Accurate Singular Values of Bidiagonal M atrices

(Appeared in the SIAM J. Sci. Stat. Comput., v. 11, n. 5, pp. 873-912, 1990)

James Demmel W. Kahan
Courant Institute Computer Science Division
251 Mercer Str. University of California
New York, NY 10012 Berkeley, CA 94720
Abstract

Computing the singular values of a bidiagonal matrix is the fina phase of the standard algo-
rithm for the singular value decomposition of a genera matrix. We present a new algorithm
which computes al the singular vaues of a bidiagona matrix to high relative accuracy indepen-
dent of their magnitudes. In contrast, the standard algorithm for bidiagona matrices may com-
pute small singular vaues with no relative accuracy at al. Numerical experiments show that
the new algorithm is comparable in speed to the standard algorithm, and frequently faster.

Keywords: singular value decomposition, bidiagonal matrix, QR iteration
AMS(MOS) subject classifications: 65F20, 65G05, 65F35

1. Introduction

The standard algorithm for computing the singular value decomposition (SVD) of a gen-
era real matrix A has two phases [7]:

1) Compute orthogonal matrices P; and Q; such that B = P]AQ); is in bidiagonal form, i.e.
has nonzero entries only on its diagona and first superdiagonal.

2) Compute orthogona matrices P, and Q, such that ¥ = PJBQ, is diagona and nonnega-
tive. The diagonal entries o; of X are the singular values of A. We will take them to be
sorted in decreasing order: ;= 0;,,. The columns of Q=Q;Q, are the right singular vec-
tors, and the columns of P=P,P, are the left singular vectors.

This process takes O (n®) operations, where n is the dimension of A. This is true even
though Phase 2 is iterative, since it converges quickly in practice. The error analysis of this
combined procedure has a widely accepted conclusion [8], and provided neither overflow nor
underflow occurs may be summarized as follows:

The computed singular values o; differ from the true singular values of A by no more
than p(n)-e-A, where A=c, isthe 2-norm of A, € is the machine precision, and p(n) isa
dowly growing function of the dimension n of A.

This is a generally satisfactory conclusion, since it means the computed singular values
have errors no larger than the uncertainty in the largest entries of A, if these are themselves
the results of previous computations. In particular, singular values not much smaller than A are
computable to high relative accuracy. However, small singular values may change completely,
and so cannot generaly be computed with high relative accuracy.

There are some situations where the smallest singular values are determined much more
accurately by the data than a simple bound of the form p(n)eA would indicate. In this paper we
will show that for bidiagona matrices the singular values are determined to the same relative

precision as the individua matrix entries. In other words, if al the matrix entries are known to
high relative accuracy, al the singular values are also known to high relative accuracy indepen-
dent of their magnitudes. This will follow from an analogous theorem about the eigenvalues of
symmetric tridiagonal matrices with zero diagonal.

In such situations it is desirable to have an agorithm to compute the singular values or
eigenvalues to the accuracy to which they are determined by the data. In this paper we present
an agorithm for computing al the singular values of a bidiagona matrix to guaranteed high
relative accuracy, independent of their magnitudes. Our agorithm is a variation of the usual
QR iteration which is used in the standard SVD algorithm. Briefly, it is a hybrid algorithm of
the usua QR iteration with a "zero-shifted” QR modified to guarantee forward stability.
Numerical experience, which we report below, shows that it is generaly faster than the standard
algorithm, and ranges from 2.7 times faster to 1.6 times slower counting reduction to bidiagonal
form (7.7 times faster to 3.4 times slower not counting reduction to bidiagonal form).

This perturbation theory and agorithm aso apply to some classes of symmetric matrices.
For example, they may be applied to symmetric tridiagonal matrices with zero diagonal; such
matrices arise by reducing skew-symmetric matrices to tridiagona form. Another class where
the perturbation theory applies, so that small relative perturbations in the matrix entries only
cause small relative perturbations in the eigenvalues, are scaled diagonally dominant symmetric
matrices. A symmetric matrix H is scaed diagonally dominant if H=DAD where D is an arbi-
trary diagonal matrix and A is symmetric and diagonally dominant in the usua sense. This
class includes all symmetric positive definite matrices which may be consistently ordered [1], a
class which arises in the numerical solution of elliptic partia differential equations. In particular,
this class includes al symmetric positive definite tridiagona matrices. As before, we can exhi-
bit algorithms to compute the eigenvalues of H to their inherent accuracy. This work will be
reported on elsewhere [1].

The rest of this paper is organized as follows. Section 2 presents perturbation theory for
the singular values of a bidiagonal matrix, and shows that small relative perturbations in the
nonzero entries of a bidiagonal matrix can only cause small relative perturbations in its singular
values. We aso present theorems which say when an offdiagonal entry can be set to zero
without making large relative perturbations in any singular value; these theorems are the basis
of the convergence criteria for the new algorithm. Section 3 presents the agorithm, which is
QR iteration with a "zero shift," modified to be forward stable. This forward stability combined
with the perturbation theorem of section 2 shows that QR can compute al the singular values
with high relative accuracy. Section 4 discusses convergence criteria for the new algorithm,
since the convergence criteria for the standard algorithm can cause unacceptably large perturba-
tions in small singular values. It aso discusses the practical algorithm, which is a hybrid of the
standard algorithm and the agorithm of section 3. Details of the implementation, including
high-level code for the entire algorithm, are presented in section 5. Sections 3, 4 and 5 may be
read independently of section 2. Section 6 shows how to use bisection, Rayleigh quotient itera-
tion, and various other schemes to compute the singular values of a bidiagonal matrix to high
relative accuracy. Bisection will be used to verify the results in section 7, which discusses
numerical experiments. Section 7 also addresses the implications of our results for the "perfect
shift" strategy for computing singular vectors. Section 8 contains a detailed error analysis of the
new algorithm. Section 9 discusses the accuracy of the computed singular vectors;, a complete
analysis of this remains an open question. Sections 6 through 9 may be read independently.
Sections 7 and 8 depend only on sections 3 through 5. Section 10 contains suggestions for
paralel versions of the algorithms presented, open questions, and conclusions.

