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Abstract

omputing the singular values of a bidiagonal matrix is the final phase of the standard algo-

w
rithm for the singular value decomposition of a general matrix. We present a new algorithm

hich computes all the singular values of a bidiagonal matrix to high relative accuracy indepen-
-

p
dent of their magnitudes. In contrast, the standard algorithm for bidiagonal matrices may com

ute sm all singular values with no relative accuracy at all. Numerical experiments show that

K

the new algorithm is comparable in speed to the standard algorithm, and frequently faster.
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. Introduction

The standard algorithm for computing the singular value decomposition (SVD ) of a gen-

1

eral real matrix A has two phases [7]:

) Compute orthogonal matrices P and Q such that B = P AQ is in bidiagonal form, i.e.1 1 1
T

1
.

2

has nonzero entries only on its diagonal and first superdiagonal

) Compute orthogonal matrices P and Q such that Σ = P BQ is diagonal and nonnega-
t i

2 2 2
T

2
ive. The diagonal entries σ of Σ are the singular values of A . We will take them to be

-sorted in decreasing order: σ ≥ σ . The columns of Q= Q Q are the right singular veci i + 1 1 2
t 1 2ors, and the columns of P= P P are the left singular vectors.

nThis process takes O (n ) operations, where n is the dimension of A . This is true eve3

though Phase 2 is iterative, since it converges quickly in practice. The error analysis of this
r

u
combined procedure has a widely accepted conclusion [8], and provided neither overflow no

nderflow occurs may be summarized as follows:

The computed singular values σ differ from the true singular values of A by no more
t 1

i
han p (n ) .ε.A , where A = σ is the 2-norm of A , ε is the machine precision, and p (n ) is a

T

slowly growing function of the dimension n of A .

his is a generally satisfactory conclusion, since it means the computed singular values
s

t
have errors no larger than the uncertain ty in the largest entries of A , if these are themselve
he resu lts of previous computations. In particular, singular values not much sm aller than A are

,
a
computable to high relative accuracy. However, sm all singular values may change completely
nd so cannot generally be computed with high relative accuracy.

e
a

There are some situations where the sm allest singular values are determined much mor
ccurately by the data than a simple bound of the form p (n )εA would indicate. In this paper we

ewill show that for bidiagonal matrices the singular values are determined to the same relativ
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precision as the individual matrix entries. In other words, if all the matrix entries are known to
-

d
high relative accuracy, all the singular values are also known to high relative accuracy indepen

ent of their magnitudes. This will follow from an analogous theorem about the eigenvalues of
sym metric tridiagonal matrices with zero diagonal.

In such situations it is desirable to have an algorithm to compute the singular values or
t

a
eigenvalues to the accuracy to which they are determined by the data. In this paper we presen
n algorithm for computing all the singular values of a bidiagonal matrix to guaranteed high

l
Q
relative accuracy, independent of their magnitudes. Our algorithm is a variation of the usua

R iteration which is used in the standard SVD algorithm. Briefly, it is a hybrid algorithm of
.

N
the usual QR iteration with a "zero-sh ifted" QR modified to guarantee forward stability

umerical experience, which we report below, shows that it is generally faster than the standard
l

f
algorithm, and ranges from 2.7 times faster to 1.6 times slower counting reduction to bidiagona
orm (7.7 times faster to 3.4 times slower not counting reduction to bidiagonal form) .

.
F

This perturbation theory and algorithm also apply to some classes of sym metric matrices
or exam ple, they may be applied to sym metric tridiagonal matrices with zero diagonal; such

e
t
matrices arise by reducing skew-symmetric matrices to tridiagonal form. Another class wher
he perturbation theory applies, so that sm all relative perturbations in the matrix entries only

c
m
cause sm all relative perturbations in the eigenvalues, are scaled diagonally dominant sym metri

atrices. A sym metric matrix H is scaled diagonally dominant if H = DAD where D is an arbi-

c
trary diagonal matrix and A is sym metric and diagonally dominant in the usual sense. This
lass includes all sym metric positive definite matrices which may be consistently ordered [1], a

,
t
class which arises in the numerical solution of elliptic partial differential equations. In particular
his class includes all sym metric positive definite tridiagonal matrices. As before, we can exhi-

r
bit algorithms to compute the eigenvalues of H to their inherent accuracy. This work will be
eported on elsewhere [1].

The rest of this paper is organized as follows. Section 2 presents perturbation theory for

n
the singular values of a bidiagonal matrix, and shows that sm all relative perturbations in the

onzero entries of a bidiagonal matrix can only cause sm all relative perturbations in its singular

w
values. We also present theorems which say when an offdiagonal entry can be set to zero

ithout making large relative perturbations in any singular value; these theorems are the basis
s

Q
of the convergence criteria for the new algorithm. Section 3 presents the algorithm, which i

R iteration with a "zero sh ift," modified to be forward stable. This forward stability combined
s

w
with the perturbation theorem of section 2 shows that QR can compute all the singular value

ith high relative accuracy. Section 4 discusses convergence criteria for the new algorithm,

t
since the convergence criteria for the standard algorithm can cause unacceptably large perturba-
ions in sm all singular values. It also discusses the practical algorithm, which is a hybrid of the

g
h
standard algorithm and the algorithm of section 3. Details of the implementation, includin

igh-level code for the entire algorithm, are presented in section 5. Sections 3, 4 and 5 may be
-

t
read independently of section 2. Section 6 shows how to use bisection, Rayleigh quotient itera
ion, and various other schemes to compute the singular values of a bidiagonal matrix to high

s
n
relative accuracy. Bisection will be used to verify the resu lts in section 7, which discusse

umerical experiments. Section 7 also addresses the implications of our resu lts for the "perfect

n
sh ift" strategy for computing singular vectors. Section 8 contains a detailed error analysis of the

ew algorithm. Section 9 discusses the accuracy of the computed singular vectors; a complete
.

S
analysis of this remains an open question. Sections 6 through 9 may be read independently

ections 7 and 8 depend only on sections 3 through 5. Section 10 contains suggestions for
parallel versions of the algorithms presented, open questions, and conclusions.
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2. Perturbation Theory for Singular Values of Bidiagonal Matrices

e
m

We say δa is a relative perturbation of a of size at most η if e δa e ≤ η e a e . If A and δA ar
atrices, we will let e A e and e δA e denote the matrices of absolute entries of A and δA . We will

w
say that δA is a componentwise relative perturbation of A of size at most η if e δA e ≤ η e A e ,

here the inequality is understood componentwise.

In this section we will prove three perturbation theorems for singular values of bidiagonal

s
matrices. The first theorem is needed to prove that our new QR iteration does not disturb any
ingular values, and the second two theorems justify our new convergence criteria ( see section

4 below) .

The first theorem shows that if δB is a componentwise relative perturbation of size η of
-the n by n bidiagonal matrix B, then the singular values σ ′ of B + δB will be relative perturbai

t iions of the singular values σ of B of size less than about (2n − 1)η, provided (2n − 1)η is sm all
compared to 1. More precisely we will show that

(1− η) .σ ≤ σ ′ ≤ (1− η) .σ i

i

2n − 1
i i

1− 2n

i( recall that σ ′ and σ are sorted in decreasing order) . This will follow as a corollary of a more
general resu lt for sym metric tridiagonal matrices with zero diagonal.

The last two theorems say when we can set an offdiagonal entry of a bidiagonal matrix B
a

s
to zero without making large relative perturbations in the singular values. They are based on
imple recurrence for estimating the sm allest singular value of a bidiagonal matrix; if setting an

o
s
offdiagonal entry of B to zero cannot change this recurrence significantly, we show that n
ingular value can be changed significantly either.

:

S

The proof of the first theorem depends on Sylvester’s Law Of Inertia [6, p.297]

ylvester’s Law Of Inertia: Let A be sym metric and U be nonsingular. Then A and UAU T

have the same number of positive, zero and negative eigenvalues.

In particular, suppose A is sym metric and tridiagonal, with diagonal entries a , . . . , an
a 1 n − 1

1
nd offdiagonal entries b , . . . , b . Then via Gaussian elimination without pivoting one can

hwrite A − xI = LDL , where L is unit lower triangular and bidiagonal, and D is diagonal witT

e intries d given by the recurrence [15, p. 47]

(2.1)
d = a − x

dd = a − x − b /i i i − 1
2

i − 1

1 1

T ihis recurrence will not break down (d = 0 for some i < n) as long as x is not one of the
e

n
n (n − 1) /2 eigenvalues of leading submatrices of A . Then by Sylvester’s Law of Inertia, th

umbers of eigenvalues of A less than x, equal to x, and greater than x are precisely the
numbers of d which are negative, zero and positive, respectively.i

We will also need the following classical eigenvalue perturbation theorem due to Weyl:

dTheorem 1: [15, p. 191] Let λ ≥ . . . ≥ λ be the eigenvalues of the sym metric matrix A , an1 n

1 nλ ′≥ . . . ≥ λ ′ be the eigenvalues of the sym metric matrix A + δA . Then
d− δA ≤ λ (δA ) ≤ λ ′− λ ≤ λ (δA ) ≤ δA . Here, λ and λ denote the sm allest anmin i i max min max

largest eigenvalues, respectively.

Now we present our central resu lt of this section (a slightly weaker version originally

T

appeared in an unpublished report [12]) :

heorem 2: Let J be an n by n sym metric tridiagonal matrix with zero diagonal and offdiagonal
entries b , . . . , b . Suppose J + δJ is identical to J except for one offdiagonal entry, which1 n − 1

i i
− 1

i d
i
changes to αb from b , α≠ 0. Let αhh = max( e α e , e α e ) . Let λ be the eigenvalues of J sorte
nto decreasing order, and let λ ′ be the eigenvalues of J + δJ similarly sorted. Thenj

(2.2)hhh ≤ λ ′ ≤ αhh.λ .
λ
hαh

i
i i

eIn other words, changing any single entry of J by a factor α can change no eigenvalue by mor

3
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than a factor e α e .

Proof: Assume without loss of generality that α> 0, and no b is zero, since otherwise J is blocki
g

t
diagonal, and each diagonal block may be analyzed separately. The recurrences correspondin
o (2.1) for J − xI and J + δJ− xI may be written

u = − x − b / u

u = − x
and

v = − x − α b / v

v = − x − b / v , k ≠ i

v = − x1

kk + 1 k
2

i

1

i + 1
2

i
2

k

S

k + 1 k
2

ince both J and J + δJ have nonzero offdiagonals, they must have simple eigenvalues [15, p.
124] λ and λ ′, respectively. As long as x is not one of the n (n − 1) eigenvalues of leading prin-i i
cipal submatrices of J and J + δJ, no division by zero will occur in these recurrences. Also,
u = 0 if and only if x is an eigenvalue of J, and v = 0 if and only if x is an eigenvalue of J + δJ.n n

i i)
w

Our goal is to show that each λ is the i-th eigenvalue of some sym metric matrix J(λ
hich differs from J + δJ by a matrix X = J + δJ− J(λ ) satisfyingi

(2.3)
(αhh − 1)λ ≤ λ (X ) ≤ λ (X ) ≤ (αhh− 1)λ if λ ≥ 0

;
0(αhh− 1)λ ≤ λ (X ) ≤ λ (X ) ≤ (αhh − 1)λ if λ <i min max

− 1
i i

− 1
i min max i i

together with Theorem 1 these inequalities will yield the desired resu lt.

We construct J (λ ) as follows. Leti

j j
(− 1)

j j
(− 1)

i − j − 1

i − j
iw = u .α if j≤

iw = u .α if j>

eNote that the w satisfy the recurrencj

j + 1
(− 1)

j
2

j

i + 1
2

i
2

i

j + 1
(− 1)

j
2

j

1
(− 1)

i − j

i − j − 1

i − 1

w = − x α − b /w if j> i

w = − x α − α b /w

w = − x α − b /w if j< i

w = − x α

,

or

w = − x − x − b /w if j> i

w = − x − x − α b /w

w = − x − x − b /w if j< i

w = − x − x

,

1 1

j
2
jj + 1 j + 1

ii + 1 i + 1
2

i
2

j
2
jj + 1 j + 1

i i
± 1

i.
S
which is the recurrence for J (x ) = J+ δJ− X where X = diag(x ) , x = (α − 1)x. Now set x = λ

ince the w and u sequences have the same signs by construction ( including u = w = 0) , λ isj j n n i

i max min `the i-th eigenvalue of J (λ ) . Further, λ (X ) and λ (X ) clearly satisfy (2.3) above.

As an immediate corollary we get

Corollary 1: Let J be an n by n sym metric tridiagonal matrix with zero diagonal and offdiagonal
entries b , . . . , b . Let J + δJ have off diagonal entries α b , . . . , α b , α ≠ 0. Let1 n − 1 1 1 n − 1 n − 1 i

i

n − 1

i i
− 1

i
1i =

Παhh = max( e α e , e α e ) . Let λ be the eigenvalues of J sorted into decreasing order, and λ ′

be the eigenvalues of J + δJ similarly sorted. Then

αhh
hλhh ≤ λ ′ ≤ αhh.λ .

F

i
i i

or exam ple, if 1− η ≤ e α e ≤ 1+ η, no eigenvalue can change by a factor exceeding
αhh= (1− η) .− n + 1
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We can apply Theorem 2 to prove a similar theorem for singular values of bidiagonal
matrices by noting that for any matrix B the eigenvalues of

B ′ ≡
R
J
QB
0

0

B H
J
P

T

.
S
are the singular values of B, their negatives, and some zeros ( if B is not square) [8, p. 286]

uppose now that B is n by n and bidiagonal with diagonal entries s , . . . , s and superdiagonal
e 1 n − 1

1 n
ntries e , . . . , e . Then by permuting the rows and columns of B ′ to appear in the new

′
w
order 1, n + 1, 2, n + 2, . . . , n, 2n, we see B ′ is orthogonally similar to the tridiagonal matrix B ′

ith zeros on the diagonal and offdiagonals s , e , s , e , . . . , e , s [7, p. 213]. Thus the
s

1 1 2 2 m − 1 m
ingular values of B are the absolute values of the eigenvalues of the matrix B ′′ which is of the

C

form required by Theorem 2. This proves

orollary 2: Let B be an n by n bidiagonal matrix and suppose δB + B = α B ,ii ii 2i − 1 ii

n

2n − 1

i i
− 1

1
1

i, i + 1 i, i + 1 2i i, i + 1 j
i −
ΠδB + B = α B , α ≠ 0. Let αhh= max( e α e , e α e ) . Let σ ≥ . . . ≥ σ be the

singular values of B, and let σ ′≥ . . . ≥ σ ′ be the singular values of B + δB. Then1 n

i
i i .hhh ≤ σ ′ ≤ αhh.σ

σ
h

F

αh

or exam ple, if 1− η ≤ e α e ≤ 1+ η, then no singular value can change by more than a factor
1− 2n

j

.of αhh = (1− η)

That this resu lt is essentially best possible may be seen by considering the n by n matrix

β(1+ η)

H
J
J
J
J
P

η

β(1+ η)

.

.

1−

.

W

B (η) =

R
J
J
J
J
Q

1− η

hen β> > 1, the sm allest singular value is approximately β (1− (2n − 1)η) .1− n

-
l

This theorem may be contrasted with the following classical perturbation bound for singu
ar values, where it is only possible to bound the absolute perturbation in the singular values of

T

a perturbed general matrix:

heorem 3: [8, p. 286] Let σ ≥ . . . ≥ σ be the singular values of A , and σ ′≥ . . . ≥ σ ′ be1 n 1 n

ii .the singular values of A + δA . Then e σ ′− σ e ≤ δA

One caveat about the use of Corollary 2 in practice is that phase 1 of the SVD algorithm,

t
reduction to bidiagonal form, may produce completely inaccurate bidiagonal entries. Some-
imes, however, the reduction to bidiagonal form is quite accurate, so that the singular values

of the original matrix can be computed accurately ( see [1] for discussion) .

