, and 960 test patterns, respectively.

Considering Table IV, it can be concluded that the prediction

accuracy of the fault-locating approach at fault inception angles

close to zero has a slight decline. However, it shows remarkable

accuracy at other angles. At the worst case scenario, at angle

173.25 , the average prediction error is equal to 103.5 m.

Through examination of Table V, it can be noticed that the

maximum prediction error occurred in the fault resistance equiv-

alent to 2 . However, at this value of fault resistance, the av-

erage prediction error is less than 125 m.

TABLE V
RESULTS OF A-G FAULT LOCATING FOR DIFFERENT FAULT RESISTANCES

TABLE VI
RESULTS OF A-G FAULT LOCATING FOR DIFFERENT LOAD CURRENTS

TABLE VII
RESULTS OF A-G FAULT LOCATING USING DIFFERENT FREQUENCY LEVELS

According to the results presented in Table VI, it can be in-

ferred that the proposed approach has approximately no depen-

dence on the magnitude and direction of prefault current.

D. Effect of the Selected Number of Harmonics

As mentioned previously, harmonics up to the 200th order

are adopted for generating the patterns. For ensuring the va-

lidity of this selection, the generation of the patterns is consid-

ered based on harmonics up to 100th, 150th, 250th, and 300th

order as well. The related fault-locating test results are shown in

Table VII for comparison. As can be observed from this table,

using harmonics higher than the 200th order causes no major

changes in prediction accuracy of the fault-locating approach.

Notwithstanding, using fewer harmonics reduces the fault-loca-

tion prediction accuracy to some extent. The results of Table VII

confirm the validity of selecting 10 kHz as the maximum level

of harmonic frequencies for the system under study, while the

minimum fault distance of 10 km is considered.

E. Effect of Instrument Transformer

Recently, resistive-capacitive voltage transformers (RCVTs)

are made available for high-voltage levels from 24 to 765 kV.

RCVTs have an adequate frequency characteristic and their gain

of frequency response is close to unity in the wide range of

frequencies of interest [37]. Using these devices, the proposed
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method can be implemented without concern for the distortion

of measured voltage harmonic spectra, which may exist when

using conventional capacitive voltage transformers.

Some analyses are performed considering possible harmonic

spectra measurement errors. Before the normalizing process,

10% random measurement errors are applied to the voltage

harmonic spectra of the test cases, and the fault locations are

estimated through application of the proposed method. The ob-

tained overall average estimation error is 0.0906%, which does

not show a significant increase compared to the accurate mea-

surement mode of 0.0783%.

F. Fault Inception Angles Close to the Zero Crossing Point

The fault-locating approach is examined for fault inception

angles close to the voltage zero crossing point. Some new

test patterns are generated based on the fault inception angles

of 2.25 and 177.75 . The other conditions for generating

these test patterns are based on Table II. The obtained average

and maximum errors for the fault inception angle of 2.25

are 0.2018% and 0.6333%, respectively. Also, 0.2911% and

2.6403% are the results for the average and maximum errors

of the cases with the fault inception angle of 177.75 . It can be

seen that approaching the zero crossing point of voltage at the

moment of fault inception results in a decrease in prediction

accuracy of the fault-locating approach.

If an SLG fault occurs when the voltage of the faulted phase at

the fault location approaches zero, then the voltage signals mea-

sured at the terminal will not be rich in terms of harmonic con-

tents. Under such circumstances, the proposed approach may

not provide desirable performance. The examinations show that

in the system under study, if the fault inception angle distance

from the zero crossing point of the fault-location voltage is less

than about 2.25 , then the proposed approach will not exhibit

desirable performance. If these areas are taken in 360 of a

cycle, their lengths add up to 9 . Consequently, fault occurrence

probability in these areas is 2.5%. In other words, the proposed

approach demonstrates acceptable performance 97.5% of the

time.

G. Importance of Using Healthy Phases’ Data

To investigate the importance of using the healthy phases’

data, the training and test patterns are reconstructed based on the

normalized voltage harmonic components of only faulted phase

and only healthy phases. A comparison of the related fault-lo-

cation results shows that faulted phases’ spectrum suffices for

accurate locating of the faults occurring in relatively high in-

stantaneous voltage magnitudes; and healthy phases’ spectra

are more useful in cases with fault inception angles close to

the zero crossing point. Therefore, simultaneous use of faulted

and healthy phases’ data gives an appropriate performance for

a wide range of cases.