2. Perturbation Theory for Singular Values of Bidiagonal Matrices

We say da is arelative perturbation of a of size at most n if 1dal < nlal. If A and 3A are
matrices, we will let IA | and I3A| denote the matrices of absolute entries of A and 3A. We will
say that 8A is a componentwise relative perturbation of A of size at most n if I8Al < nlAl,
where the inequality is understood componentwise.

In this section we will prove three perturbation theorems for singular values of bidiagona
matrices. The first theorem is needed to prove that our new QR iteration does not disturb any
singular values, and the second two theorems justify our new convergence criteria (see section
4 below).

The first theorem shows that if dB is a componentwise relative perturbation of size n of
the n by n bidiagonal matrix B, then the singular values o;' of B+ 3B will be relative perturba-
tions of the singular values g; of B of size less than about (2n-1)n, provided (2n-1)n is small
compared to 1. More precisely we will show that

(1-n)* " *to; < o' (1-n)* 0

(recal that o;' and o; are sorted in decreasing order). This will follow as a corollary of a more
genera result for symmetric tridiagonal matrices with zero diagonal.

The last two theorems say when we can set an offdiagonal entry of a bidiagona matrix B
to zero without making large relative perturbations in the singular values. They are based on a
simple recurrence for estimating the smallest singular value of a bidiagonal matrix; if setting an
offdiagona entry of B to zero cannot change this recurrence significantly, we show that no
singular value can be changed significantly either.

The proof of the first theorem depends on Sylvester's Law Of Inertia [6, p.297]:

Sylvester’'s Law Of Inertia: Let A be symmetric and U be nonsingular. Then A and UAU T
have the same number of positive, zero and negative eigenvalues.

In particular, suppose A is symmetric and tridiagonal, with diagonal entries a;, ..., a,
and offdiagona entries by, ..., b,_41. Then via Gaussian elimination without pivoting one can
write A—xI=LDL ", where L is unit lower triangular and bidiagona, and D is diagona with
entries d; given by the recurrence [15, p. 47]

dj_ =a; — X
di = a—X- biz_l /di—l

This recurrence will not break down (d,=0 for some i< n) as long as x is not one of the
n(n-1)/2 eigenvaues of leading submatrices of A. Then by Sylvester’'s Law of Inertia, the
numbers of eigenvalues of A less than x, equa to x, and greater than x are precisely the
numbers of d; which are negative, zero and positive, respectively.

We will also need the following classical eigenvalue perturbation theorem due to Weyl:

Theorem 1: [15, p. 191] Let A;= - - - = A, be the eigenvalues of the symmetric matrix A, and
A’z ---=2 A, be the eigenvdues of the symmetric matrix A+3A. Then
—0A £ Apin(0A) £ A=A £ Aqpx(0A) £ 8A. Here, Apin and A, denote the smallest and
largest eigenvalues, respectively.

Now we present our central result of this section (a slightly weaker version originally
appeared in an unpublished report [12]):

Theorem 2: Let J be an n by n symmetric tridiagona matrix with zero diagona and offdiagonal
entries by, ... ,b,_;. Suppose J+0dJ is identical to J except for one offdiagona entry, which
changes to ab; from b, az 0. Let @ = max(lal, la™tl). Let A; be the eigenvalues of J sorted
into decreasing order, and let A;" be the eigenvaues of J+3J similarly sorted. Then

Ai _
— <)\i' < G')\i . (22)

a

(2.1)

In other words, changing any single entry of J by a factor a can change no eigenvalue by more

than afactor lal.

Proof: Assume without loss of generality that a> 0, and no b; is zero, since otherwise J is block
diagonal, and each diagonal block may be analyzed separately. The recurrences corresponding
to (2.1) for J—xI and J+dJ-xI may be written

V]_: —-X
U, = —X 5
and Y/ =-x-big /v , k#i
Ugsp = —X — bE / Uy k+1 k k
Viep = =X — a?b? /v,

Since both J and J+38J have nonzero offdiagonals, they must have simple eigenvaues [15, p.
124] A; and A, respectively. As long as x is not one of the n(n-1) eigenvalues of leading prin-
cipa submatrices of J and J+d8J, no division by zero will occur in these recurrences. Also,
u,=0 if and only if x is an eigenvaue of J, and v,=0 if and only if x is an eigenvalue of J+3J.