In section 6 we will show how to use recurrence (2.1) in practice to compute the singular
t

c
values of a bidiagonal matrix with guaranteed high relative accuracy. This method, though no
ompetitive in speed on a serial machine with the algorithm of the next section, can be used to

-
r
efficiently verify the accuracy of the singular values computed by another method. The algo
ithm based on (2.1) may also be parallelized easily ( see section 6) .

o
w

The second resu lt of this section tells us when we can set an offdiagonal of B to zer
ithout making large relative changes in the singular values. This theorem will justify one of

the convergence criteria we describe in section 4 below.

First we discuss a simple recurrence for approximating the sm allest singular value of a

L

bidiagonal matrix, which also appeared in [9]:

emma 1: Let B be a n by n bidiagonal matrix with nonzero diagonal entries s , . . . , s and
n i n − 1

1 n
onzero offdiagonal entries e , . . . , e . Consider the following recurrences:

5
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(2.4)

µ = e s e

ofor j = 1 to n − 1 d

)

λ = e s e

µ = e s e .(µ /(µ + e e e )
ofor j = n − 1 to 1 step − 1 d

)λ = e s e .(λ /(λ + e e e )j j j + 1 j + 1 j

n n

j + 1 j + 1 j j j

1 1

1T − 1
∞
− 1

j
j

− 1
1
− 1

j
j

− 1
1
− 1 − 1

∞
−hen B = min λ and B = min µ . Furthermore, letting σii ≡ min(B , B ) ,

we have

(2.5)
n .B ≤ σ (B ) ≤ n .B

.Bn .B ≤ σ (B ) ≤ n .

iσii ≤ σ (B ) ≤ n .σimin
1 /2

− 1 /2 − 1
1
− 1

min
1 /2 − 1

1
− 1

− 1 /2 − 1
∞
− 1

min
1 /2 − 1

∞
− 1

l
e
Proof: By means of pre- and postmultiplication by unitary diagonal matrices with diagona
ntries of unit modulus, we may assume that s > 0 and e < 0. Then B is easily seen to have

−
i i

− 1

1
∞

− 1
∞

− 1
1

T − 1
1 -

t
positive superdiagonal entries, so that B = B u and B = u B , where u is the vec
or of all ones. v= B u and w = u B are easily computed by back and forward substitution.

−

− 1 T T − 1

1
∞

i
i

− 1
1

i
iThus B = max e v e and B = max e w e . Modifying these back and forward substitution

-recurrences to compute λ = 1 /v and µ = 1 /w yields the recurrences in (2.4) . Since the eigeni i i i
values of

H =
R
J
QB
0

0

B H
J
P

are the positive and negative singular values of B,

T

B = H ≤ H = max(B , B ) = max(B , B ) ,− 1 − 1 − 1
∞

− 1
∞

− T
∞

− 1
∞

− 1
1

minproving the inequality σii≤ σ (B ) in (2.5) . The other inequalities are standard norm inequali-
ties. `

From Lemma 1 it is clear that if e e /λ e ≤ η< 1, then changing e to 0 can make a rela-
j

j j + 1 j

i r
b
tive change of at most η in λ and all subsequent λ , i < j. Thus the first upper and lowe

ounds on σ (B ) in (2.5) can change only by a factor of η as well. Similar comments apply if
j

min

j j :

C

e e /µ e ≤ η< 1. This suggests the following criterion for setting e to 0

onvergence Criterion 1:
Let η< 1 be the desired relative accuracy of computed singular values. Then if either
e e /λ e ≤ η or e e /µ e ≤ η, set e to 0.j j + 1 j j j

Now we will state and prove a theorem which justifies this criterion. We will only prove
ethe theorem for the case e e /λ e ≤ η; the case e e /µ e ≤ η is analogous. First we need somj j + 1 j j

notation. Let φ (η) be the unique positive solution of

(2.6)exp(2φ ) − 2φ − 1 = η ;2

2i 1 /2 1 /t is easy to see that φ (η) is asymptotically η /2 for sm all η and that for all η, φ (η) ≤ η /2 .
Let B be a bidiagonal matrix as in Lemma 1 with singular values σ ≥ . . . ≥ σ , let U = B1 n

ie j 1 nxcept for entry e which is zero, and let σ ′≥ . . . ≥ σ ′ be the singular values of U. Let (η)
be the interval of σ ’s such that

(2.7)− φ (η) ≤ ln(σ / σ ′) ≤ φ (η) ;i i

2
i i

1 /(η) is essentially the set of σ which differ from σ ′ by a relative perturbation of at most η /2 .

c
Some of these intervals may overlap; let (η) denote the collection of disjoin t intervals made of
onnected components of (η) . Now we may state

i
i∪

j j + 1 .
T
Theorem 4: Let B and U be bidiagonal matrices as described above, and suppose e e /λ e ≤ η

hen each singular value σ of B lies in the connected component of (η) contain ing (η) . Ini i

j nparticular, if that connected component consists of m overlapping intervals (η) , the

6
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(2.8)− m φ (η) ≤ ln(σ ′ / σ ) ≤ m φ (η)i i

i o
i
Therefore, the relative perturbation caused in σ by setting the offdiagonal entry in δB to zer
s at most nη /2 if nη1, and if σ is sufficiently separated from the other singular values, at

1 /2

1 /2
i

.most η /2

For exam ple, this theorem lets us conclude that setting η to 0 in

η

α
1

H
J
J
P

1

c

R
J
J
Q

1

an change the singular values 2 , 1, and 2 α by at most factors of 1± η if η is sm all,
i

1 /2 − 1 /2

ndependent of α. Indeed, if D is any bidiagonal matrix this theorem guarantees that we can
set η to 0 in

R
J
Q

1

D

η H
J
P

.without making relative perturbations larger than η in any singular value

The proof of this theorem will depend on a sequence of technical lemmas. The first is a

L

trivial consequence of Taylor’s Theorem:

emma 2: Let f and g be continuously differentiable functions on the nonnegative real axis,

n
with f ( t)< g ( t) for t positive and sufficiently sm all. Let ξ ≡ inf{t > 0: f ( t)≥ g ( t)}, and ξ= ∞ if

o such t exist. Then if ξ is finite, f ′(ξ)≥ g′(ξ) .

We will use the contrapositive of this resu lt to show when f < g for all t; if f (ξ)≥ g(ξ)
would imply that f ′(ξ)< g′(ξ) , then f must be less than g everywhere.

In our case, we define f ( t) and g ( t) as follows. Write

w

B =
R
J
Q

K

R

CH
J
P

here K is j by j, R is n − j by n − j, and C = e lf , where l= (0, ..., 0, 1) and f= (1, 0, ..., 0) .
j

j
T T T

tAssume as in Lemma 1 that e < 0. Le

U ( t) =
R
J
Q

K

R

C ( t) H
J
P

rwhere C ( t)= − tλ lf so that U (0)= U and U (η) = B. Let σ ′( t) be the i-th largest singulaj + 1
T

i
value of U ( t) . Then we first let

(2.9a)f ( t)= − φ ( t) and g ( t)= ln(σ ′( t) /σ ′)i i

tand apply Lemma 2 to prove the first inequality in (2.8) , and then le

(2.9b)f ( t)= ln(σ ′( t) /σ ′) and g ( t)= φ ( t)i i

to prove the second inequality. In order to apply Lemma 2, we need to compute the deriva-

L

tives of the functions in (2.9) .

emma 3: Unless σ ′( t) is a singular value of R ,

j

i

i j
2 i

j i j
2

.hhhhhhhhhhhhhhhhh , 0)
t

)
hhh ln(σ ′( t) ) < max (max

( (σ ′( t) /σ ′) − 1

d
t

hhhhhhhhhhhhhhhhh , 0) <
d

t

)

P

min (min
( (σ ′( t) /σ ′) − 1

roof: We begin with a simplifying assumption: We assume K and R have no common singular
values. If this is not true, consider a sequence of problems with K →K , R →R and where Kn n n
a nnd R have distinct singular values; the general resu lt will follow from continuity.

e
e

We may define a singular value σ ( t) and its singular vectors u ( t) and v ( t) of U ( t) by th
quations Uv = σ u and u U = σ v (where we have suppressed the argument t) . Using the factT T

7



dd

that u u= v v> 0, we see from U
.
v+ Uv

. = σ. u+ σ u
.

and from u
.

U + u U
.

= σ. v + σ v
.

thatT T T T T T

T T T T .

N

σ. = u U
.
v /v v = u U

.
v /u u

ow partition u = (u , u ) and v = (v , v ) conformally to B, whenceT
1
T

2
T T

1
T

2
T

2 2

1 2 1

1
T

2
T

2
T

T
1 1

T

.
u K = σ v

v

Kv + Cv = σ u
and

u C + u R = σu

Now

R v = σ

U
.

( t) =
R
J
Q0
0

0

C
.
H
J
P

where C
.

= − λ .lf .j + 1
T

1
j + 1 j + 1

− T
1
− sBy rearranging the recurrence (2.4) for λ we see λ = R f . Thu

(2.11)hhhhhhhhhhhhhhhhhhhhv− u lf

)
hhhhhhhhhhhhh =

R f (u u + u u

vu C
.

u
σ. ( t) =

u u + u1
T

1 2
T

2

T
1 2

− T
1 1

T
1 2

T
2

T
1

T
2

N 2ow we derive another expression for v in order to eliminate it from (2.11) . Since

R R v = σ R u = σ v − σ C u = σ v + σ tfl u R fT
2

T
2

2
2

T
1

2
2

T
1

− T
1
− 1

w 2e may solve for v as follows provided σ is not a singular value of R :

fv = σ tl u (R R − σ I ) f R f = σ tl u R ( I − σ (R R ) ) R f R2
T

1
T 2 − 1 − T

1
− 1 T

1
− 1 2 T − 1 − 1 − T − T

1
− 1

and so

(2.12)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh .
f(R f ) (σ (R R ) − I ) R

f
hhhhhhh .

R

fR

f
hhhhhhhhhhhh .

R

)( l u

u
hhh ln(σ ( t) ) = σ. ( t) /σ ( t) = t .

u u + u

d
td 1

T
1 2

T
2

T
1

2

− T
1
2

− T 2

− T 2

− T T 2 T − 1 − 1 − T

e
z
Since l is a unit vector, the second factor in this expression is between 0 and 1. It cannot b
ero because otherwise C u = 0, R v = σ u and u R = σ v , and so σ would be a singular value

o

T
1 2 2 2

T
2
T

f R contrary to assumption. The third factor is strictly between 0 and 1. The last factor is a
.

m
Rayleigh quotient and so bounded by the extreme eigenvalues of the matrix in the middle, i.e

in ( (σ /σ ) − 1) , and max ( (σ /σ ) − 1) , where σ are the singular values of R . This is
j

R j
2 − 1

j
R j

2 − 1
R j

j
2 `

L

in turn bounded by the extreme values of 1 /( ( σ /σ ′ ) − 1) . This proves the lemma.

emma 4: φ (0)= 0 and φ
.
(0)= 2 . φ ( t) satisfies the differential equation− 1 /2

(2.13a)hhhhhhhhhhhhhhht
1

φ
.
( t) =

exp(2φ ( t) ) −
nand ψ( t) = − φ ( t) satisfies the differential equatio

(2.13b)hhhhhhhhhhhhhhhht
)

ψ
.
( t) =

1 − exp(− 2ψ( t)

`

P

Proof: Simply differentiate the defining equation (2.6) for φ ( t) .

roof of Theorem 4: Now note that ln(σ ′(0) /σ ′)= 0 and its derivative σ. ′(0) /σ ′(0)= 0 as well

i

i i i i
− 1 /2 )

i
since σ ′( t) is an even function of t. Since φ (0)= 0 and φ

.
(0)= 2 , we see that equation (2.8

s true ( for m = 1) for sufficiently sm all η. To show it is true for all η, we assume to the con-
.

T
trary that there is some positive η for which it is false, and let ξ be the infim um of all these η

hen σ ′(ξ) will be on the boundary of (η) , which means e ln(σ ′(ξ) /σ ′ e will be at least φ (ξ)
f

i i j
or all j. From Lemma 3 we see this implies

1− exp(− 2φ (ξ) )
− thhhhhhhhhhhhhhh <

dt
hdhh ln(σ ′(ξ) /σ ′) <

exp(2φ (ξ)− 1
h thhhhhhhhhhhh .

But we also have from Lemma 4 that that

i i

8
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ψ
.
(ξ) =

1− exp(− 2ψ(ξ) )
h thhhhhhhhhhhhhh and φ

.
(ξ) =

exp(2φ (ξ) )− 1
h thhhhhhhhhhhhh .

e
c
Therefore, the choice (2.9a) of f and g yields f

.
(ξ)< g

.
(ξ) , so f (ξ) cannot equal g (ξ) . Th

hoice (2.9b) yields the same conclusion. Therefore, σ ′(ξ) cannot lie on the boundary of (ξ)
as supposed. This completes the proof of Theorem 4. `

i

The third resu lt in this section supplies a convergence criterion which may occasionally
t

m
succeed in setting an offdiagonal entry to zero before Convergence Criterion 1. However, i

ay only be applied when singular vectors are not computed, since it may cause rather large
perturbations in them. Let

(2.14)
0H
J
Ps

D

0

eH
J
P

and B ′ =
R
J
Qs

D

0B =
R
J
Q

˜

˜ T
1 n B

a
where e= [0, . . . , 0, e ] , and D is bidiagonal. Let σ ≥ . . . ≥ σ be the singular values of
nd σ ′ ≥ . . . ≥ σ ′ be the singular values of B ′. Let (η) be the interval of σ ’s such that1 n ĩ

i ˜ie σ − σ ′ e ≤ ησ ′ , and let (η) be the collection of disjoin t intervals which are the connected com-
ponents of (η) . Now we may state∪

i
ĩ

min n
(
Theorem 5: Let 0< η< 1 be a relative error tolerance, and suppose gap ≡ σ (D )− e s e > 0 i
2.14) . If

(2.15)e e e ≤ .5.η.gap.(σ (D )+ e s e ) = .5.η.(σ (D )− e s e )2
min min

2 2

ii ˜ ˜ n
p
then each singular value σ ′ of B ′ lies in the connected component of (η) contain ing (η) . I

articular, if that connected component consists of m overlapping intervals (η) , and m η1,j̃
t i i ihen e σ ′ − σ e is at most about m .η.σ ′ .

Proof: We consider two cases: se /[gap (σ (D )+ e s e ) ] ≥ .5, and se /[gap (σ (D )+ e s e ) ] < .5.
I 2

min min
n the first case (2.15) implies e < ηse or e< ηs. Then by Theorem 3 setting e to 0 in B can

change no singular value by more than e ηs e , proving the theorem in this case.

Now consider the second case. Instead of directly comparing the singular values of B and
gB ′, we compare the eigenvalues of BB and B ′B ′ , which are the squares of the correspondinT T

TT .
T
singular values. First we show that the sm allest eigenvalues of BB and B ′B ′ must be close

he sm allest eigenvalue of B ′B ′ is s . By Theorem 1, BB has one eigenvalue less than
2

T 2 T

min
2 2s + se ≤ (σ (D )− s ) /2, and the rest exceeding the same quantity. By the gap theorem [15,

11-7-1], the sm allest eigenvalue σ of BB satisfiesn
2 T

2
n

2

min
2 2

2 2
2hhhhhhhhhhhh ≤ ηs

e2s

s
e σ − s e ≤

σ (D )−

.proving the theorem for the sm allest eigenvalue

Now we consider the larger eigenvalues of BB . Since se /[gap (σ (D )+ e s e ) ] < .5,T
min

T e
a
Theorem 4.12 of [16] applies and we conclude that the larger eigenvalues of BB are the sam
s the eigenvalues of DD + E + E , whereT

1 2

1
2 P
J
J
H0

.
0

.

.