H. Fault Locations Close to Terminals

Some new train cases are simulated with the same conditions

of Table I, except for the fault location which is changed from

1% to 9.5% and from 90.5% to 99% of the line. Some new test

cases are simulated, with 12 random places in the first and last

10 km of the line as fault locations, while the other conditions

TABLE VIII
RESULTS OF A-G FAULT LOCATING FOR DIFFERENT FAULT DISTANCES AT THE

FIRST AND LAST 10 km OF THE LINE

follow Table II. The new train and test patterns are added pri-

marily to train and test sets, and the proposed method is applied

to estimate the fault location of the test patterns. The results of

fault locating for the new test patterns for different fault dis-

tances are presented in Table VIII. As can be observed from

this table, the estimation errors for the faults of the last 10 km

of the line do not increase significantly, except for the faults oc-

curring at distances very close to the remote bus. On the other

hand, for faults at the first 10 km, the estimation errors are much

higher for the fault locations close to the measuring end. Despite

the fault-location estimation errors being in a relatively accept-

able range, if the maximum frequency level used in generating

the patterns is increased up to about 80 kHz, which is obtained

from the inspection of voltage spectrum of a fault at 1 km via a

higher sampling rate, lower errors are expected for the close-in

faults.

I. Effect of Source Impedances

Based on the conditions of Table I, some new train cases are

simulated, while is decreased by 16.5% and is increased

by 20%. Then, the new train patterns are primarily added to

the train patterns set. Considering the conditions of Table II,

some new test cases are simulated, while is decreased by

10% and is increased by 10%. The overall average of pre-

diction error obtained through applying the method to the new

patterns is 0.1746%, which shows an increase compared to the

condition of unchanged source impedances, 0.0783%. Despite

the fault-location errors being in a fairly acceptable range, it can

be concluded that the method is relatively sensitive to changes

of source impedances.

J. Highlighting Distinctive Aspects

In the proposed approach, the accurate SLG fault-locating

algorithm is conducted using single-ended voltage measure-

ments. In most of the existing methods, application of one-end

or two-end current and voltage data were suggested, which are

associated with problems, such as error occurrence resulting

from saturation of CTs, or problems and expenses caused by

transmitting and synchronizing measured data of both ends of

the line. In addition, in the proposed method, there is no need

for very high sampling frequency. In [2], an approach was
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TABLE IX
SPECIFICATION DATA OF THE TRANSMISSION LINE UNDER STUDY

suggested for ground fault locating in transmission lines, which

was based on high-frequency transients of voltage signals mea-

sured at one end of line. The method proposed in [2] requires

very high sampling frequency and its locating accuracy de-

creases with decreasing sampling frequency. The fault-locating

result of approach [2] for SLG faults at the middle of a 230-kV,

100-km-long transmission line in sampling frequencies of

6700, 2200, 1300, 1000, and 670 kHz was associated with the

average estimation errors of 0.360%, 1.440%, 2.610%, 3.890%,

and 6.700%, respectively. In contrast, for implementing the

novel proposed method in the study system, regarding the

implemented harmonic components up to a frequency level of

10 kHz , the lower band of the required sampling

frequency is 20 kHz based on the Nyquist sampling theorem.

In this case, the average fault-location prediction error for the

primarily generated test patterns is less than 0.080%. Further-

more, when the maximum frequency level of used harmonic

components is lowered to 5 kHz , while the lower

band of required sampling frequency is 10 kHz, the average

prediction error for the test patterns is less than 0.135%. More-

over, the novel-proposed method has lower fault-locating errors

in comparison with recently published machine-learning-based

methods, which use current and voltage signals measurements,

such as the valuable one proposed in [26].

None of the usual learning tools and methods used for fault

locating, such as artificial neural networks, is practically capable

of appropriate learning of the patterns due to the high number

of used features (597 features for the system under study); in

addition, the selection of structure and/or optimal adjustment of

parameters are the challenges in most of the machine-learning

algorithms; but they are not acute problems in the -NN algo-

rithm. The used -NN algorithm has only one parameter which

can be set easily. The main reason for the good performance of

-NN as the simplest learning method is high performance of

the selected and generated patterns’ features.

V. CONCLUSION

In this paper, some useful features are extracted for SLG fault

locating in transmission lines using the harmonic spectrum of

just one-end voltage, which has a low sensitivity to the changes

in influential parameters, such as fault resistance, fault incep-

tion angle, and magnitude and direction of prefault load current.

Furthermore, the generated features show a high level of corre-

lation with the fault location, which leads to accurate fault lo-

cating. In the suggested method, the simplest form of learning

algorithm -NN is implemented, which demonstrates suitable

capability despite the large number of patterns’ features. The

sole utilization of single-ended voltage measurements and no

need for transmitting and synchronizing measured data of both

ends of the line, no need for current measurements, and subse-

quently no measuring errors caused by current transformers, no

need for very high sampling frequency, and, finally, simplicity

of the utilized learning algorithm are some of the salient advan-

tages of the proposed approach. The results of tests conducted

on the untransposed transmission line in the study system are

really promising despite variations in influential parameters on

fault locating.
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