Our goa is to show that each A; is the i-th eigenvalue of some symmetric matrix J(A;)
which differs from J+&J by a matrix X = J+3J—-J(A;) satisfying

(a‘_l— DA € Apin(X) € Apax(X) € (@-21)A; ifA=0
(@-DA € Apin(X) € A (X) € (@ =DA; if A< O
together with Theorem 1 these inequalities will yield the desired result.
We construct J(A;) as follows. Let

(2.3)

N I
w; = uat™h T f s

w; = uj-or(‘l)'f]fl if > i

Note that the w; satisfy the recurrence

wy = —xatD'""
Wiep = —xat0 7T e if <
W1 = —xa — a2b?/w, ’
Wisp = —xad" - b?/w; if j> i
or
Wi = —X—X;
W1 = —X=Xjp — bH/w; if j<i
Wity = =X~ Xj+1 ~ azbiZ/Wi ,
Wit = =X=Xj4q = bZIw; if j> i

which is the recurrence for J(x) = J+38J-X where X=diag(x;), x; = (a* 1-1)x. Now set x=A,.
Since the w; and u; sequences have the same signs by construction (including u,=w,=0), A; is
the i-th eigenvalue of J(A;). Further, Ay (X) and A,in (X) clearly satisfy (2.3) above. O

As an immediate corollary we get

Corollary 1: Let J be an n by n symmetric tridiagona matrix with zero diagonal and offdiagonal
entrieslbl, ...,by-1. Let J+3J have off diagona entries a;bq, ..., ,0,-1b,-1, 0;% 0. Let
o
a = [max(la;!l, laitl). Let A; be the eigenvaues of J sorted into decreasing order, and A;’
i=1
be the eigenvalues of J+8J similarly sorted. Then
Ai _
— <)\i'S a')\i
a
For example, if 1-n< lal< 1+n, no eigenvalue can change by a factor exceeding
a=(1-n) "%

We can apply Theorem 2 to prove a similar theorem for singular values of bidiagonal
matrices by noting that for any matrix B the eigenvaues of

_foB
B'= g o

are the singular vaues of B, their negatives, and some zeros (if B is not square) [8, p. 286].
Suppose now that B is n by n and bidiagona with diagonal entries s4, . . ., s, and superdiagona
entries eq, . .. ,€,-1. Then by permuting the rows and columns of B’ to appear in the new
order 1,n+1,2,n+2, - - - ,n, 2n, we see B’ is orthogonally similar to the tridiagonal matrix B"
with zeros on the diagonal and offdiagonas s;,e1,S,€5, " * * ,€m-1,Sn [7, P. 213]. Thus the
singular vaues of B are the absolute values of the eigenvalues of the matrix B" which is of the
form required by Theorem 2. This proves

Corollary 2: Let B be an n by n bidig\golnal matrix and suppose 0B + B; = ay_1Bji,
o

OBii+1 + Biir1 = 02Bijsq, o7 0. Let @=[] max(lo;l, laitl). Let 042 -2 0, be the
i-1
singular values of B, and let 64> - - - = ¢, be the singular values of B+dB. Then
Oj

— < Gi's ﬁ-ci

a
For example, if 1-n < la;l < 1+n, then no singular value can change by more than a factor
of @ = (1-n)t .

That this result is essentially best possible may be seen by considering the n by n matrix
1-n B(1+n)

Bl = - B(1+n)
1-n

When B>> 1, the smallest singular vaue is approximately B "(1-(2n-1)n).

This theorem may be contrasted with the following classical perturbation bound for singu-
lar values, where it is only possible to bound the absolute perturbation in the singular values of
a perturbed genera matrix:

Theorem 3: [8, p. 286] Let 0,= - - - = o, be the singular values of A, and ;' - - - = g, be
the singular values of A+dA. Then lg;'-0;! < BA.

One caveat about the use of Corollary 2 in practice is that phase 1 of the SVD algorithm,
reduction to bidiagona form, may produce completely inaccurate bidiagonal entries. Some-
times, however, the reduction to bidiagonal form is quite accurate, so that the singular values
of the original matrix can be computed accurately (see [1] for discussion).

In section 6 we will show how to use recurrence (2.1) in practice to compute the singular
values of a bidiagonal matrix with guaranteed high relative accuracy. This method, though not
competitive in speed on a seria machine with the agorithm of the next section, can be used to
efficiently verify the accuracy of the singular values computed by another method. The ago-
rithm based on (2.1) may aso be parallelized easily (see section 6).

The second result of this section tells us when we can set an offdiagonal of B to zero
without making large relative changes in the singular values. This theorem will justify one of
the convergence criteria we describe in section 4 below.

First we discuss a simple recurrence for approximating the smallest singular value of a
bidiagonal matrix, which also appeared in [9]:

Lemma 1: Let B be a n by n bidiagona matrix with nonzero diagona entries s;, ...,s, and
nonzero offdiagonal entriese, .. .,e,_;. Consider the following recurrences:

A, = syl Uy = sl

for j=n-1to 1 step -1 do forj=1ton-1do (2.4)
A= Isl(Ajea /(Mg + lgl)) Mier = Isea (I + lgl))
Then B 1.t = mjin Aj and B7171 = mjin H;. Furthermore, letting o = min(B™'7*, B™'.1),
we have
n—l/Z,B—lo—ols Omin(B) < nl/Z_B—l;l
n"Y2B 11t < opin(B) £ nY2BTIT . (2.5)
0 < Omn(B) < n20

Proof: By means of pre- and postmultiplication by unitary diagonal matrices with diagonal

entries of unit modulus, we may assume that s> 0 and < 0. Then B! is easily seen to have

positive superdiagonal entries, so that B™%, = B"'u, and B™%; = u'B™%;, where u is the vec-

tor of al ones. v=B !u and w'=u"B"?! are easily computed by back and forward substitution.