.

e

.

s

E =
R
J
J
Q0

o that E = e , and E ≤ 2s e /[gap (σ (D )− e s e ) ] ≤ ηs ; E is in general nonsym -1 F
2

2 F
2 2

min
2

2
T

1 2 nmetric. By the Bauer-Fike Theorem [8] each eigenvalues of DD + E + E is withi

E + E ≤ e + ηs ≤ .5η( σ (D )− s )+ ηs ≤ ησ (D )2
n

2 2 2
min1 F 2 F

2 2
mi

Tof an eigenvalue of DD . This completes the proof. `

This theorem justifies

9
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Convergence Criterion 2:

Let B =
R
J
Q0
D

s

eH
J
P

(or B =
R
J
Q0
s

D

e H
J
P
) where e = [0, . . . , 0, e ] (or e = [e, 0, . . . , 0] ) . Let

˜ ˜
˜ ˜

T

T T

f
g
η< 1 be the desired relative accuracy of the computed singular values. Then i
ap = σ (D )− e s e > 0 and e e e ≤ .5.η.gap.(σ (D )+ e s e ) = .5.η.(σ (D )− e s e ) , set e2 2

nmin
2

min mi

min d
m
to zero. From (2.5) , we may approximate σ (D ) with the lower boun

in µ /(n − 1) (or min λ /(n − 1) ) .

T

j < n
j

1 /2

j > 1
j

1 /2

he following exam ple shows that Convergence Criterion 2 may sometimes set e to zero

t
e H
J
P
. Convergence Criterion 1 demands tha5before Convergence Criterion 1. Consider B =

R
J
Q0
1

.

e e e ≤ η to set it to zero, whereas Convergence Criterion 2 demands only that e e e ≤ (3η /8) ,
which may be much larger.

1 /2

This same exam ple also shows why we do not want to use Convergence Criterion 2 when
tcomputing singular vectors. The right singular vectors of B and B differ by O ( e e e ) , no0

2 .O ( e e e )

In practice, we may estimate σ (D ) using (2.4) and (2.5) , and indeed we need only runmin
.the recurrences once to apply both Convergence Criteria 1 and 2

10
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3. QR iteration with a zero shift

The standard algorithm for finding singular values of a bidiagonal matrix B is the QR algo-
lrithm applied implicitly to B B [7]. The algorithm computes a sequence B of bidiagonaT

i
2m 0 iatrices starting from B = B as follows. From B the algorithm computes a sh ift σ , which is

-usually taken to be the sm allest eigenvalue of the bottom 2 by 2 block of B B . Then the algoi i
T

i
T

i
2 s

o
rithm does an implicit QR factorization of the sh ifted matrix B B − σ I = QR , where Q i

rthogonal and R upper triangular, from which it computes a bidiagonal B such that
T

i + 1
2

i

i + 1

1B i + B = R Q+ σ I. As i increases, B converges to a diagonal matrix with the singular values
on the diagonal.

The roundoff errors in this algorithm are generally on the order of εB , where ε is the pre-

w
cision of the floating point arithmetic used. From Theorem 3 of the last section, this means we

ould expect absolute errors in the computed singular values of the same order. In particular,
tiny singular values of B could be changed completely.

In this section we present a variation of this standard algorithm which computes all the
-

r
singular values of a bidiagonal matrix, even the tiniest ones, with guaranteed high relative accu
acy. We will call this the "implicit zero-sh ift QR" algorithm, since it corresponds to the above

f
B
algorithm when σ = 0. However, it is organized in such a way as to guarantee that each entry o

is computed from B to nearly full machine precision. Then Corollary 2 of the last sectioni + 1 i

i i + 1 i + 1
h
implies that the singular values of B and B all agree to high relative accuracy. When B

as finally converged to a diagonal matrix, these diagonal entries must therefore also be accu-
-rate singular values for the initial B = B . Exactly how to detect this convergence is an interest0

.ing issue and discussed in the next section

The rest of this section is organized as follows. First we review the standard algorithm for
.

N
singular values of a bidiagonal matrix. Then we show how it simplifies when the sh ift is zero

ext we discuss an error analysis of the resu lting implicit zero-sh ift QR algorithm which shows
sthat it computes each entry of B with high relative accuracy ( the details of the error analysii + 1

are in section 8) . Finally, we discuss the asymptotic convergence rate.

d
Q

The final algorithm is a hybrid of the standard QR and implicit zero-sh ift QR. Standar
R is used when the condition number of B ( the ratio of the largest to sm allest singular

-
t
values) is modest. In this case the roundoff errors are guaranteed to make acceptably sm all per
urbations in the sm allest singular values of B. If the condition number is large, we use implicit

zero-sh ift QR instead. The hybrid algorithm will be discussed more fully in the next section.

In order to summarize the standard QR algorithm, we need some notation. Let J ( i, j, θ)

i
denote the Given’s rotation in entries i and j by angle θ. In other words, J ( i, j, θ) is an n by n
dentity matrix except for rows and columns i and j whose intersections consist of the following

2 by 2 rotation matrix:

R
J
Q− sinθ

cosθ
cosθ
sinθ H

J
P

fGiven the vector x, choosing θ so that x /x = tanθ means that the i-th and j-th entries oj i

i
2

i
2 .( x + y ) and 0, respectivelydJ ( i, j, θ) x will contain ± √ d

We will illustrate the algorithm on a 4 by 4 exam ple, where we use x and + to indicate
nonzero entries and 0 and blank to indicate zero entries. Initially B is in the formi

Bi =

R
J
J
J
J
Q

x

x

x

x

x

x

x

H
J
J
J
J
P

.

.We begin by postmultiplying B by J ≡ J (1, 2, θ ) , where θ will be discussed in a momenti 1 1 1
This introduces a nonzero entry in the (2,1) position:

11
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(3.1)B J =

R
J
J
J
J
Q

+
x

x

x

x

x

x

x

H
J
J
J
J
P

.i 1

i 1B J will now be pre- and postmultiplied by a sequence of Given’s rotations whose purpose is
tto "chase the bulge" indicated by "+ " off the end of the matrix. Choose θ so tha2

J 2 2 2 i 1≡ J (1, 2, θ ) introduces a zero in the (2,1) entry of J B J :

(3.2)

+

x

x

H
J
J
J
J
P

.
x

xJ B J =

R
J
J
J
J
Q

0

x

x

x

2 i 1

3 3 3 4 4 4 5 5 5 6 n
J
Next choose θ in J ≡ J (2, 3, θ ) , θ in J ≡ J (2, 3, θ ) , θ in J ≡ J (3, 4, θ ) , and θ i

≡ J (3, 4, θ ) , to give the following sequence of transformations:6 6

2 i 1 3 4 2 i 1 3

P
J
J
J
J
H

+
x

x

0

x

x

H
J
J
J
J
P

J J B J J =

R
J
J
J
J
Q

x

0

x

x

x

xx

x

J

J B J J =

R
J
J
J
J
Q

x

+
x

x

J B J J J =

R
J
J
J
J
Q

x

x

x

+
x

x

x

x

0

H
J
J
J
J
P

B ≡ J J J B J J J =

R
J
J
J
J
Q

x

x

x

0

x

x

x

x

H
J
J
J
J
P

4 2 i 1 3 5 i + 1 6 4 2 i 1 3 5

i + 1 s
t
The usual error analysis of Given’s rotations [18, p. 131-139] shows that the computed B i
he exact transformation of a matrix B + E where E is on the order of p (n )εB , p (n ) a modest

function of n.
i i

To choose θ we compute a sh ift σ which is generally the sm allest eigenvalue of the bot-1
2

i i
T

1 1 )
e
tom right 2 by 2 submatrix of B B . θ is then chosen so J introduces a zero into the (2,1

ntry of J (B B − σ I ) . It is easy to see that this means that1
T

i
T

i
2

(3.3)hhhhhhhhhhhhh .
)(B B

)
tanθ =

σ − (B B
1 2

i
T

i 11

T
i i 12

-
e
This choice of sh ift, called Wilkinson’s sh ift, guarantees at least linear convergence and gen
rally yields asymptotic cubic convergence of the offdiagonal entries of B to zero [15, p. 151].

This is assuming arithmetic is done exactly.
i

Now let us take σ = 0. Let us also drop the subscript i on B for simplicity of notation.
F 1 12 11

i
rom (3.3) we see that tanθ = − b /b so that the resu lt of the first rotation ( for a 4 by 4

matrix) is

B ≡ BJ =

R
J
J
J
J
J
Q

b

b

b

0

b

b

b

b

H
J
J
J
J
J
P

.
34

4

23

4

3

(1)

3

2

(1)

2

11

)(1
1

(1)
1

2

1 -
i
We let the superscript on the matrix and its entries indicate that J has been applied. Compar
ng to (3.1) we see that the (1,2) entry is zero instead of nonzero. This zero will propagate

through the rest of the algorithm and is the key to its effectiveness. After the rotation by J 2
we have

12
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B ≡ J BJ =

R
J
J
J
J
J
Q

0

b

b

b

b

b

b

b

b

H
J
J
J
J
J
P

.
34

4

(2)

4

31

)(2
32

3

(2)

3

21

)(2
2

(2)

2

1

Note that

(2)
2 1

1

R
J
Qb

b

b

b H
J
P

=
R
J
Qcosθ b

sinθ b

cosθ b

sinθ b H
J
P

2 23

3

(1)

2 2

22 2

)(1
2

(2)

2 2

31

)(2
3

(2)

2

21

)(2
22

3 l
a
i.e. it is a rank one matrix. Therefore, postmultiplication by J to zero out the (1,3) entry wil
lso zero out the (2,3) entry:

B ≡ J BJ J =

R
J
J
J
J
J
Q

0

b

b

b

b

b

0

0

b

b

H
J
J
J
J
J
P

.
34

4

(3)

4

3

(3)

3

21

)(3
22

)(3
2

(2)

3

1

(3)
2 1 3

1

4 t
r
Comparing to (3.2) we see that there is an extra zero on the superdiagonal. Rotation by J jus
epeats the situation: the submatrix of J J BJ J consisting of rows 2 and 3 and columns 3 and

4 5

4 2 1 3
is rank one, and rotation by J zeros out the (3,4) entry as well as the (2,4) entry. This

regime repeats itself for the length of the matrix.

The following algorithm incorporates this observation. It uses a subroutine
R OT ( f , g, cs, sn, r) which takes f and g as inputs and returns r, cs= cosθ and sn= sinθ such that

(3.4)
snH

J
P
.
R
J
Qg
fH
J
P

=
R
J
Q0
rH
J
P

.s

cs

cn

R

R
J
Q− s

OT ( f , g, cs, sn, r) : takes f and g as input and returns cs, sn and r satisfying (3.4) .

if ( f = 0) then
cs = 0; sn = 1; r = g

elseif ( e f e > e g e ) then
t = g/ f; tt = 1+ t d√ dddd2

t
else

cs = 1 /tt; sn = t*cs; r = f *t

t = f /g; tt = 1+ t d√ dddd2

tsn = 1 /tt; cs = t*sn; r = g*t
f

B

endi

arring underflow and overflow (which can only occur if the true value of r itself would
r

d
overflow) , R OT computes cs, sn and r to nearly full machine accuracy (see section 8 below fo

etails) . It also uses fewer operations than the analogous routine "rotg" in LINPACK [5].

13
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Implicit Zero-Shift QR Algorithm: Let B be an n by n bidiagonal matrix with diagonal en-
tries s , . . . , s and superdiagonal entries e , . . . , e . The following algorithm replaces1 n 1 n − 1
si iand e by new values corresponding to one step of the QR iteration with zero sh ift:

oldcs = 1
f = s 1

1
f
g = e
or i = 1, n − 1

call R OT ( f , g, cs, sn, r)
rif ( i≠ 1) e = oldsn*i − 1

g
f = oldcs*r

= s *sni + 1

i + 1 s
c
h = s *c
all R OT ( f , g, cs, sn, r)

s = ri
f = h

eg = i + 1
s

o
oldcs = c
ldsn = sn

e
endfor

= h*sn
sn

n − 1
= h*cs

It is straigh tforward to verify that this algorithm "chases the bulge" in the manner
-

t
described above. It is remarkable that outside the two calls to R OT , there are only 4 multiplica
ions in the inner loop. This is to be contrasted with the usual QR algorithm, which in addition

e
e
to two calls to R OT has 12 multiplications and 4 additions. Thus the inner loop is much mor
fficient than the standard algorithm. Note also that it is parallelizable, because n /2 rotations

i
can be done at once. Since data need only be passed serially along the diagonal, it can also be
mplemented in a systolic array. However, the algorithms in section 6 seem much better su ited

to parallel processing.

This algorithm may be expressed in the following terser but equivalent form:

c
oldcs = 1
s = 1

for i = 1, n − 1
call R OT ( s *cs, e cs, sn, r )i i,

1i i −f ( i≠ 1) e = oldsn*r
call R OT ( oldcs*r, s *sn, oldcs, oldsn, s )

h
endfor

i + 1 i

= s *cs
n

n

− 1e = h*oldsn
s = h*oldcsn

The initial form will be more convenient for the error analysis in section 8.

f
t

This algorithm is also much more accurate than the standard algorithm. The source o
he extra accuracy is the absence of possible cancellation, which means all roundoff errors

-
m
appear multiplicatively ( there is an addition in R OT , but it is harmless) . Our model of arith

etic is the usual one:

(3.5)

w

fl (x °y) = (x °y) .(1+ e)

here ° is one of + , − , * and /, fl (x °y) is the floating point resu lt of the operation °, and
ee e e ≤ ε, where ε is the machine precision. This would appear to eliminate machines like th
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Cray and Cyber from consideration, since those machines do not conform to (3.5) for addition
-

c
and subtraction when cancellation is involved, but since we only need to use (3.5) for multipli
ation (as well as square root, division, and addition of positive quantities in R OT ) , this

r
(
analysis covers those machines as well. We also assume overflow and underflow do not occu
we return to these issues in section 8) .

We present two theorems about the accumulation of error in the algorithm. The proofs
-

p
are given in section 8. The first theorem develops a bound for the relative error in the com

uted s and e of the form cnε (c is a modest constant) and uses it with Theorem 2 of section 2
t

i i
o show that the relative difference between the singular values of the bidiagonal matrix B and

,the output matrix B ′ of the implicit zero-sh ift QR algorithm is cn ε /(1− cn ε) . In other words2 2

-
s
the relative error in the computed singular values can only grow with the square of the dimen
ion.

Theorem 6: Let B be an n by n bidiagonal matrix and B ′ the matrix obtained by running the
eimplicit zero-sh ift QR algorithm on B. Let the singular values of B be σ ≥ . . . ≥ σ , and th1 n

1 n fsingular values of B ′ be σ ′≥ . . . ≥ σ ′. Then i

(3.6)ω ≡ 69n ε< 1 ,2

e
b
the relative differences between the singular values of B and the singular values of B ′ ar

ounded as follows:

e σ − σ ′ e ≤
1− ω
h ωhhhhσ .

L k

i i i

et B be the matrix obtained after k repetitions of the implicit zero-sh ift QR algorithm, and let
σ ≥ . . . ≥ σ be its singular values. Then if condition (3.6) holds we havek 1 kn

i ki k i
2

i ,hhhhhhhh − 1) . σ ∼∼ 69kn ε.σ1

)

w

e σ − σ e ≤ (
(1− ω

here the approximation to the last upper bound holds if k ω1.

h
c

This resu lt is actually rather pessimistic, as our second resu lt shows: when we approac
onvergence in the sense that all rotations are through angles bounded away from π /2, errors

rdo not accumulate at all and the error in the computed e and s is bounded by c′.ε, c′ anothei i
s

o
modest constant. With Theorem 2 this yields an error bound on the computed singular value

f the form c′nε /(1− c′nε) .

Theorem 7: Let B be an n by n bidiagonal matrix and B ′ the matrix obtained by running the
e

o
implicit zero-sh ift QR algorithm on B. Assume that all the rotation angles θ during the cours

f the algorithm satisfy sin θ ≤ τ < 1. Let the singular values of B be σ ≥ . . . ≥ σ , and the2
1 n

n1 fsingular values of B ′ be σ ′≥ . . . ≥ σ ′. Then i

(3.7)hhhhhhh < 1 ,
ε88n

)
ω ≡

(1− τ 2

e
b
the relative differences between the singular values of B and the singular values of B ′ ar

ounded as follows:

e σ − σ ′ e ≤
1− ω
h ωhhhhσ .

L k

i i i

et B be the matrix obtained after k repetitions of the implicit zero-sh ift QR algorithm, where
rwe assume all rotation angles θ satisfy sin θ ≤ τ < 1. Let σ ≥ . . . ≥ σ be the singula2

k 1 kn
v kalues of B . Then if condition (3.7) holds we have

,hhhhhhh .σε88kn

)
hhhhhhhh − 1) . σ ∼∼

(1− τ
1

)
e σ − σ e ≤ (

(1− ωi ki k i 2 i

where the approximation to the last upper bound holds if k ω1.

Note that τ can easily be monitored by the algorithm as it proceeds.
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The standard algorithm does not always achieve this accuracy for three reasons. First, the
s

i
convergence criteria in the standard algorithm can change sm all singular values completely ( thi
s discussed in detail in the next section) . Second, rounding errors committed while "chasing

,
r
the bulge" with a large sh ift can obscure sm all matrix entries and sm all singular values. Third
oundoff errors when the sh ift is zero resu lt in nonzero entries appearing and propagating in

o
b
those offdiagonal entries of intermediate resu lts which should be zero, and which are kept zer

y the new algorithm. This third effect seems mild, however, and as a resu lt the standard algo-
l

b
rithm sometimes computes sm all singular values with higher relative accuracy than the usua

ound p (n )εA would lead us to expect ( see, for exam ple, the numerical exam ples of Class 1 in
section 7) .

The pattern of zeros above the diagonal during the QR sweep also appears when applying
t

f
QR to a sym metric tridiagonal matrix. This pattern can be exploited to give fast, square roo
ree versions of the algorithm (see [15, p. 164] for a discussion) . Unfortunately, this does not

yield forward stability and high accuracy as it does for the bidiagonal case.

Finally, we discuss the asymptotic convergence rate of the algorithm. It is well known
.

1
that unshifted QR on a sym metric matrix is essentially the same as inverse iteration [15, p

44]. Therefore we can conclude that the last offdiagonal element e should converge to zero
2

n
2

n − 1

1l n −inearly with constant factor σ /σ . If there is a cluster of m sm all singular values isolated
rfrom the remain ing ones, e will converge to zero linearly with constant facton − m

2
m

2
n −1σ n − m + /σ .
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4. Convergence Criteria

In this section we discuss convergence criteria for the new algorithm, and describe the
t

z
practical version of the algorithm, which is a hybrid of the usual sh ifted QR and the implici
ero-sh ift QR. After showing that the LINPACK convergence criteria [5] are unsatisfactory, we

-
t
restate the convergence criteria of section 2. The same analysis leading to the convergence cri
eria will lead to a criterion for switching from zero-sh ift QR to shifted QR without dam aging

l
w
any tiny singular values. The switching criterion depends on a user specifiable tolerance to

hich is the desired relative accuracy in the singular values ( tol should be less than 1 and
t

a
greater than the machine precision ε) . The resu lting hybrid algorithm will therefore run abou
s fast as the standard algorithm on matrices without any tiny singular values. We will also dis-

s
cuss convergence criteria in the case where one is only interested in absolute precision in the
ingular values. Finally, we discuss the impact of underflow on the convergence criteria.

-
r

We begin by discussing the convergence criteria used in the current version of the algo
ithm [5], and explain why they are unsuitable for our algorithm. The code in LINPACK has

two tests for setting entries of the bidiagonal matrix B to zero. Recall that s , . . . , s are the1 n
d 1 n − 1iagonal entries of B and e , . . . , e are the offdiagonal entries. The first test is

(4.1)if ( e e e + e e e + e s e = e e e + e e e ) , set s to 0i i − 1 i i i − 1 i

1i i i − e
s
This rather enigmatic looking test works as follows. If e s e < .5.ε.( e e e + e e e ) , the test will b
atisfied and s set to zero. In other words, (4.1) is a way of asking whether one number is less

t
i

han roundoff error in another number without needing to know the machine precision ε expli-
citly. The other convergence test is

(4.2)if ( e s e + e s e + e e e = e s e + e s e ) , set e to 0i i − 1 i − 1 i i − 1 i − 1

t
x
Both tests compare an entry x of B with its two nearest neighbors on the other diagonal, and se

to zero if it is negligible compared to those neighbors. One justification for these tests is that

z
roundoff error during the rotations could make the matrix indistinguishable from one with a
ero in x’s position. Also, they clearly introduce errors no worse than p (n )εA . (Both these tests

smay be unnecessarily slow for these purposes on machines where the quantitie
e e e + e e e + e s e , e e e + e e e , e s e + e s e + e e e and e s e + e s e are computed and com-
p

i i − 1 i i i − 1 i i − 1 i − 1 i i − 1
ared in extended precision registers, where the effective ε is much tinier than in working pre-

cision.)

Both tests are unsatisfactory for our algorithm. Test (4.1) introduces a zero singular value
y

(
where there was none before, so it is clearly unsatisfactory. The following exam ple shows wh
4.2) is also unsatisfactory. Suppose η is sufficiently sm all that in floating point arithmetic

1+ η= 1. Consider the matrix

B (x ) =

R
J
J
J
J
Q

η
1

1

1

x

η
1

H
J
J
J
J
P

2

2

3 )
w
When x = η it is easy to verify that the sm allest singular value of B (η) is about η . Test (4.2

ould set x to 0, but B (0) has a sm allest singular value of about η /√ dd2 , which is utterly
different.

2

Our convergence criteria must guarantee that by setting some e to 0 (clearly no nonzero
si

i
can ever be set to zero) , no singular value is perturbed too much. Let σii denote a reliable

e
r
estimate or underestimate of the sm allest singular value. Such a σii is provided by th
ecurrences for B and B in (2.4) . Then the simplest acceptable convergence criterion

w i

− 1
∞
− 1 − 1

1
− 1

ould only set e to zero if it were less than tol*σii. However, this method is overly conserva-
-tive, and generally waits much too long to set e to 0. Much better estimates are given in seci

:tion 2 and justified by Theorems 4 and 5. We repeat them here
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Convergence Criterion 1a:
Let µ be computed by the following recurrence ( (2.4) from section 2) :j

(4.3)

µ = e s e

ofor j = 1 to n − 1 d

)µ = e s e .(µ /(µ + e e e )j + 1 j + 1 j j j

1 1

I j j jf e e /µ e ≤ tol, set e to 0.

Convergence Criterion 1b:
Let λ be computed by the following recurrence ( (2.4) from section 2) :j

(4.4)

λ = e s e

ofor j = n − 1 to 1 step − 1 d

)λ = e s e .(λ /(λ + e e e )j j j + 1 j + 1 j

n n

I j j + 1 jf e e /λ e ≤ tol, set e to 0.

Convergence Criterion 2a:
Let µ be computed from (4.3) . If singular vectors are not desired, and

n

j

− 1
2

j < n
j

1 /2 2
n

2
n − 1 .

C

e ≤ .5.tol.[(min µ /(n − 1) ) − e s e ], set e to zero

onvergence Criterion 2b:
Let λ be computed from (4.4) . If singular vectors are not desired, and

2
1

j

j > 1
j

1 /2 2
1

2
1 .

W

e ≤ .5.tol.[(min λ /(n − 1) ) − e s e ) , set e to zero

e have divided the criteria of section 2 into separate parts, because we will apply them
in separate situations; see the subsection on "Applying the convergence criteria" in section 5.

These criteria are more expensive than the standard LINPACK criteria, but avoid situa-
tions like setting x to 0 in B (x ) in the last paragraph, and recognizes that setting x to zero in

R
J
Q

1

D

x H
J
P

is harmless if e x e ≤ tol, independent of D.

Now we consider how to decide whether to use implicit zero-sh ift QR or standard sh ifted
d

a
QR. In order to estimate the rounding errors which would occur during shifted QR, we nee
n estimate of B . We will use σhh ≡ max( e s e , e e e ) , which is easily seen to underestimate B by

n
i

i i

o more than a factor of 2. In terms of σii, σhh, and tol, our decision algorithm is

if ( fudge * tol * (σii/σhh) ≤ ε)
use the implicit zero-sh ift QR

else
use sh ifted QR

T

endif

he test asks whether the rounding errors ε.σhh which shifted QR could introduce are greater

z
than the largest tolerable perturbation tol.σii. The factor fudge≥ 1 is a fudge factor which makes
ero-sh ifting less likely on tight clusters of singular values; we currently use fudge= min(n, m ) if

the original matrix was n by m.

In practice there is one further test for using the implicit zero-sh ift QR. If the above test
chooses sh ifted QR, we must still compute the sh ift σ , which is the sm allest eigenvalue of the2
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bottom 2 by 2 matrix of BB . From (3.3) , we see the tangent of the first rotation angle is given
by

T

σ − s

s *ehhhhhhhh =
s
hehh (

s
hσhh − 1) 11 1

1

1

1
2

2
−

2
1

2

2

1
2so if σ /s − 1 rounds to − 1, the first rotation is the same as in implicit zero-sh ift QR and we

might as well use it, since it is faster and more accurate.

The choice of tol may be made by the user, or chosen automatically by the program . If tol

v
is chosen close to 1, one alm ost always picks sh ifted QR, which still computes the singular

alues with good absolute accuracy, so only the sm allest singular values will be inaccurate. If

v
one chooses tol near ε, one will alm ost always use implicit zero-sh ift QR unless all the singular

alues are very close together, and therefore sacrifice the cubic convergence of sh ifted QR. See
r

1
section 7 for descriptions of numerical experiments on the effect of varying ε. Choosing tol nea

is useful for quickly obtain ing estimates of singular values for rank determination. Note that

s
as singular values converge and are deflated off, σii may be reestimated so that if tol is not too
mall, by the time all the sm all singular values have converged, the algorithm is doing shifted

QR.

Note also that if one is only interested in computing the sm allest singular value or values,

b
σii provides a test for stopping the iteration early. If one or several sm all singular values have

een deflated out, and the σii for the remain ing matrix exceeds them sufficiently, one is
guaranteed to have found the sm allest singular value. A similar idea is expressed in [17].

Finally, we consider computing the singular values to guaranteed absolute accuracy instead

g
of guaranteed relative accuracy. As stated in the introduction, this is what standard sh ifted QR
uarantees. However, the convergence criteria (4.1) and (4.2) in the current standard imple-

ementation are much more stringent than necessary to meet this goal. Instead of comparing e ei

o ir e s e to its neighbors to see if it is negligible, it is only necessary to compare to σhh ∼∼ B . In
other words substituting

(4.5)if ( e s e ≤ tol*σhh) set s to 0i i

for (4.1) and

(4.6)if ( e e e ≤ tol*σhh) set e to 0i i

n
p
for (4.2) will also guarantee absolute accuracy but possibly speed convergence considerably. I

ractice, our code uses the input param eter tol to choose between absolute and relative accu-
t

i
racy: if tol is positive, it indicates that relative accuracy tol is desired, and if tol is negative, i
ndicates that absolute accuracy e tol e .σhh is desired.

Underflow must also be accounted for in the convergence criteria to ensure convergence.
For it may happen that the quantity to be subtracted from e in the course of driving it ton − 1
z n − 1ero may underflow, so that e never decreases. On machines with IEEE arithmetic, this may

e
t
occur if all entries of B are denormalized. To prevent this, we make sure the convergenc
hreshold to which we compare e e e is at least maxit*λ , where maxit is the maximum number of

Q
j

R inner loops the code will perform, and λ is the underflow threshold ( the sm allest positive

d
normalized number) . If the matrix has singular values near λ or sm aller, this technique could

estroy their accuracy; in this case the matrix should be scaled up by multiplying it by maxit /ε
-

w
before applying the algorithm, and multiplying the computed singular values by ε /maxit after

ards.
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5. Implementation Details

In this section we discuss a number of details of the implementation of the code:

A
Chasing the bulge up or down

pplying the convergence criteria
n

D
SVD of 2 by 2 triangular matrices and robust sh ift calculatio

eflation when s = 0

F
i

inally, we present high-level code for the entire algorithm.

-
m
Chasing the bulge up or down. A bidiagonal matrix may be graded in many ways, but most com

only it will be large at one end and sm all at the other. The implicit zero-sh ift QR algorithm
d

f
tries to converge the singular values in order from sm allest to largest. If the matrix is grade
rom large at the upper left to sm all at the lower right, and the "bulge" is chased from upper left

"
to lower right as in section 3, then convergence will be fast because the singular values are
ordered" correctly, i.e. the diagonal matrix entries are fairly close to their final values. If, how-

t
ever, the matrix is graded the opposite way ( from sm all at the left to large at the right) then
he algorithm will have to invert the order of the matrix entries as it converges. This may

-
i
require many more QR steps. To avoid this, the implementation tests for the direction of grad
ng (simply comparing e s e and e s e ) , and chases the bulge in the direction from large to sm all.

I
1 n

f a matrix breaks up into diagonal blocks which are graded in different ways, the bulge is
chased in the appropriate direction on each block. The algorithm in [17] does this as well.

In order to avoid the possibility that the code might frequently change bulge chasing

b
directions, and so converge very slowly, we only choose the direction of bulge chasing when

eginning work on a submatrix disjoin t from the previous one. Whether this is the optimal stra-
tegy is a question of future research.

This means the singular values may be quite disordered in the final converged matrix, and

u
so must be sorted at the end (along with the singular vectors if desired) . The LINPACK SVD

ses bubble sort at the end, which could require O (n ) swaps of singular vectors. Since the2

y
s
LINPACK SVD always chases the bulge down, the singular values tend to converge in nearl
orted order, so bubble sort is relatively efficient. The new algorithm, in which the singular

f
s
values could converge in any order, uses insertion sort instead, which does at most 2n moves o
ingular vectors.

Applying the convergence criteria. In section 4 we presented four convergence criteria. Since
)

a
applying the convergence criteria costs approximately as many floating point operations (O (n )
s performing a QR sweep, it is important to test criteria only when they are likely to be

e
d
satisfied. Our decision is based on the following empirical observation: When chasing the bulg

own (up) , the bottommost ( topmost) entry s ( s ) often tends to converge to the sm allest
s n − 1 1

n 1
ingular value, with e (e ) tending to zero fastest of all offdiagonal entries. Therefore, when

y
1
chasing the bulge down, we expect convergence criteria 1a and 2a to be successful, and possibl

b but only for the bottommost entry e . Criteria 2b and 1b for the other off diagonal entries
a

n − 1
re not as likely to succeed. Conversely, when chasing the bulge up, we only apply conver-

,gence criteria 1b, 2b and 1a for e . One advantage of this scheme is that testing 2a ( for e1 n − 1
a n − 2nd if the test succeeds, for e too) costs only a few more operations after testing 1a, since
they share the same recurrence from (4.3) . Similarly, 2b ( for e , and if the test succeeds, for e1 2

S

too) is very cheap after applying 1b.

VD of 2 by 2 triangular matrices and robust shift calculation. The need for the singular value
a

m
decomposition of 2 by 2 triangular matrices, or at least the sm allest singular value of such

atrix, arises in two places in the code. The first time is when calculating the sh ift. As stated in
e

b
section 3, the standard choice of sh ift, called Wilkinson’s sh ift, is the sm allest eigenvalue of th

ottom 2 by 2 block of BB . It is easy to see that this is the square of the sm allest singular
v

T

alue of the bottom 2 by 2 block of B. The second need for the SVD of a 2 by 2 triangular
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matrix arises when the code has isolated a 2 by 2 block on the diagonal of B. Even though this
t

c
appears to be an easy case for the algorithm in section 4, it turns out that roundoff can preven
onvergence when the singular values are close. This is the case in

bH
J
Pc

w

B =
R
J
Q0
a

hen e a e and e c e are close and b is much sm aller, just larger than ε. e a e . It happens that on

t
machines with sloppy arithmetic, roundoff can cause b to be no sm aller after one step of QR
han before, so that the algorithm never converges. It is also difficult in this situation to com-

a
pute the singular vectors accurately, just as eigenvectors corresponding to multiple eigenvalues
re difficult to compute.