Thus B!, =maxly| and B !;=max|w|. Modifying these back and forward substitution
I |

recurrences to compute A\;=1/v; and p;=1/w; yields the recurrences in (2.4). Since the eigen-

values of
0B
B O

are the positive and negative singular values of B,

B'l=H'< H!, =max(B%, ,B ") =max(B™ %, , BL) ,

H =

proving the inequality 6< 0,,(B) in (2.5). The other inequalities are standard norm inequali-
ties. O o

From Lemma 1 it is clear that if lg/Aj, 1] < n< 1, then changing g to 0 can make arela-
tive change of a most n in A; and al subsequent A;, i< j. Thus the first upper and lower
bounds on 0 ,,;,(B) in (2.5) can change only by a factor of n as well. Similar comments apply if
lgj/u;jl = n< 1. This suggests the following criterion for setting g to O:

Convergence Criterion 1.
Let n< 1 be the desired relative accuracy of computed singular values. Then if either
lgj/Aj+1l< nor lg/pjls n, set g to 0.

Now we will state and prove a theorem which justifies this criterion. We will only prove
the theorem for the case lgj/Aj, /< n; the case lg/pjl< n is analogous. First we need some
notation. Let @(n) be the unique positive solution of

exp(29) - 29 - 1=n* ; (2.6)
it is easy to see that @(n) is asymptotically n/2%'2 for small n and that for al n, @(n) < n/2Y2.
Let B be a bidiagonal matrix as in Lemma 1 with singular values 0,2 ---2 o,, let U=B
except for entry e which is zero, and let 0,'> - - - > g, be the singular values of U. Let {(n)
be the interval of o’s such that

-o(n) < In(o; /0y') = @(n) ; (2.7)

i(n) is essentialy the set of o which differ from o;' by arelative perturbation of a most n/2%2.
Some of these intervals may overlap; let (n) denote the collection of disjoint intervals made of
connected components of [] j(n). Now we may state

Theorem 4: Let B and U be bidiagona matrices as described above, and suppose lg/Aj.;/< n.
Then each singular value o; of B lies in the connected component of (n) containing ;(n). In
particular, if that connected component consists of m overlapping intervals j(n), then

-me(n) < In(oi" / o) = me(n) (2.8)

Therefore, the relative perturbation caused in o; by setting the offdiagonal entry in 6B to zero
is a most nn/2Y2 if nni, and if o, is sufficiently separated from the other singular vaues, at
most n/2%2.

For example, this theorem lets us conclude that settingn to 0 in
1n

11

a
can change the singular values 2¥2, 1, and 27?0 by a most factors of 1+ n if n is small,
independent of a. Indeed, if D is any bidiagonal matrix this theorem guarantees that we can

setntoOin

1n
D

without making relative perturbations larger than n in any singular value.

The proof of this theorem will depend on a sequence of technical lemmas. The first is a
trivial consequence of Taylor’'s Theorem:
Lemma 2: Let f and g be continuoudly differentiable functions on the nonnegative rea axis,
with f (t)< g(t) for t positive and sufficiently small. Let & = inf{t> 0: f (t)> g(t)}, and = if
no such t exist. Then if & isfinite, f'(§)= g'(§).

We will use the contrapositive of this result to show when f < g for al t; if f (&)= g(&)
would imply that f'(§)< g'(&), then f must be less than g everywhere.

In our case, we define f (t) and g(t) as follows. Write
K C

B = R

where K is j by j, R isn-j by n—j, and C=¢lf", where 1=(0,...,0,1)7 and f=(1,0,...,0) .
Assume asin Lemmal that < 0. Let
(K C(t)

u(t) = R

where C(t):—t)\jﬂh‘T so that U(0)=U and U(n)=B. Let g;'(t) be the i-th largest singular
value of U(t). Then we first let

f(t)=-¢(t) and g(t)=In(o;'(t)/o}’) (2.929)
and apply Lemma 2 to prove the first inequality in (2.8), and then let
f(t)=In(o;'(t)/oi") and g(t)=0(t) (2.9b)

to prove the second inequality. In order to apply Lemma 2, we need to compute the deriva
tives of the functionsin (2.9).

Lemma 3: Unless 0;'(t) is asingular value of R,

t d ' :
0) < — In(oy'(t)) < max(mjax ((oi()/0)?-1)

min (min

i ((oi'(/o))?-1) K

dt

Proof: We begin with a simplifying assumption: We assume K and R have no common singular
values. If this is not true, consider a sequence of problems with K,, -K, R,-R and where K,
and R,, have distinct singular values; the genera result will follow from continuity.

We may define a singular value o (t) and its singular vectors u(t) and v(t) of U (t) by the
equations Uv=ou and u"U=aov' (where we have suppressed the argument t). Using the fact

that uTu=vTv> 0, we see from Uv+UV=du+ot and from 4" U+uTU=6vT+ov' that
6 = uTUvivTv = uTUv/uu .
Now partition u™=(ul,ul) and v'=(v],v}) conformally to B, whence
Kv,+Cv, = ou, ulK = ov]

and

Rv, = OU, ulC+ulR = ov] -

Now
: 0C .
u(t) = {0 4 where C = —Aj,If7 .