To get around these difficulties, we have written a subroutine which takes the entries a, b
.

B
and c of B and returns the two singular values as well as the left and right singular vectors

arring overflow and underflow, the returned values are accurate to nearly full machine preci-

s
sion, even for nearly coincident singular values. The algorithm is comparable in speed to a
traigh tforward implementation that does not attain similar accuracy. This property is based on

the fact that the algorithm uses formulas for the answer which contain only

products, quotients, and square roots,

d
sums of terms of like sign,

ifferences of computed quantities only when cancellation is impossible, and
the difference e a e − e c e , which, if cancellation occurs, is exact (except

possibly on a Cray or Cyber) .

It is straigh tforward to use these properties to show that the final resu lt is correct to nearly full
precision.

The code is also robust in the face of over/ underflow. Overflow is avoided where possible
e

r
by using formulas in terms of ratios of matrix entries, and choosing the formulas so that th
atios are always bounded by 1 in magnitude. As a resu lt of these precautions, overflow is

l
impossible unless the exact largest singular value itself overflows (or is within a few units in the
ast place of overflowing) . Underflow (of the conventional "store zero" variety) can dam age the

,
s
resu lts only if the data and/ or resu lts are themselves close to the underflow threshold
pecifically less than the underflow threshold divided by ε. Gradual underflow [2] makes the

s
u
calculation of the singular values impervious to underflow (unless the final resu lts themselve

nderflow) and the singular vectors much less susceptible to underflow problems.

nDeflation when s = 0. The standard SVD algorithm [5] has special code to handle the case whei
si= 0. This code does a simplified sequence of rotations ( similar to implicit zero-sh ift QR) to

e
d
introduce a zero on the superdiagonal of the bidiagonal matrix (adjacent to the zero on th

iagonal) and so break it into two sm aller problems. It is easy to see that the implicit zero-sh ift

z
QR algorithm does this deflation automatically, yielding one zero on the superdiagonal for each
ero on the diagonal, but at the bottom (or top) of the matrix, rather than where the original

lzero occurred. This occurs after one pass of the algorithm, at which point both s and e wiln n − 1
b 1 1e zero if chasing the bulge down ( s and e will be zero if chasing the bulge up) meaning that
the zero singular value has been deflated exactly.

We can see this as follows. Assume we are chasing the bulge down. Whenever s = 0,i + 1
e

e
both g and h will be set to 0, causing the sn returned by the second call to R OT to be 0. At th

nd of the loop, both f = h and oldsn = sn will also be zero. In fact, it is easy to see that from
p

i
now on both h and the f at the bottom of the loop will be zero: at the top of the next loo
teration, the zero value of f causes the first call of R OT to compute cs = 0; this causes

h = s *cs to be zero and the pattern repeats. Also, when oldsn = 0 (which happens wheni + 1

i + 1 i − 1 i + 1 i t
t
s = 0) , e is set to zero on the next iteration, i.e. s = 0 implies e becomes zero. Finally, a
he end of all the loop iterations, h is still zero implying both e and s are set to zero. Noten − 1 n

,
s
that when f is zero, as it frequently is in this case, the first call to R OT need only set cs = 0
n = 1 and r = g; this is what the first "if" branch in R OT does.
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Finally, we present a high-level description of the entire algorithm. In the interest of

c
brevity we omit the code for updating the singular vectors or for the absolute error convergence
riterion.

ε = machine precision
λ = underflow threshold ( sm allest positive normalized number)

t
n = dimension of the matrix
ol = relative error tolerance (currently 100ε)

)maxit = maximum number of QR inner loops (currently 3n 2

C

Bidiagonal Singular Value Decomposition

ompute σii ≤ σ (B ) using (2.4)

i i

min

)
t
σhh = max( e s e , e e e
hresh = max( tol.σii , maxit.λ)

/ * any e less than thresh in magnitude may be set to zero */

Loop:

i

/ * Find bottommost nonscalar unreduced block diagonal submatrix of B */
s

h
be the sm allest i such that e e e through e e e are at most thresh, or n if no such i existilet i n − 1h

= 1, goto Donei
l
if
et i′ be the largest i less than i

h
such that e e e ≤ thresh, or 0 if no such i exists

i = i′+ 1
i

i

/ * Apply algorithm to unreduced block diagonal submatrix from ii to i
h

*/
i+ 1, theni

h
=iif
/ * 2 by 2 submatrix, handle specially */

0compute SVD of 2 by 2 submatrix, setting e toi
goto Loop

i

f

i

endi

f submatrix from ii to i
h

disjoin t from submatrix of last pass through Loop, then

i
/ * Choose bulge chasing direction */
f e s e ≥ e s e , thenh

iii
direction = "down"

else
direction = "up"

endif
fendi
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/ * Apply convergence criteria */
if direction = "down", then

Apply convergence criterion 1b to e 1
h
−i

A
Apply convergence criterion 1a

pply convergence criterion 2a to e and possibly e 2
h
−i

h
− 1i

else
Apply convergence criterion 1a to eii

A
Apply convergence criterion 1b

pply convergence criterion 2b to e and possibly e 1i+iii

/

endif

* Compute sh ift */
nif fudge*tol*σii/σhh ≤ ε, the

/ * Use zero sh ift because tiny singular values present */

else
shift = 0

if direction = "down", then
s = si
s

h

hift = sm allest singular value of bottom 2 by 2 corner
else

s = sii
shift = sm allest singular value of top 2 by 2 corner

i
endif
f ( shift /s) ≤ eps, then

/

2

* Use zero sh ift, since sh ift rounds to 0 */
shift = 0
fendi

f

/

endi

* Perform QR iteration */
if shift = 0, then

if direction = "down", then
d

i
do implicit zero-sh ift QR downwar
f e e e ≤ thresh, set e = 0h

− 1i
h
− 1i

else
do implicit zero-sh ift QR upward
if e e e ≤ thresh, set e = 0ii i

else
endif

i

if direction = "down", then
d

i
do standard sh ifted QR downwar
f e e e ≤ thresh, set e = 0h

− 1i
h
− 1i

else
do standard sh ifted QR upward
if e e e ≤ thresh, set e = 0ii i

endif
i

f
g
endi
oto Loop

Done: sort singular values
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6. Other Methods for Computing Accurate Singular Values

l
m

In this section we discuss other methods for computing the singular values of a bidiagona
atrix B to high relative accuracy. These methods include bisection, Rayleigh Quotient Itera-

l
t
tion, and iterative refinement. They are not competitive in speed with QR for computing al
he singular values on a serial machine, but can efficiently verify whether a computed singular

.
H
value is accurate or not. We have used it to verify the numerical resu lts presented in section 7

owever, they are extremely easy to parallelize and will probably be am ong the best parallel
algorithms for this problem.

All the algorithms are based on bisection for the sym metric tridiagonal eigenproblem,
,

S
which we discuss first. Bisection is in turn based on Sylvester’s Law of Inertia, or equivalently

turm sequences [15, p. 52]. As explained in section 2, the number of negative d in recurrencei

12 )
i
(2.1) is the number of eigenvalues less than x, a quantity we will denote by ν( x ) . ν( x )− ν( x
s therefore the number of eigenvalues in the interval [x , x ) , so this method can easily verify1 2

m
f
whether an interval contains any eigenvalues. The identification of the singular value proble
or the bidiagonal matrix B with the eigenvalue problem for a sym metric tridiagonal matrix with

e
n
zero diagonal later in section 2 makes it clear that we can use the same method to count th

umber of singular values in any interval [x , x ) .

W
1 2

hat remains is an error analysis to show that the function ν( x ) is accurate. This is pro-
vided in [12, p.35]:

Let ν( x ) be the computed number of eigenvalues less than x for a sym metric tridiagonal

f
matrix A . Barring over/ underflow, the computed value of ν( x ) is the exact value of ν( x )
or a perturbed matrix A + δA where e δA e ≤ 2ε e offdiag( A ) e + εxI. Here, offdiag( A )

t
refers to the offdiagonal part of A . If A has a zero diagonal, this bound may be improved
o e δA e ≤ 1.5.ε e A e .

Therefore, by Theorem 2 or Corollary 2, if the computed value of ν( x ) is k , there must

l
be at least k singular values of B less than x /(1− (3n − 1.5)ε) and no more than k singular values
ess than x .(1− (6n − 2)ε) /(1− (3n − 1.5)ε) ; we assume nε1. If the computed value of

lν( x )− ν( x ) is j, there must be at least j singular values in the interva2 1

1 2 .[x .(1− (6n − 2)ε) /(1− (3n − 1.5)ε , x /(1− (3n − 1.5)ε) )

There is one other important feature of the computed ν( x ) . In exact arithmetic, since
f

x
ν( x ) is the number of eigenvalues less than x, ν( x ) must be a monotonic increasing function o
. It is by no means clear that the computed values of ν( x ) should also be monotonic. This is

n
significant because a failure in monotonicity could cause an algorithm to misestimate the

umber of eigenvalues in an interval, although a bisection routine which begins with an interval
[x , x ) where ν( x )− ν( x ) is positive can always main tain an interval over which the com-1 2 2 1
puted value of ν increases. It turns out, however, that as long as the arithmetic is monotonic,

t
the computed value of ν( x ) will be monotonic [12, p. 27]. By monotonic arithmetic we mean
hat if a°b≥ c°d in exact arithmetic, then fl (a°b)≥ fl (c°d) as well. This holds in any well-

m
designed arithmetic, such as the IEEE Floating Point Standard 754 [10]. We have only shown

onotonicity holds if the recurrence is computed exactly as follows, with the order of evalua-
tion respecting parentheses:

d = (a − (b /d ) ) − x .2
i − 11

N

i i i −

ow we briefly consider Rayleigh Quotient Iteration and iterative refinement. Both algo-
.

T
rithms begin with a sm all interval contain ing a singular value, and refine it as does bisection

he major difference from bisection is in the zerofinder used to refine the intervals. As long as

t
the zerofinders are implemented in a componentwise backward stable way ( i.e. they compute
he correct resu lt for a bidiagonal having only sm all relative perturbations in each entry) , then

Corollary 2 and Theorem 2 guarantee the relative accuracy of the computed singular values.
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7. Numerical experiments

The numerical experiments we discuss here compare the algorithm of sections 3 through
n

M
5 with the LINPACK SVD [5]. Both codes were run in double precision on a SUN 3/ 60 with a

C68881 floating point coprocessor, which implements IEEE standard 754 floating point arith-
metic [10]; the machine precision ε= 2 ∼∼ 1.1.10 and the range is approximately 10 . In− 53 − 16 ± 308

l
e
order to guarantee reliable timings, each matrix tested was run sufficiently often that the tota
lapsed time was about 10 seconds. Singular vectors were computed by identical calls to drot [5]

in both algorithms.

The codes were compared with respect to

t
accuracy,
otal number of passes through the inner loop of QR iteration,

e
(half the number of Givens rotations performed)

lapsed time when computing singular values only,
,

e
elapsed time when computing both left and right singular vectors as well
lapsed time including bidiagonalizing the input matrix, and

A

elapsed time excluding bidiagonalizing the input matrix.

lso, the dependence of the new algorithm on the param eter tol ( see section 4) was investi-

f
gated. At the end we comment on the implications of our resu lts for the "perfect sh ift" strategy
or computing singular vectors.

The LINPACK code was modified to explicitly use the machine precision ε in the stop-
ping criteria rather than implicitly as in (4.1) and (4.2) . Specifically,

(7.1)if ( e s e ≤ ε*( e e e + e e e ) ) , set s to 0i i i − 1 i

was used in place of (4.1) and

(7.2)if ( e e e ≤ ε*( e s e + e s e ) ) , set e to 0i − 1 i i − 1 i − 1

e
u
was used in place of (4.2) . Thus, since both the new algorithm and modified LINPACK cod

se stopping criteria with ε appearing explicitly, there is no danger that the extended precision
r

e
registers on the MC68881 would cause tests like (4.1) and (4.2) to be executed with a sm alle
ffective ε than expected, which could slow convergence.

e
i

The LINPACK code also used a corrected sh ift calculation rather than the erroneous on
n [5]. The version in [5] computes f = ( sl + sm )* ( sl − sm ) − shift; this should be
f = ( sl + sm )* ( sl − sm ) + shift instead ( the corrected version is distributed by netlib [4]) .

It turns out that the resu lts depend strongly on the form of the bidiagonal matrix. For

t
exam ple, the standard SVD behaves entirely differently on matrices graded from top to bottom
han on matrices graded in the opposite direction. Therefore, we present our resu lts on 12

e
r
separate classes of bidiagonal matrices, since this seems to be the only fair way to compar
esu lts. The classes are as follows:

Class 1:
These 8 matrices are graded in the usual way from large at the upper left to sm all at the
lower right. All matrices have a 1 in the upper corner, and each superdiagonal entry Bi, i + 1
e iiquals its neighbor B on the diagonal. Four of the matrices are 10 by 10 and have a con-
stant multiple between adjacent entries on the diagonal and superdiagonal: 10 , 10 , 1010 5 2

r
and 10. The other four are 20 by 20 and are obtained from the first four by simply
epeating each entry once, e.g. a diagonal contain ing 1, 10 , 10 , ... , 10 becomes

1 − 10 − 10 − 20 − 20 − 90 − 90

− 10 − 20 − 90

, 1, 10 , 10 , 10 , 10 , ... , 10 , 10 .

Class 2:
This class is identical to class 1 except the order of the entries on the diagonal and super-

t
diagonal are reversed. Thus these matrices are graded from sm all at the upper left corner
o large at the lower right.

Class 3:
These eight 20 by 20 and 40 by 40 matrices are obtained by abutting those in class 1 with
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their reversals in class 2. Thus each matrix is sm all at the upper left, large in the middle,
and sm all again at the lower right.

:Class 4
These eight 20 by 20 and 40 by 40 matrices are obtained by abutting those in class 2 with

,
a
their reversals in class 1. Thus each matrix is large at the upper left, sm all in the middle
nd large again at the lower right.

Class 5:
These 8 matrices are obtained from class 1 by reversing the order of the superdiagonals.

t
Thus the diagonal is graded from large at the upper left to sm all at the lower right, and
he superdiagonal is graded in the opposite direction.

Class 6:
These 8 matrices are obtained from class 5 by reversing the order of both the diagonals

t
t
and superdiagonals. Thus the diagonal is graded from sm all at the upper left to large a
he lower right, and the superdiagonal is graded in the opposite direction.

Class 7:
These 16 matrices are all sm all on the diagonal and mostly large on the offdiagonal. Eight

,of them are 10 by 10 with 1’s on the off diagonal and a constant diagonal, equaling 10− 2

1 − 4 − 6 − 8 − 10 − 12 − 14 − 160 , 10 , 10 , 10 , 10 , 10 , and 10 , respectively. The other eight 20 by 20
-

n
matrices are obtained by putting two copies of each of the first eight together, and "con

ecting" them by setting the middle offdiagonal entry B to be 10 times the value of

C

the diagonal entries.
10, 11

− 15

lasses 8-11:
The ten 20 by 20 matrices in each class are generated by letting each bidiagonal entry be a
random number of the form r.10 , where r is a random number uniformly distributedi

between − .5 and .5, and i is a random integer. In class 8, i is uniformly distributed from 0
y

d
to − 15. In class 9, i is uniformly distributed from 0 to − 10. In class 10, i is uniforml

istributed from 0 to − 5. In class 11, i is identically 0. Thus, in class 11 each matrix entry
is simply uniformly distributed on [− .5, .5].

:Class 12
This one 41 by 41 matrix is graded in as in class 1, with the ratio of adjacent entries being

y10 ∼∼ .79. Each offdiagonal entry is identical to the diagonal entry below it. This ver− .1

dense grading leads to different convergence properties than for the matrices in class 1,

T

which is why we put this exam ple in a separate class.

hus classes 1-6 and 12 consist of graded matrices, class 7 consists of matrices larger on

e
the offdiagonal than the diagonal, and classes 8-11 consist of random matrices with random
xponents.