By rearranging the recurrence (2.4) for Aj,; we see Aj,; = R™Tf1l. Thus

ulCv, —ullfTv,

G(t) = (2.11)

ulu; + ufu, RTf(uluy + ufuy)
Now we derive another expression for v, in order to eliminate it from (2.11). Since
RTRv, = 0R"u, = 02v,—-0CTu; = 0?vy+otflTu; R7TfL
we may solve for v, as follows provided ¢ is not a singular value of R:
v, = otlTu (RTR-021)"1f R Tf;t = atiTu;R"}(1-0?(RTR) 1) IR Tf R™Tf;?
and so
(IMu)?® RT2 (RTTHT(GXRTR)I-1)" IR TS
uju;+ulu, R7T2 R™Tf2

% In(a(t)) = 6(t)/a(t) = t- (2.12)

Since | is a unit vector, the second factor in this expression is between 0 and 1. It cannot be
zero because otherwise CTu;=0, Rv,=cu, and uyR=0vJ, and so o would be a singular vaue
of R contrary to assumption. The third factor is strictly between 0 and 1. The last factor is a
Rayleigh quotient and so bounded by the extreme eigenvalues of the matrix in the middle, i.e.
min ((0/0g;)?=1)"%, and max ((0/0g;)?-1)"*, where og; are the singular values of R. This s

J J
in turn bounded by the extreme vaues of 1/((0/0'j)2— 1). This proves the lemma. O
Lemma 4: ¢(0)=0 and ¢(0)=2"22. (t) satisfies the differential equation
t

p(t) = 2.1
*0 = expzom) - 1 (2159
and Y(t) = —@(t) satisfies the differentia equation
Q(t) = t (2.13b)

1 - exp(=2y(t))
Proof: Simply differentiate the defining equation (2.6) for ¢(t). O
Proof of Theorem 4: Now note that In(o;'(0)/0;")=0 and its derivative 6;'(0)/0;'(0)=0 as well
since o;'(t) is an even function of t. Since @(0)=0 and @(0)=2"?, we see that equation (2.8)
is true (for m=1) for sufficiently smal n. To show it is true for al n, we assume to the con-
trary that there is some positive n for which it is false, and let & be the infimum of all these n.
Then ¢;'(§) will be on the boundary of (n), which means lIn(c;'(§)/c;'l will be at least (&)
for al j. From Lemma 3 we see this implies
-t
1-exp(-2¢(¢))
But we also have from Lemma 4 that that

t
exp(20(&)-1

d : '
< g Mei(@)/ai) <

: t : t
W(g) = and Q&) = ———Fc— .

1-exp(-2y(¢)) exp(2¢(&))-1
Therefore, the choice (2.9a) of f and g yields (&)< g(&), so f(&) cannot equa g(&). The
choice (2.9b) yields the same conclusion. Therefore, 6;'(¢) cannot lie on the boundary of (&)
as supposed. This completes the proof of Theorem 4. [

The third result in this section supplies a convergence criterion which may occasionally
succeed in setting an offdiagona entry to zero before Convergence Criterion 1. However, it
may only be applied when singular vectors are not computed, since it may cause rather large
perturbations in them. Let

D ! DO
B=|g and B'= |, (2.14)
where e=[0, - - -,0,e]", and D is bidiagonal. Let 012 - 20, be the singular values of B
and ¢'1= ---= o', be the singular vaues of B'. Let ;(n) be the interval of ¢’s such that

lo-o'il < no’;, and let(n) be the collection of disjoint intervals which are the connected com-
ponents of [] i(n). Now we may state
i

Theorem 5: Let 0< n< 1 be arelative error tolerance, and suppose gap = G in(D)-Isl > 0in
(2.14). If

lel? < .5n-gap(Omin(D)+Isl) = .50 (02,(D)-Isl?) (2.15)

then each singular value o’; of B’ lies in the connected component of (n) c0~ntajning~i(n). In
particular, if that connected component consists of m overlapping intervas j(n), and mnl,
then lo';—0g;! is a most about m-n-g’;.

Proof: We consider two cases. se/[gap(0min(D)+1sl)] = .5, and se/[gap(0 min(D)+Isl)] < .5.
In the first case (2.15) implies e?< nse or e< ns. Then by Theorem 3 setting e to 0 in B can
change no singular value by more than Insl, proving the theorem in this case.

Now consider the second case. Instead of directly comparing the singular values of B and
B’, we compare the eigenvalues of BBT and B'B'T, which are the squares of the corresponding
singular values. First we show that the smallest eigenvalues of BBT and B'B'T must be close.
The smallest eigenvalue of B'B'T is s?. By Theorem 1, BB" has one eigenvaue less than
s’+se < (02,,(D)-s?)/2, and the rest exceeding the same quantity. By the gap theorem [15,
11-7-1], the smallest eigenvalue o2 of BB' satisfies

2s%e? < ng?
Urznin(D)_S2
proving the theorem for the smallest eigenvalue.

Now we consider the larger eigenvaues of BBT. Since se/[gap(0min(D)+Is))] < .5,
Theorem 4.12 of [16] applies and we conclude that the larger eigenvalues of BBT are the same
as the eigenvalues of DD "+E;+E,, where

2 2
log2-s°l <

0-0
El =

0 - e?
so that Eqr = €2, and E,r < 2s?e?/[gap(0min(D)-Is)] < ns?; E, is in genera nonsym-
metric. By the Bauer-Fike Theorem [8] each eigenvalues of DD "+E+E, is within

Eir + Exr < €%+ns® < .5n(0fin(D)-s?)+ns® < nofn(D)

of an eigenvalue of DD . This completes the proof. [
This theorem justifies

Convergence Criterign 2: o7
D s e - ~
Let B= |, 4 (or B= |, D]) where e = [0, - - -,0,e]" (or e=[e 0, ---,0]"). Let

n< 1 be the desired relative accuracy of the computed singular vaues. Then if
gap = 0pin(D)-1IsI> 0 and lel? < .5n-gap' (0 min(D)+Isl) = .50 (02, (D)-1sl?), set e
to zero. From (2.5), we may approximate o.in(D) with the lower bound
rjrlirn1 pi/(n-1)2 (or rjrlir11 Ajl(n-1)12).

e

1
0 5§ Convergence Criterion 1 demands that

The following example shows that Convergence Criterion 2 may sometimes set e to zero
before Convergence Criterion 1. Consider B = T

lel < n to set it to zero, whereas Convergence Criterion 2 demands only that lel < (3n/8)%/?,
which may be much larger.

This same example also shows why we do not want to use Convergence Criterion 2 when
computing singular vectors. The right singular vectors of B and B, differ by O(lel), not
O(lel?).

In practice, we may estimate 0 ,,j,(D) using (2.4) and (2.5), and indeed we need only run
the recurrences once to apply both Convergence Criteria 1 and 2.

10

3. QR iteration with a zero shift

The standard algorithm for finding singular values of a bidiagona matrix B is the QR ago-
rithm applied implicitly to BTB [7]. The agorithm computes a sequence B; of bidiagonal
matrices starting from B,=B as follows. From B; the agorithm computes a shift 62, which is
usually taken to be the smallest eigenvaue of the bottom 2 by 2 block of B;B{. Then the ago-
rithm does an implicit QR factorization of the shifted matrix BB;—c?l = QR, where Q is
orthogonal and R upper triangular, from which it computes a bidiagona B;,; such that
Bl 1Bi,1 = RQ+0?l. Asi increases, B; converges to a diagona matrix with the singular vaues
on the diagonal.

The roundoff errors in this algorithm are generaly on the order of €B, where € is the pre-
cision of the floating point arithmetic used. From Theorem 3 of the last section, this means we
would expect absolute errors in the computed singular values of the same order. In particular,
tiny singular values of B could be changed completely.

In this section we present a variation of this standard algorithm which computes al the
singular values of a bidiagonal matrix, even the tiniest ones, with guaranteed high relative accu-
racy. We will call this the "implicit zero-shift QR" algorithm, since it corresponds to the above
algorithm when o=0. However, it is organized in such a way as to guarantee that each entry of
B;.1 is computed from B; to nearly full machine precision. Then Corollary 2 of the last section
implies that the singular values of B; and B;,; al agree to high relative accuracy. When B;,;
has finaly converged to a diagona matrix, these diagonal entries must therefore aso be accu-
rate singular values for the initial B=B,. Exactly how to detect this convergence is an interest-
ing issue and discussed in the next section.

The rest of this section is organized as follows. First we review the standard algorithm for
singular values of a bidiagonal matrix. Then we show how it simplifies when the shift is zero.
Next we discuss an error anaysis of the resulting implicit zero-shift QR algorithm which shows
that it computes each entry of B;,; with high relative accuracy (the details of the error analysis
are in section 8). Finally, we discuss the asymptotic convergence rate.

The final algorithm is a hybrid of the standard QR and implicit zero-shift QR. Standard
QR is used when the condition number of B (the ratio of the largest to smallest singular
values) is modest. In this case the roundoff errors are guaranteed to make acceptably small per-
turbations in the smallest singular values of B. If the condition number is large, we use implicit
zero-shift QR instead. The hybrid algorithm will be discussed more fully in the next section.

In order to summarize the standard QR agorithm, we need some notation. Let J(i,], 6)
denote the Given’s rotation in entries i and j by angle 6. In other words, J(i,j,0) isan n by n
identity matrix except for rows and columns i and j whose intersections consist of the following
2 by 2 rotation matrix:

cos® snb
—-sin® cosb

Given the vector x, choosing 8 so that x;/x;=tan® means that the i-th and j-th entries of
J(i,},8)x will contain + vV (x?+y?) and 0, respectively.

We will illustrate the algorithm on a 4 by 4 example, where we use x and + to indicate
nonzero entries and 0 and blank to indicate zero entries. Initially B; isin the form
X X

X X
X X
X

Bi:

We begin by postmultiplying B; by J; = J(1,2,6,), where 6; will be discussed in a moment.
This introduces a nonzero entry in the (2,1) position:

11

X X
+

B;J; = (3.1)

B;J; will now be pre- and postmultiplied by a sequence of Given’'s rotations whose purpose is
to "chase the bulge" indicated by "+" off the end of the matrix. Choose 6, so that
J, = J(1,2,6,) introduces a zero in the (2,1) entry of J,B;J4:
X X +
0 x x
J,BJ; = x n (3.2)

X

Next choose 05 in J3 = J(2,3,03), 0, in J, = J(2,3,04), 65 in J5 = J(3,4,05), and B¢ in
Js = J(3,4,66), to give the following sequence of transformations:

x x 0 X X
X X X X
\]zBiJng = + X X J4JzBiJlJ3 = 0 X X
X X
X X X X

X X 0 X X
J432BiJ1J3d5 = % X Bi+1 = J6J4J2BiJ1J3ds = X
+ X 0

The usual error analysis of Given'’s rotations [18, p. 131-139] shows that the computed B;,; is
the exact transformation of a matrix B;+ E where E is on the order of p(n)eB;, p(n) a modest
function of n.