First we discuss the accuracy of computed singular values. With tol= 100ε∼∼ 10 the new
2

− 14

d
c
algorithm always converged in fewer than maxit= 3n passes through the QR inner loop an
omputed all singular values to nearly full accuracy. Accuracy was determined using the method

l
[
in section 6: If σ is a computed singular value, the number of singular values in the interva
σ (1− nε) , σ (1+ nε) ) were counted. Overlapping intervals were joined into larger intervals.

n
The number of computed singular values in each interval was then compared with the true

umber of singular values in each interval. This accuracy test was passed in all cases but one
r

v
singular value out of 2041 singular values of all 105 matrices. In other words, 2040 singula

alues were computed with a relative error of about 10 or better; the exceptional singular− 14

4− 1 .value ( in class 11) had a relative error a little less than 3.10

The accuracy of the singular values computed by the LINPACK SVD were determined by
.

W
comparison with the singular values from the new algorithm. This data is presented in Table 1

e called agreement to at least 14 digits with the verified correct resu lts of the new algorithm
r

v
"all digits correct"; the notation "% all digits" in Table 1 means the percentage of such singula

alues. The notation "% m − n digits" in Table 1 means the percentage of singular values com-
puted with m to n correct digits. 0 digits means that the order of magnitude is still correct. − 1
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digits means correct to within a factor of 10. The column "% nonzero, no digits" gives the per-
-

t
centage of computed singular values which were nonzero and had incorrect orders of magni
ude. The column "% zero, no digits" gives the percentage of computed singular values which

e
a
were exactly zero, even though the matrix was nonsingular. The * in row 4 indicates that th
lgorithm did not converge for one of the test matrices ( this matrix was not counted in comput-

ing the percentages) .

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
i Table 1: Accuracy of Singular Values from LINPACK SVDiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Class % all % 12-14 % 8-12 % 4-8 % 0-4 % -1 % nonzero, % zero,

digits digits digits digits digits digits no digits no digitsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 100 0 0 0 0 0 0 0

3
3
2 42 14 11 0 29 1 0

99.5 .5 0 0 0 0 0 0
2

5
4* 59 11 4 2 21 1 0

94 0 0 0 0 0 0 6
6

7
6 94 0 0 0 0 0 0

90 1 .5 0 .5 0 1 7
5

9
8 80.5 4.5 5 3 1 .5 .5

80 6.5 7 2.5 1 0 0 3
0

1
10 91 4.5 3 1.5 0 0 0

1 98 2 0 0 0 0 0 0
0i12 100 0 0 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
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c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

y
d
One striking feature about this table is the difference between classes 1 and 2. The onl

ifference between the matrices in classes 1 and 2 is the order of the entries. When the entries
t

w
are graded from large to sm all, the standard SVD gets all the singular values correct. Indeed, i

as constructed to perform well on matrices graded in this fashion. When they are graded in
.

3
the opposite way, only 42% are fully correct and another third have fewer than 4 digits correct

% are computed as 0 even though all matrices tested were nonsingular. This happens because

f
the standard SVD always "chases the bulge" from top to bottom. When the matrix is graded
rom large to sm all, this works well, but when it is graded in the opposite way as in class 2, the

l
algorithm must "reorder" all the matrix entries, and in doing so must combine tiny entries with
arge entries, thereby losing precision. The same thing happens for class 4. The new algorithm

e
m
avoids the need to reorder by always "chasing the bulge" from the large to the sm all end of th

atrix. This is also done in the algorithm in [17]; see section 5 for details. The nonzero singu-
lar values which are not even order of magnitude correct are off by factors of 10 and 10− 53 − 57

( − 5class 7) and 10 (class 8) . The last column indicates how often the computed singular values
were exactly zero, when in fact none of the test matrices were singular.

We evaluated the computed singular vectors by computing the norm of the residual

s
BV − U Σ , where B is the bidiagonal matrix, V contains the right singular vectors, U the left
ingular vectors, and Σ the singular values. The norm was the maximum absolute matrix entry.

In all cases for both new and old SVD this measure never exceeded 1.1.10 ∼∼ 100ε, which is− 14

r
b
quite good and as expected from both algorithms ( it is easy to show the convergence criteria fo

oth algorithms leave the residual near the roundoff level) . We do not yet have a complete per-
-

c
turbation theory or better accuracy tests for the singular vectors; see section 9 for further dis
ussion.

Table 2 provides a measure of the difficulty of the different problem classes which is
t

t
independent of matrix dimension. The usual rule of thumb for the number of QR sweeps i
akes to compute the SVD is two sweeps per singular value [15, p. 165]. If convergence always

,
f
takes place at the end of the matrix, this means there will be 2 sweeps on a matrix of length i
or i = n, n − 1, ..., 3 ( two by two matrices are handled specially) . Here, n is the dimension of the

e
e
original matrix. Thus, counting one QR sweep on a matrix of length i as i "QR inner loops," w
xpect an average of about n (n + 1) "QR inner loops" for the entire SVD . Thus, the quantity
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"QR inner loops" divided by n (n + 1) /2 should be a measure of the difficulty of computing the
-

a
SVD of a matrix which is independent of dimension, and we expect it to equal 2 on the aver
ge. For each of the twelve problem classes, and for the three algorithms old SVD (LIN-

,
a
PACK) , new SVD without singular vectors, and new SVD with singular vectors, the minimum
verage and maximum of the quantity "QR inner loops" divided by n (n + 1) /2 are given in

e
c
Table 2. Recall that we use different convergence criteria depending on whether or not w
ompute singular vectors, which is why we have different columns for these two cases.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Table 2: QR Inner Loops / (n (n + 1) /2) for Old and New SVD Algorithms with tol= 100ε∼∼ 10 4− 1 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Class Old SVD New SVD New SVD

s
M

without vectors with vector
in Avg Max Min Avg Max Min Avg Max iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 .60 .90 1.33 .09 .36 .91 .09 .49 1.11
1

3
2 .60 1.94 3.07 .09 .36 .91 .09 .49 1.1

.61 .85 1.19 .56 .82 1.19 .56 .82 1.19
4

5
4 .32 1.04 1.80 .31 .58 1.00 .35 .60 1.0

.07 .45 1.11 .09 .54 1.29 .09 .57 1.42
2

7
6 .07 .40 .93 .09 .54 1.29 .09 .57 1.4

.10 1.32 2.31 .10 1.04 1.85 .10 1.04 1.85
7

9
8 .41 .64 .95 .25 .47 .75 .26 .49 .7

.79 .94 1.29 .51 .73 .89 .57 .75 .93
8

1
10 1.07 1.29 1.57 .98 1.19 1.47 1.04 1.22 1.4

1 1.97 2.26 2.52 2.07 2.20 2.38 2.06 2.20 2.41
6i 12 1.53 1.53 1.53 2.96 2.96 2.96 2.96 2.96 2.9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
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c
c
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c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

p
It is interesting to note in Table 2 that only in class 11 is our expectation of 2 QR sweeps

er singular value for the standard SVD nearly fulfilled. Recall that class 11 has matrices all of

l
whose entries are uniformly distributed between ± .5. Otherwise, either the average is much
ower or there is a great variability in the number of QR sweeps needed (class 2) . The same

a
comments hold for the new algorithm, except for class 12 which was chosen to make the new
lgorithm look as bad as possible. Even so, it is within a factor of two of the old algorithm.

s
d

Table 3 gives timing comparisons between the old and new algorithms. The resu lt
epend on whether singular vectors are computed (Job= v in Table 3) or not ( Job= nv) . There

s
c
were several statistics collected. First, the number of QR inner loops for each algorithm wa
ounted, and the ratio of QR inner loops for the new algorithm to QR inner loops for the old

e
o
algorithm computed; these statistics (minimum, average and maximum ratios, the same for th

ther statistics) are shown in columns 3-5 of Table 3. The timings also depend on whether we

t
count the time to bidiagonalize or not. The time to bidiagonalize is quite large and can swamp
he second, iterative part. Therefore we computed timing ratios (new algorithm to old algo-

w
rithm) both with and without the initial bidiagonalization. The identical bidiagonalization code

as used for the old and new algorithms. We performed the bidiagonalization part of the algo-
t

r
rithm on a different, dense matrix, so that the algorithm and floating point hardware would no
ecognize they were dealing with a bidiagonal input matrix and so bypass some of the work.

Columns 6-8 of Table 3 include the bidiagonalization phase, and columns 9-11 exclude it.

28



dd

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Table 3: Timing Comparisons of Old and New SVD Algorithms with tol= 100ε∼∼ 10− 14 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Class Job Ratio of Inner Loops Ratio of Times Ratio of Times
)

N
(with bidiagonalization) (without bidiagonalization

ew SVD / Old Svd New SVD / Old SVD New SVD / Old SVD
xi Min Avg Max Min Avg Max Min Avg Maiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 nv .15 .37 .77 .69 .77 .85 .29 .41 .63
v .15 .48 .84 .67 .75 .87 .26 .49 .77 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .10 .18 .34 .37 .58 .82 .14 .23 .37
4i 2

v .10 .23 .36 .37 .51 .66 .13 .26 .3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 nv .86 .96 1.02 .91 .94 .96 .73 .77 .80
v .86 .96 1.03 .95 .97 1.01 .88 .95 1.03 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .44 .60 .99 .72 .85 1.02 .40 .58 1.15
0i 4

v .44 .63 1.10 .69 .78 1.03 .46 .63 1.1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

5 nv .67 1.23 2.00 .97 1.06 1.12 .94 1.76 3.42
v .67 1.26 2.00 1.01 1.09 1.16 1.06 1.33 1.77 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .67 1.29 2.00 1.03 1.07 1.11 1.11 1.72 3.16
6i 6

v .67 1.33 2.00 .99 1.11 1.24 .98 1.33 1.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 nv .10 .80 1.00 .51 .91 1.12 .16 1.03 3.32
v .10 .80 1.00 .44 .89 1.14 .15 .93 2.04 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .38 .79 1.61 .81 .92 1.07 .45 .75 1.32
7i 8

v .40 .82 1.64 .74 .91 1.20 .47 .82 1.4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

9 nv .52 .78 .97 .78 .89 .96 .48 .69 .87
v .52 .81 1.02 .72 .89 1.01 .54 .80 1.00 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .62 .94 1.19 .78 .90 .98 .53 .77 .94
8i 10

v .67 .96 1.21 .76 .95 1.09 .63 .93 1.1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 nv .89 .98 1.12 .88 .93 1.00 .79 .87 .991
v .86 .98 1.13 .87 .96 1.06 .83 .94 1.09 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv 1.93 1.93 1.93 1.13 1.13 1.13 1.37 1.37 1.37
7i 12

v 1.93 1.93 1.93 1.55 1.55 1.55 1.87 1.87 1.8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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c
c
c
c
c

t
Whenever a number less than 1 appears in the table, it means the new algorithm was fas-

er, and numbers greater than 1 indicate the old algorithm is faster. An exam ination of the
g

b
table shows that on the whole the performance of the two algorithms is comparable. Countin

idiagonalization, the new algorithm varies from over 2.7 times faster (class 2) to 1.55 times
s

s
slower (class 12) . Not counting bidiagonalization the extremes are 7.7 times faster to 3.42 time
lower; the extra overhead of bidiagonalization moderates the extremes. On simply graded

d
b
matrices (classes 1-4) and on random matrices (classes 8-11) the new algorithm always di

etter than the old on the average. With the diagonal and offdiagonal being graded differently
s

o
(classes 5-6) , the old algorithm was generally a little faster. In classes 5-7 the largest ratio

ccurred in exam ples where convergence was very fast with both algorithms, the old SVD ’s fas-
-

s
ter convergence criterion winning out over the new algorithm’s more careful but more expen
ive convergence test. In class 7 without bidiagonalization and without computing singular vec-

3
tors, there were only two matrices where the old algorithm beat the new (by factors of 2.42 and

.32) ; in both cases both algorithms converged after a single QR sweep. Thus the difference in
s

c
times can be attributed to the slower convergence criteria of the new algorithm; in both case
onvergence was nearly immediate. Similarly, in classes 5 and 6 without bidiagonalization and

y
m
without computing singular vectors, whenever the old algorithm beat the new algorithm b

ore than 32%, the ratio "QR inner loops"/ (n (n + 1) /2) was less than .17. In class 7 and many
e

a
exam ples in classes 5-6 there were generally a few very sm all singular values and the rest larg
nd evenly spaced over a range of at most a few factors of 10; the new algorithm deflated out

c
the sm allest singular values after 1 or 2 sweeps and spent the rest of the time working on the
losely spaced singular values. It appears our criterion for choosing between zero and nonzero

yshift chooses the zero sh ift quite often, sometimes sacrificing cubic convergence until man

29



dd

singular values have been deflated. The single matrix in Class 12 was therefore chosen with
s

p
very closely spaced singular values in order to make the new algorithm perform as poorly a

ossible; in this exam ple the average number of (mostly zero sh ift) QR sweeps per singular
r

s
value was 2.96 for the new algorithm, whereas the average number of ( sh ifted) QR sweeps pe
ingular value was 1.53 for the old algorithm, which still computed them all correctly. We are

l
g
not currently able to find another criterion permitting more frequent nonzero sh ifts while stil
uaranteeing high relative accuracy. Nonzero sh ifts for fairly sm all singular values frequently do

l
m
not cause inaccuracy in practice because sm all rotation angles prevent mixing large and sm al

agnitude matrix entries; unfortunately this phenomenon seems hard to exploit systematically.

e
t

From Table 3, it appears that Convergence Criteria 2a and 2b are not very effective, sinc
he ratio of inner loops (columns 3-5) does not change very much when Job= nv (singular vec-

c
tors are not computed and Criteria 2a and 2b are used) and when Job= v (singular vectors are
omputed and Criteria 2a and 2b are not used) . This is somewhat misleading, however. Closer

f
i
inspection of the test cases shows that in classes 1 and 2, Criteria 2a and 2b cut the ratio o
nner loops in half for matrices which have constant ratios between adjacent diagonal matrix

s
entries. In these cases, the algorithm converges in a single QR sweep, instead of two QR
weeps. But for the other test matrices in classes 1 and 2, where matrix entries come in equal

m
pairs, Criteria 2a and 2b have no effect at all. The excellent performance on the first set of test

atrices is watered down in the statistics presented. Of course, since this speed up is only for

a
matrices for which the algorithm is already quite fast, we could simply omit Criteria 2a and 2b
ltogether; this would have the advantage of computing identical singular values independent of

whether we also compute singular vectors.

Another interesting feature of Table 3 is the difference between classes 1 and 2. Recall

a
that these matrices differ only in the order of the data. In class 1, the old and new algorithms
re always chasing the bulge in the same direction; in class 2 they always chase the bulge in the

t
a
opposite direction, which degrades the accuracy of the old algorithm as mentioned above. I
lso degrades the performance by about a factor of 2: in class 1 (without bidiagonalization and

e
a
without computing singular vectors) the new algorithm is about twice as fast as the old on th
verage, and in class 2 four times as fast.