To choose 6; we compute a shift a2 which is generally the smallest eigenvalue of the bot-
tom right 2 by 2 submatrix of B;B{. 6, is then chosen so J, introduces a zero into the (2,1)
entry of J] (B{B;—a?l). It iseasy to see that this means that
(BB 1
0%~(B{B)u
This choice of shift, called Wilkinson’s shift, guarantees at least linear convergence and gen-

eraly yields asymptotic cubic convergence of the offdiagona entries of B; to zero [15, p. 151].
This is assuming arithmetic is done exactly.

tan®; = (3.3)

Now let us take 0=0. Let us also drop the subscript i on B; for simplicity of notation.
From (3.3) we see that tan6; = —bq,/by; so that the result of the first rotation (for a 4 by 4
matrix) is

by o0
bf? b by

B(l) = B‘Jl = b33 b34
b44

We let the superscript on the matrix and its entries indicate that J; has been applied. Compar-
ing to (3.1) we see that the (1,2) entry is zero instead of nonzero. This zero will propagate
through the rest of the algorithm and is the key to its effectiveness. After the rotation by J,
we have

12

bf? biY bi3
0 by bl
b33 b34

D4

B@ = J,BJ; =
b{? b2 SinB,bEY sinB,b]
b b = |cosh,bt) cosh,by

i.e. it is a rank one matrix. Therefore, postmultiplication by J; to zero out the (1,3) entry will
also zero out the (2,3) entry:

Note that

b b o

0 b o0
B® = J,BJ,J; = bs? b5 by
D4

Comparing to (3.2) we see that there is an extra zero on the superdiagonal. Rotation by J, just
repeats the situation: the submatrix of J,J,BJ;J5 consisting of rows 2 and 3 and columns 3 and
4 is rank one, and rotation by Js zeros out the (3,4) entry as well as the (2,4) entry. This
regime repeats itself for the length of the matrix.

The following algorithm incorporates this observation. It uses a subroutine
ROT (f,g,cs sn, r) which takes f and g as inputs and returns r, cs=cosB and sn=sin@ such that

23

ROT (f,g,cs sn,r): takes f and g as input and returns cs, sn and r satisfying (3.4).

if (f=0) then
cs=0sn=1r=9g
elseif (If 1> Igl) then
t=g/f; tt= V 1+t?
cs = 1/tt; sn = t*cs r = f*tt
else
t=flg tt= Vv 1+t?
sn = 1/tt; cs = trsn; r = g*tt
endif

Barring underflow and overflow (which can only occur if the true vaue of r itself would
overflow), ROT computes cs, sn and r to nearly full machine accuracy (see section 8 below for
details). It also uses fewer operations than the analogous routine "rotg" in LINPACK [5].

13

Implicit Zero-Shift QR Algorithm: Let B be an n by n bidiagonal matrix with diagonal en-
tries s1, ..., S, and superdiagona entries e, ..., €,-1. The following agorithm replaces
s and ¢ by new vaues corresponding to one step of the QR iteration with zero shift:

g=e€
fori=1,n-1
cal ROT (f,g,cs sn,r)
if (iZ1) e_4 = old:*r
f = oldcs*r
g = S+1"Sn
h = s.;*cs
cal ROT (f,g,cs sn,r)
S=T
f=nh
9= 6+1
oldcs = ¢s
oldsn = sn
endfor
€-1 = h*sn
s, = h*cs

It is straightforward to verify that this agorithm "chases the bulge" in the manner
described above. It is remarkable that outside the two calls to ROT, there are only 4 multiplica-
tions in the inner loop. This is to be contrasted with the usua QR algorithm, which in addition
to two cals to ROT has 12 multiplications and 4 additions. Thus the inner loop is much more
efficient than the standard algorithm. Note also that it is paralelizable, because n/2 rotations
can be done at once. Since data need only be passed serialy along the diagonal, it can also be
implemented in a systolic array. However, the algorithms in section 6 seem much better suited
to parallel processing.

This agorithm may be expressed in the following terser but equivaent form:

oldes = 1
cs=1
fori=1,n-1

call ROT (s*cs g cs sn, r)
if (i#1) ¢_q = oldsn*r
cal ROT (oldcs*r, §.1*sn, oldcs, oldsn, s)
endfor
h = g,*cs
€,-1 = h*oldsn
s, = h*oldcs

The initial form will be more convenient for the error analysis in section 8.

This algorithm is aso much more accurate than the standard algorithm. The source of
the extra accuracy is the absence of possible cancellation, which means al roundoff errors
appear multiplicatively (there is an addition in ROT, but it is harmless). Our model of arith-
metic is the usual one:

fl(xey) = (xey)-(1+e) (3.5)

where ° is one of +, —, * and /, fl(xoy) is the floating point result of the operation o, and
lel < €, where ¢ is the machine precision. This would appear to eliminate machines like the

14

Cray and Cyber from consideration, since those machines do not conform to (3.5) for addition
and subtraction when cancellation is involved, but since we only need to use (3.5) for multipli-
cation (as well as square root, division, and addition of positive quantities in ROT), this
analysis covers those machines as well. We also assume overflow and underflow do not occur
(we return to these issues in section 8).

We present two theorems about the accumulation of error in the algorithm. The proofs
are given in section 8. The first theorem develops a bound for the relative error in the com-
puted s and e of the form cne (cis a modest constant) and uses it with Theorem 2 of section 2
to show that the relative difference between the singular values of the bidiagonal matrix B and
the output matrix B’ of the implicit zero-shift QR agorithm is cn?e/(1-cn?g). In other words,
the relative error in the computed singular values can only grow with the square of the dimen-
sion.