We next present some timings for our algorithm with tol= 10 ε∼∼ 10 compared to the
n − 14

14 − 2

ew algorithm with tol= 100ε∼∼ 10 . This low accuracy requirement speeds up the algorithm
k

d
while still providing order-of-magnitude correct singular values; thus it may be of use for ran

etermination. Only "Job= nv" (singular values only) cases were run. The new algorithm with
ntol= 10 ε was always faster than the new algorithm with tol= 10 ε except for two matrices i14 2

2
fi
class 4 and one in class 5. In all cases the computed singular values were good to at least

gures as expected.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Table 4: Timing Comparisons of New SVD Algorithm with tol= 10 ε∼∼ 10 and tol= 10 ε∼∼ 1014 − 2 2 − 14iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Class Ratio of Inner Loops Ratio of Times Ratio of Times

)
S

(with bidiagonalization) (without bidiagonalization
VD ( tol∼∼ 10 ) / SVD ( tol∼∼ 10 ) / SVD ( tol∼∼ 10 ) /− 2 − 2 − 2

− 14 − 14 − 14 )
M

SVD ( tol∼∼ 10 ) SVD ( tol∼∼ 10 ) SVD ( tol∼∼ 10
in Avg Max Min Avg Max Min Avg Max iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 .19 .58 1.00 .80 .91 1.00 .33 .65 .95
5

3
2 .19 .58 1.00 .79 .91 1.00 .32 .66 .9

.47 .70 .84 .88 .95 .98 .68 .81 .92
4

5
4 .56 .86 1.05 .94 .99 1.08 .71 .93 1.2

.07 .35 1.00 .61 .85 1.00 .19 .54 1.00
0

7
6 .07 .35 1.00 .61 .85 1.00 .19 .53 1.0

.09 .33 1.00 .46 .70 1.00 .13 .37 1.00
1

9
8 .10 .23 .46 .80 .88 .96 .26 .45 .7

.07 .20 .40 .77 .83 .91 .21 .36 .57
4

1
10 .04 .17 .30 .68 .74 .81 .15 .29 .4

1 .27 .41 .48 .63 .71 .76 .31 .46 .53
1i 12 .14 .14 .14 .68 .68 .68 .21 .21 .2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

s
As mentioned at the end of section 4 on convergence criteria, we may use the much less

tringent criteria (4.5) and (4.6) if only absolute accuracy rather than relative accuracy in the

w
singular values is desired. In Table 5 we show timing comparisons between new algorithm

here each singular value is computed to an absolute accuracy of tol.A = 100εA ∼∼ 10 .A ,
− 14

− 14

e
f
and the new algorithm with a relative accuracy tolerance tol= 100ε∼∼ 10 as in Table 3. Th
ormat is the same as in Table 3. As can be seen from Table 5, the absolute convergence cri-

terion alm ost always leads to faster convergence than the relative convergence criterion.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Table 5: Timing Comparisons with Absolute Accuracy tol= 100ε.A ∼∼ 10 A− 14

i Versus Relative Accuracy tol= 100ε∼∼ 10− 14iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Class Job Ratio of Inner Loops Ratio of Times Ratio of Times

(with bidiagonalization) (without bidiagonalization)
SVD (absolute tol) / SVD (absolute tol) / SVD (absolute tol) /

SVD (relative tol) SVD (relative tol) SVD (relative tol)
xi Min Avg Max Min Avg Max Min Avg Maiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 nv .21 .48 1.00 .87 .91 .97 .32 .51 .92
v .17 .40 .77 .76 .83 .89 .32 .47 .74 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .21 .48 1.00 .87 .91 .97 .32 .52 .92
5i 2

v .17 .40 .77 .76 .83 .89 .31 .46 .7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 nv .06 .39 .87 .81 .88 .97 .13 .42 .85
v .06 .39 .86 .59 .73 .92 .09 .41 .85 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .03 .25 .70 .82 .88 .94 .11 .30 .71
2i 4

v .03 .25 .73 .66 .73 .85 .07 .28 .7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

5 nv .14 .47 .92 .75 .89 .94 .21 .47 .87
v .14 .46 .86 .68 .85 .91 .26 .50 .85 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .14 .47 .92 .75 .89 .94 .21 .47 .87
5i 6

v .14 .46 .86 .68 .85 .91 .25 .50 .8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 nv .82 .94 1.00 .92 .96 .99 .41 .83 .98
v .82 .94 1.00 .92 .96 1.00 .66 .88 1.00 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .26 .40 .64 .82 .88 .93 .32 .43 .55
2i 8

v .25 .40 .62 .66 .78 .89 .29 .43 .6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

9 nv .50 .68 .95 .88 .91 .97 .54 .67 .87
v .51 .68 .93 .78 .85 .96 .53 .68 .91 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .60 .83 1.00 .88 .93 .98 .65 .82 .96
5i 10

v .61 .83 .97 .78 .90 .97 .62 .83 .9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 nv .97 1.00 1.00 1.00 1.01 1.02 .99 1.01 1.041
v .97 1.00 1.05 .98 1.00 1.04 .97 1.00 1.05 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nv .88 .88 .88 .95 .95 .95 .89 .89 .89
7i 12

v .88 .88 .88 .91 .91 .91 .87 .87 .8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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p
Finally, we discuss the implications of our resu lts for the "perfect sh ift" strategy for com-

uting singular vectors (or eigenvectors) . This strategy advocates computing the singular values

t
(or eigenvalues) by the quickest available method without accumulating singular vectors, and
hen using these computed singular values as "perfect sh ifts" in the QR iteration to compute the

-
m
singular vectors in 1 or possibly 2 QR sweeps. The hope is that by avoiding the work of accu

ulating vectors while converging to accurate singular values, time will be saved by computing
s

i
the singular vectors afterwards in one or two sweeps each . Unfortunately, our numerical resu lt
ndicate this approach will not work in general. For when our hybrid algorithm chooses to do an

-
i
implicit zero sh ift, it is in fact doing a perfect sh ift within the limits of roundoff error. Depend
ng on the distribution of singular values, this can take more or less time to converge. There-

v
fore one cannot assume 1 or 2 sweeps with the "perfect sh ift" will resu lts in converged singular

ectors, and we could well end up doing as many sweeps to compute the singular vectors as the
e

w
singular values. This will not happen in general, and a clever algorithm might be able to decid

hen perfect sh ifts are useful and then use them, perhaps by keeping track of which deflated
subblocks of the matrix do not require zero sh ifts and using the perfect sh ift strategy on them.
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8. Detailed Error Analysis

In this section we present a detailed error analysis of the implicit zero-sh ift QR algorithm
f

e
(Theorems 6 and 7) . We begin with the assumptions used in the error analyses. Our model o
rror in floating point arithmetic was given above in (3.5) . It implies that overflow and

.
I
underflow do not occur; we discuss susceptibility to overflow and underflow briefly at the end
n our analysis εs with numerical subscripts denote quantities bounded in magnitude by ε,

l
r
where ε is the machine precision. Our analysis will be linearized in the sense that we wil
eplace quantities like (1+ ε )* (1+ ε ) by 1+ (ε + ε ) and (1+ ε ) /(1+ ε ) by 1+ (ε − ε ) ; such1 2 1 2 1 2 1 2

i d
i
approximations can be made rigorous by assuming all ε are less than .1 in magnitude an
ncreasing the final error bound by a factor 1.06 [18, p. 113].

t
a
Lemma 5: Let cosθ, sinθ and ρ denote the exact outputs of R OT for inputs f and g and exac
rithmetic. Now consider the floating point version of R OT applied to the perturbed inputs

f̂ = f (1+ ε ) and g = g (1+ ε ) , and let cs = (1+ ε ) cosθ, sn = (1+ ε ) sinθ, and r = (1+ ε )ρˆf g cs sn r
e

m
denote the computed resu lts, where we assume neither overflow nor underflow occurs. Then w

ay estimate the relative errors ε , ε and ε as follows:

r

cs sn r

g
2

f
2

r r

sn g f
2

sn sn

cs f g
2

cs cs εhhh12
4

ε = (ε − ε ) sin θ + ε ′ , where e ε ′ e ≤

εhhh12
4

ε = (ε − ε ) cos θ + ε ′ , where e ε ′ e ≤

εhhh31
4

P

ε = ε sin θ + ε cos θ + ε ′ , where e ε ′ e ≤

roof: We only consider the case e f e > e g e ; the other case is analogous. In the following εs withˆ ˆ
i s

d
numeric subscripts indicate quantities bounded by ε which may be functions of previous ε s a

escribed in the first paragraph of this section. Then applying (3.5) systematically to the expres-
sions in R OT , and using the fact that e g / f e < 1, yieldsˆ ˆ

g f 1)hh (1+ ε − ε + εg
f

t

t =

t = (1+ ε ) .[(1+ ε ) .(1 + t (1+ ε ) ) ] 2
4 3

2
2

1 /

5
2 1 /2

=

= (1+ 7ε /4) [1+ t ]

(1+ 7ε /4) [1+ (g/ f ) (1 + 2(ε − ε + ε ) ) ] 2

5

5
2

g f 1
1 /

g f 1
2 2 2 1 /2

=

= (1+ 7ε /4) (1 + (ε − ε + ε ) (g/ f ) /(1+ (g/ f ) ) ) [1+ (g/ f ) ]

(1 + 9ε /4 + (ε − ε ) sin θ) secθ

7

6 g f
2

8 f g
2 θ

s

cs = (1+ ε ) /tt = (1 + 13ε /4 + (ε − ε ) sin θ) cos

n = (1+ ε ) t .cs = (1 + 21ε /4 + (ε − ε ) cos θ) sinθ

1

9 10 g f
2

1 12 g
2

f
2 ρ

`

r = (1+ ε ) f .tt = (1 + 13ε /4 + ε sin θ + ε cos θ)

To analyze the errors in the implicit zero-sh ift QR algorithm, we need to investigate how
f

a
the errors accumulate from one pass through the loop to the next. It turns out the errors in
nd oldcs are the essential ones:

Lemma 6: Let f and oldcs denote the true values of f and oldcs at the entry to the i-th iterationi i

1i 2i o
r
of the loop in the implicit zero-sh ift QR algorithm. Let θ and θ be the true values of the tw
otation angles in the i-th iteration of the loop. In other words, f , oldcs , θ and θ are thei i 1i 2i

fi i
dvalues that would have been computed had all arithmetic been exact. Let f (1+ ε ) an
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oldcs (1+ ε ) denote the actual floating point values of f and oldcs at the top of the loop, withi oldcsi

all previous loop iterations having been done in floating point without any overflows or
underflows. Then

(8.1)
25ε /4 H

J
P2

e ε e H
J
J
P

+
R
J
Q21ε /4 + 21ε.sin θ /e

0 H
J
P
.
R
J
J
Q
e εθ

sin θ

sinθ

e ε e H
J
J
P

≤
R
J
Q2cos θ .sine

R
J
J
Q
e εoldcs

f

2
1i

2
2i

2
1i

2
2i oldcs

f

2
2i

i

i

i + 1

1i +

i i:In terms of these expressions, we can bound the errors in the computed values of e and s

e = "true e ".(1 + ε ) and s = "true s ".(1 + ε )i i e i i si i

where

(8.2)ε = − ε .cos θ − 2ε .cos θ .cos θ + ε .cos θ + 20εe oldcs
2

2i f
2

1i
2

2i f
2

1, i + 1

and

i i i i + 1

(8.3)hhhsin θ ε .
52

4
hhhε +51
2

ε = ε .cos θ .cos2θ + ε .cos θ +s f
2

1i 2i oldcs
2

2i 14
2

2i 15

i

i i i

ie sε and ε may be further bounded by:

(8.4)e ε e ≤ e ε e + 2 e ε e + e ε e + 20εe oldcs f f 1

and

i i i i +

(8.5)e ε e ≤ e ε e + e ε e + 25εsin θ /4 + 15ε /2 .s f oldcs
2

2i

P

i i i

roof: We apply (3.5) and Lemma 5 systematically to the expressions in the algorithm. As

N

before, εs with numeric subscripts denote expressions bounded in magnitude by ε.

ote that at the top of the loop, g is known exactly. Therefore, after the first call to R OT we
have

r = "true r".(1 + ε .cos θ +
4

13hhhε )

sn = sinθ .(1 − ε .cos θ +
4

21hhhε )

cs = cosθ .(1 + ε .sin θ +
4

21hhhε )1i f
2

1i 1

21i f
2

1i

3

i

i

f
2

1ii

The errors in f, g and h are given by

h = (1+ ε ) .s .cs = "true h".(1 + ε .sin θ +
4

25hhhε )

g = (1+ ε ) .s .sn = "true g".(1 − ε .cos θ +
4

25hhhε )

f = (1+ ε ) .oldcs .r = "true f ".(1 + ε + ε .cos θ +
4

17hhhε )4 oldcs f
2

1i 5

76 i + 1 f
2

1i

98 i + 1 f
2

1ii

i

i i

After the second call to R OT we have

r = "true r".(1 + ε .cos θ .cos2θ + ε .cos θ +
2

15hhhε +
4

25hhhε .sin θ )

sn = sinθ .(1 − ε .cos θ − 2ε .cos θ .cos θ +
2

21hhhε .cos θ +
4

21hhhε )

cs = cosθ .(1 + ε .sin θ + 2ε .cos θ .sin θ +
2

21hhhε .sin θ +
4

21hhhε )2i oldcs
2

2i f
2

1i
2

2i 10
2

2i 11

32i oldcs
2

2i f
2

1i
2

2i 12
2

2i 1

if
2

1i 2i oldcs
2

2i 14 15
2

2i i

i i

i i

Since oldcs = cs and f = h at the bottom of the loop, we have shown that at the start of the
next loop
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oldcs = oldcs (1 + ε .sin θ + 2ε .cos θ .sin θ +
2

21hhhε .sin θ +
4

21hhhε )

f = f (1 + ε .sin θ +
4

25hhhε )

i + 1 oldcs
2

2i f
2

1i
2

2i 10
2

2i 11

i + 1 f
2

1i 9

i i

i

i i s
i
as desired. The expressions for the errors in e and s follow from plugging the above bound
nto the expressions e = oldsn*r and s = r. `i − 1 i

i i e
e

From (8.4) and (8.5) we see that the errors in the computed e and s are governed by th
rrors ε and ε , and that the growths of these errors are governed by the recurrence (8.1) .f oldcsi i

A simple but somewhat pessimistic bound on these errors is given by

Lemma 7: Let ε , ε , ε and ε be as in Lemma 6. Thenf oldcs e sii i i

i

i

io

e

s

i

ldcs

e

f

ε e ≤ (113i − 58)ε /4

e ε e ≤ (138i − 53)ε /4

e ε e ≤ 113( i − 1)ε /4

e ε e ≤ 25( i − 1)ε /4

Proof: Replace the recurrence (8.1) by

E = A .E + Fi

where

i + 1 i i

A =
R
J
Q2cos θ .sin θ

sin θ

sin θ

0 H
J
P

, F =
R
J
Q21ε /4 + 21ε.sin θ /2

25ε /4 H
J
P

2
1i

2
2i

i 2
2ii

i 2
1i

2
2

i f oldcs 1a
i i

nd the entries of E are upper bounds for e ε e and e ε e . Taking E = 0, this recurrence has
the solution

(8.6)E = ( A )Fi + 1
j = 1

i

k = j + 1

i

k j

i i

Σ Π
eTrivial bounds for A and F ar

(8.7)
25ε /4H

J
P4

sin θ

1

0H
J
P

and e F e ≤
R
J
Q63ε /θe A e ≤

R
J
Q2cosi 2

1i

2
1i

i

A simple induction shows that

R
J
Q2cos θ

sin θ

1

0H
J
P

=

R
J
J
J
J
Q
2(1 − sin θ )

sin θ

1

0
H
J
J
J
J
P

Π

Πk
Π
= j + 1

i

2
1k

2
1k

k = j + 1

i
2

1k

k = j + 1

i
2

1k

and the rest of the proof is a straigh tforward computation. `

In other words, the relative errors in the computed e and s are bounded by a linear func-i i
-

s
tion of i, and so the largest relative error is bounded by a linear function of the matrix dimen
ion n. We can now apply Theorem 2 of section 2 to bound the errors in the singular values of

T

the transformed matrix:

heorem 6: Let B be an n by n bidiagonal matrix and B ′ the matrix obtained by running the
eimplicit zero-sh ift QR algorithm on B. Let the singular values of B be σ ≥ . . . ≥ σ , and th1 n

1 n fsingular values of B ′ be σ ′≥ . . . ≥ σ ′. Then i

(8.8)ω ≡ 69n ε< 1 ,2

e
b
the relative differences between the singular values of B and the singular values of B ′ ar

ounded as follows:
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e σ − σ ′ e ≤
1− ω
h ωhhhhσ .

L k

i i i

et B be the matrix obtained after k repetitions of the implicit zero-sh ift QR algorithm, and let
σ ≥ . . . ≥ σ be its singular values. Then if condition (8.8) holds we havek 1 kn

i ki k i
2

i ,hhhhhhhh − 1) . σ ∼∼ 69kn ε.σ1

)

w

e σ − σ e ≤ (
(1− ω

here the approximation to the last upper bound holds if k ω1.

Proof: Plug the bounds of Lemma 7 into Theorem 2. `

Actually, Lemma 7 and Theorem 6 are quite pessimistic, since the upper bounds in (8.7)
are unattainable. In fact, as we approach convergence, we expect the rotation angles θ and θ1i 2i
t io approach zero, which means the matrix A should approach zero. We can use this fact to

L

obtain a much stronger error bound in the region of convergence:

emma 8: Let ε , ε , ε and ε be as in Lemma 6. Assume further that all the rotationf oldcs e si i i i
2 nangles θ during the course of the algorithm satisfy sin θ ≤ τ < 1. The

e ε e ≤
4(1− τ )

50τεhhhhhhhhh +
2(1− τ )

21τεhhhhhhhh +
2(1− τ )

23εhhhhhhhh +
4

25τεhhhhh +
2

15εhhhh

e ε e ≤
4(1− τ )

50τεhhhhhhhhh +
2(1− τ )

21τεhhhhhhhh +
1− τ
24εhhhhh + 20ε

e ε e ≤
4(1− τ )

50τεhhhhhhhhh +
2(1− τ )

21τεhhhhhhhh +
4(1− τ )

21εhhhhhhhh

e ε e ≤
4(1− τ )

25εhhhhhhhh

s 2

e 2

oldcs 2

f

i

i

i

Proof: Use the bounds

i

e A e ≤
R
J
Q2τ

τ
τ
0H
J
P

and e F e ≤
R
J
Q21ε /4 + 21ετ /2

25ε /4 H
J
P

.

T

i i

he rest of the proof is a straigh tforward computation from (8.6) . `

:

T

These bounds permit us state the following improvement to Theorem 6

heorem 7: Let B be an n by n bidiagonal matrix and B ′ the matrix obtained by running the
e

o
implicit zero-sh ift QR algorithm on B. Assume that all the rotation angles θ during the cours

f the algorithm satisfy sin θ ≤ τ < 1. Let the singular values of B be σ ≥ . . . ≥ σ , and the2
1 n

n1 fsingular values of B ′ be σ ′≥ . . . ≥ σ ′. Then i

(8.9)hhhhhhh < 1 ,
ε88n

)
ω ≡

(1− τ 2

e
b
the relative differences between the singular values of B and the singular values of B ′ ar

ounded as follows:

e σ − σ ′ e ≤
1− ω
h ωhhhhσ .

L k

i i i

et B be the matrix obtained after k repetitions of the implicit zero-sh ift QR algorithm, where
rwe assume all rotation angles θ satisfy sin θ ≤ τ < 1. Let σ ≥ . . . ≥ σ be the singula2

k 1 kn
v kalues of B . Then if condition (8.9) holds we have

,hhhhhhh .σε88kn

)
hhhhhhhh − 1) . σ ∼∼

(1− τ
1

)
e σ − σ e ≤ (

(1− ωi ki k i 2 i

P

where the approximation to the last upper bound holds if k ω1.

roof: Plug the bounds of Lemma 8 into Theorem 2. `
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Thus, if the rotation angles are all bounded away from π /2, the error after k iterations of

c
the implicit zero-sh ift QR algorithm can grow essentially only as the product kn. The algorithm
an easily compute τ as it proceeds, and so compute its own error bound if desired. In the

e
c
numerical experiments in section 7, we observed no error growth at all, and so as is often th
ase an algorithm behaves much better in practice than rigorous error bounds can guarantee.

n
b

Now we briefly consider over/ underflow. Most of the error analyses presented here ca
e extended to take over/ underflow into account. Techniques for error analysis in the presence

-
i
of underflow are discussed in [2]. If over/ underflow is handled as suggested in the IEEE Float
ng Point Standard [10], then using Sylvester’s theorem to count the number of eigenvalues

,less than x (2.1) can be made completely impervious to over/ underflow [12]: If some d = ± 0i
t i + 1 i + 2 i + 2 ihen d = ± ∞ and d = a , and we count the number of d whose sign bit is negative ( i.e.
including − 0 and − ∞ ) . Rules for arithmetic with ± 0 and ± ∞ are described in detail in [10].
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9. The Accuracy of the Computed Singular Vectors

e
s

In this section we assess the accuracy of the computed singular vectors. Just as with th
tandard SVD , the new algorithm guarantees a sm all residual in the sense that both Bv− σ u andˆ ˆ ˆ

ˆB T ˆ ˆ ˆ ˆ ˆu− σ v are on the order of εB , where σ is the computed singular value and u and v are the
y

i
computed singular vectors. However, in contrast to the singular values, high relative accurac
n the bidiagonal matrix entries does not guarantee high relative accuracy in the singular vec-

g
tors; we will give a 2 by 2 exam ple to illustrate this. It also turns out to be impossible to
uarantee a tiny componentwise relative backwards error, where each computed singular vector

o
of B would be the exact singular vector of a sm all componentwise relative perturbation B + δB

f B, with e δB e ≤ η e B e , η on the order of machine precision. We will also demonstrate this
with a sm all exam ple.

In place of such simple a priori forward or backward error bounds, our bounds will depend
-

r
on the singular value distribution. Briefly, the closer together singular values are, the less accu
ately their corresponding singular vectors can be computed. This dependency is captured in the

e
c
well known "gap" theorem [15, p. 222] which can be used to show that the angular error in th
omputed singular vectors corresponding to σ is bounded by the largest roundoff error com-i

i i± 1 l
k
mitted divided by the "gap" or difference between σ and its nearest neighbor σ . This wel

nown bound holds for the standard SVD applied to dense matrices as well as the new algo-
rithm.

Numerical experience leads us to make the following conjecture for the new algorithm
-

g
applied to bidiagonal matrices which would significantly strengthen the bound in the last para
raph: the "gap" min e σ − σ e in the denominator of the above error bound can be replaced byi i± 1

i i± 1 ithe "relative gap" min( e σ − σ e /σ ) . Since the relative gap can be much larger than the gap,

w
the resu lting error bound can be much sm aller. For exam ple, if B is 3 by 3 bidiagonal matrix

ith singular values σ = 1, σ = 2.10 and σ = 10 , the old error bounds for the vectors1 2
− 20

3
− 20

20 − 20 .
H
corresponding to the two tiny singular values are on the order of 10 ε since the gap is 10

owever, the conjectured bounds are both ε since the relative gap between 2.10 and 10 is− 20 − 20

t
a
1. Proving this conjecture rigorously remains an open problem, although a supporting resu l
ppears in [1].

Now we present a two by two exam ple showing that sm all relative perturbations in the
entries of a bidiagonal matrix can cause large perturbations in the singular vectors:

A (η) =
R
J
Q 0

1+ η
1

ε H
J
P

.

s
r
As η varies from 0 to ε, an easy computation shows that both left and right singular vector
otate by 22.5 degrees.

The same exam ple can be used to show that no tiny componentwise relative backward
error bound can hold. Specifically, let u and v be the left and right unit singular vectors ofˆ ˆi i

A =
R
J
Q 0

1+ ε
1

ε H
J
P

s
a
computed by the new algorithm (for ease of presentation we ignore the fact that 2 by 2 matrice
re handled specially by the algorithm; this same phenomenon holds for larger exam ples as

well) . Suppose that u and v differ by at most ε from the exact unit singular vectors u and vˆ ˆi i 1 i i

2 f
ε
of a componentwise relative perturbation A + δA of A , where e δA e ≤ ε e A e . Then i

= o(ε ) , ε .ε = Ω (ε) . In other words, ε is Ω (ε ) . Therefore, any attempt to prove a2
2/3

1 2 1
1 /3

2 /3 -
t
sm all componentwise relative backward error o (ε ) must permit errors in the computed vec
ors at least as large as ε > > ε.

T

1/3

he proof goes as follows. Applying the new algorithm to A ( and ignoring the fact that 2
by 2 matrices are handled specially) , we set A to 0 and get the columns of the identity matrix1, 2

2
α

(
as left and right singular vectors. Now we make relative perturbations of size at most ε = ε
α> 2 /3) in each entry of A (here, e ε e ≤ ε ) :2i 2
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B = A + δA =
R
J
Q 0

(1+ ε) (1+ ε )

1+ ε
ε(1+ ε ) H

J
P

22

3

Compute

21

2

B B = I +
R
J
Q ε
2ε+ 2ε

2ε
ε H

J
P

+ O (ε + ε )T
21

23

2
2
2

2
2
2)

1H
J
P

+ O (ε + εy≡ I + ε
R
J
Q1
x

≡ I + εC + O (ε + ε )

2

2
2
2

2
T

i
where e x e ≤ 2+ 2ε /ε and e y e ≤ 2ε /ε. We consider the eigenproblem for C. Suppose [1 η]
s an eigenvector of C; we will show

3 + 4ε /ε
h 1hhhhhhhhh ≤ e η e ≤ 3 + 4ε /ε

2
2

T
2

1− α e
a
implying the angle between an eigenvector of C and [1 0] is Ω (ε /ε ) = Ω (ε ) . We comput
s follows. If [1 η] is an eigenvector of C, η must satisfy η + (x − y)η− 1= 0 orT 2

2 1 /2 .hhhhhhh ) + 1)
)(y − x

2
hhhhhhh ± ( (

)(y − x
2

S

η =

ince e (y − x ) /2 e ≤ 1+ 2ε /ε, it is easy to see both e η e and e η e are bounded by2
− 1

2 2
2 1 /2

2 ε

as desired.

1+ 2ε /ε + ( (1+ 2ε /ε) + 1) ≤ 3+ 4ε /

Now consider the so far ignored perturbation O (ε + ε ) . The gap between the eigenvalues2
2
2

2
2o 2 1/2 2f C is computed to be ( (x − y) + 4) ≥ 2. Thus the perturbation O (ε + ε ) can change the

.eigenvectors by at most O (ε+ ε /ε) . When ε = ε , this is a perturbation of at most O (ε )2
2

2
α 2α− 1

d
Ω
But when α> 2 /3, 2α− 1> 1− α and so the perturbation cannot change the lower boun

(ε ) on e η e .1− α

αThus, a relative perturbation of size ε (α> 2 /3) to A means the right singular vectors are
sleast Ω (ε ) ≡ Ω (ε ) away from the computed right singular vectors. Thus ε .ε = Ω (ε) a1− α

1 1 2
desired.

Since our algorithm handles 2 by 2 matrices as special cases, a 4 by 4 matrix like

0

1

1

0

0H
J
J
J
J
P

ε
R
J
J
J
J
Q
0

0

0

1

0

0

1

1

0

1

.could be used in the proof, but the computations are more complicated

As stated above, rigorous error bounds on the computed singular vectors depend on the
y

t
singular value distribution, and that the closer together singular values are, the less accuratel
heir corresponding singular vectors can be computed. The "gap" theorem [15, p. 222] expresses

l
B
this dependency by bounding the angular error in the computed singular vectors by the residua

v − σ u , B u − σ v ( the norm of the n by 2 matrix [Bv − σ u , B u − σ v ]) divided by theˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi i i
T

i i i i i i
T

i i i
ˆ i i iˆ ˆgap (here u , v and σ are the computed singular vectors and singular value) . Standard back-

-
t
ward error analysis shows that the residual may be bounded by largest roundoff error commit
ed (which is p (n )εB , p (n ) a modest function of n and ε the machine precision) . This yields

the error bound

39



dd

(9.1)max(θ( u , u ) , θ( v , v ) ) ≤ p (n )ε B / gap ≡ p (n )ε B / min e σ − σ e ;ˆ ˆi i i i i i± 1

h i iere u and v are the exact singular vectors.

The bound (9.1) is true for the standard SVD of a dense matrix as well as the new algo-

t
rithm. A natural question is whether the bound can be improved for the new algorithm applied
o the bidiagonal singular value problem. Numerical experience and Proposition 7 in [1] sup-

C

port the following

onjecture: Let B be an unreduced bidiagonal matrix with singular values σ and left and righti

ii i iˆ ˆ .
T
singular vectors u and v . Let the singular vectors computed by the new algorithm be u and v

hen the errors in u and v are bounded byˆ ˆi i

(9.2)max(θ( u , u ) , θ( v , v ) ) ≤ p (n )ε / relative gap ≡ p (n )ε / min ( e σ − σ e /σ ) .ˆ ˆi i i i i i± 1 i

t
p

The justification for this conjecture is as follows. In section 8 we proved that the zero-sh if
art of the algorithm is forward stable across a single QR sweep; numerical experience indicates

s
that it is actually forward stable across many QR sweeps. ( It is straigh tforward but tedious to
how that after k sweeps, rounding errors can grow by at most a factor which is O (k ) , but it

t
appears difficult to estimate the constant.) This forward stability means the accumulated
ransformation matrices are computed accurately. Thus, the only serious errors are committed

,
w
on convergence: setting an offdiagonal to zero. If we use a "conservative" convergence criterion

here only offdiagonals sm aller than ε.σ are set to zero, the numerator in (9.1) is reduced
m

min

infrom p (n )εB to p (n )εσ , which implies the conjecture. Extending this argument to the stop-
-

s
ping criterion described in section 4 appears difficult, and it is possible that with the more con
ervative stopping criterion the algorithm will occasionally compute more accurate vectors than

the criterion of section 4.
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10. Conclusions and Open Problems

We have described a method for computing all the singular values of a bidiagonal matrix

S
to nearly full machine precision, and showed it to be comparable in speed to the LINPACK

VD algorithm. This computation is justified because sm all relative errors in the bidiagonal
l

r
entries ( from roundoff in the algorithm or from previous computations) can only cause sm al
elative errors in the singular values, independent of their magnitudes. The technique can be

h
extended to computing the eigenvalues of sym metric positive definite tridiagonal matrices with

igh relative accuracy as well [1].

A number of open questions remain . First, how accurate are the singular vectors com-
-

t
puted by this algorithm? We cannot generally expect high relative accuracy in all singular vec
ors, because clustered singular values can have arbitrarily ill-conditioned singular vectors. Still,

c
singular vectors might be computable fully accurately so long as the relative differences between
orresponding singular values and their neighbors are big enough, at least if we use a stopping

-
p
criterion more conservative than the one in section 4. When in practice is it necessary to com

ute such accurate singular vectors for tiny clustered singular values? Do applications demand
accurate singular vectors, or are tiny residuals sufficient, and if so, how tiny?

Second, since we have shown that it is possible to obtain accurate singular values from
-

t
accurate bidiagonal matrices, we may ask when it is possible to guarantee accuracy in the reduc
ion to bidiagonal form. This is clearly not possible in general, but for some special classes of

l
f
matrices ( such as positive definite sym metric tridiagonal matrices [1]) reduction to bidiagona
orm is accurate. It may also be possible for graded matrices arising from integral equations.

For what classes is this true?

Third, how generally can our implicit zero-sh ift technique be employed to guarantee accu-

i
rate singular values and eigenvalues? As mentioned in section 3, a similar technique was used
n root-free versions of sym metric tridiagonal QR; can it be modified to produce a tridiagonal

c
sym metric QR algorithm which guarantees accurate eigenvalues for at least some interesting
lasses of sym metric tridiagonal matrices? This question is addressed in [13].

-
t

Finally, what is the best parallel algorithm for high accuracy singular values? As men
ioned in section 3, zero-sh ift QR can be parallelized, but it is not as easy to see how to incor-

r
porate sh ifts and convergence testing. In section 6, we showed that bisection and its
efinements could be used to compute high accuracy singular values. Such a technique has been

r
p
successfully parallelized for finding eigenvalues of sym metric tridiagonal matrices [14]. Anothe

ossibility is an algorithm based on divide and conquer [11], although it appears difficult to
r

v
guarantee high accuracy. The answer will probably depend on whether all or just some singula

alues are desired; in the latter case bisection will likely be superior.

e
L

The code is available electronically from the first author. It will also be incorporated in th
APACK linear algebra library [3].
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