Theorem 6: Let B be an n by n bidiagonal matrix and B’ the matrix obtained by running the

implicit zero-shift QR agorithm on B. Let the singular values of B be 6,= - - - = g,, and the
singular valuesof B' bec,'2 - - -2 og,'. Then if
W= 69n%e< 1 , (3.6)

the relative differences between the singular vaues of B and the singular values of B' are
bounded as follows:

‘O_i_o'i" < O

1-w
Let B, be the matrix obtained after k repetitions of the implicit zero-shift QR agorithm, and let
Ok12 "+ = 0y, beitssingular values. Then if condition (3.6) holds we have

1
(1-w)"
where the approximation to the last upper bound holds if kwl.

‘O'i_o'ki‘ < (- 1) O E 69kn2£'0'i s

This result is actually rather pessimistic, as our second result shows. when we approach
convergence in the sense that al rotations are through angles bounded away from 11/2, errors
do not accumulate at all and the error in the computed ¢ and s is bounded by c'-€, ¢’ another
modest constant. With Theorem 2 this yields an error bound on the computed singular values
of the form c'ne/(1-c'ng).

Theorem 7: Let B be an n by n bidiagona matrix and B' the matrix obtained by running the
implicit zero-shift QR agorithm on B. Assume that all the rotation angles 6 during the course

of the agorithm satisfy sin?0 < 1 < 1. Let the singular values of Bbe o> - - - > g,, and the
singular valuesof B' be o2 - -2 og,'. Then if
88n¢e

W= <1, 3.7

(l_T)Z ()

the relative differences between the singular values of B and the singular values of B' are
bounded as follows:

loj—0o;'l < lof
i i - |
Let By be the matrix obtained after k repetitions of the implicit zero-shift QR agorithm, where
we assume al rotation angles 0 satisfy sin0< 1< 1. Let 0> - -2 0y, be the singular
values of B,. Then if condition (3.7) holds we have
‘O-i_o-ki‘ < (% - 1) * 0 @ 88kn82' i
(1-w) (1-1)

where the approximation to the last upper bound holds if kwl.
Note that T can easily be monitored by the algorithm as it proceeds.

15

The standard algorithm does not aways achieve this accuracy for three reasons. First, the
convergence criteria in the standard algorithm can change small singular values completely (this
is discussed in detail in the next section). Second, rounding errors committed while "chasing
the bulge" with a large shift can obscure small matrix entries and small singular values. Third,
roundoff errors when the shift is zero result in nonzero entries appearing and propagating in
those offdiagonal entries of intermediate results which should be zero, and which are kept zero
by the new agorithm. This third effect seems mild, however, and as a result the standard algo-
rithm sometimes computes small singular values with higher relative accuracy than the usual
bound p(n)eA would lead us to expect (see, for example, the numerical examples of Class 1 in
section 7).

The pattern of zeros above the diagona during the QR sweep also appears when applying
QR to a symmetric tridiagonal matrix. This pattern can be exploited to give fast, square root
free versions of the agorithm (see [15, p. 164] for a discussion). Unfortunately, this does not
yield forward stability and high accuracy as it does for the bidiagonal case.

Finaly, we discuss the asymptotic convergence rate of the algorithm. It is well known
that unshifted QR on a symmetric matrix is essentially the same as inverse iteration [15, p.
144]. Therefore we can conclude that the last offdiagona element e,_; should converge to zero
linearly with constant factor 02_;/02. If there is a cluster of m small singular values isolated
from the remaining ones, e,_, will converge to zero linearly with constant factor
0%-m+1/0ﬁ—m-

16

4. Convergence Criteria

In this section we discuss convergence criteria for the new agorithm, and describe the
practical version of the agorithm, which is a hybrid of the usual shifted QR and the implicit
zero-shift QR. After showing that the LINPACK convergence criteria [5] are unsatisfactory, we
restate the convergence criteria of section 2. The same analysis leading to the convergence cri-
teria will lead to a criterion for switching from zero-shift QR to shifted QR without damaging
any tiny singular values. The switching criterion depends on a user specifiable tolerance tol
which is the desired relative accuracy in the singular values (tol should be less than 1 and
greater than the machine precision €). The resulting hybrid algorithm will therefore run about
as fast as the standard algorithm on matrices without any tiny singular values. We will aso dis-
cuss convergence criteria in the case where one is only interested in absolute precision in the
singular values. Finally, we discuss the impact of underflow on the convergence criteria

We begin by discussing the convergence criteria used in the current version of the ago-
rithm [5], and explain why they are unsuitable for our agorithm. The code in LINPACK has

two tests for setting entries of the bidiagona matrix B to zero. Recdl that s, ... ,s, are the
diagond entries of B and eq, . . . , &, are the offdiagona entries. The first test is
if (lgl+ lg_yl+ Isl=1lgl+ lg_4l), setsto0 (4.2)

This rather enigmatic looking test works as follows. If Isl < .5-e(lel + lg_;1), the test will be
satisfied and s set to zero. In other words, (4.1) is a way of asking whether one number is less
than roundoff error in another number without needing to know the machine precision € expli-
citly. The other convergence test is

if (Il + Is_1l+ lg_q1 = Isl + Is_4l), setg_,t00 (4.2)

Both tests compare an entry x of B with its two nearest neighbors on the other diagonal, and set
x to zero if it is negligible compared to those neighbors. One justification for these tests is that
roundoff error during the rotations could make the matrix indistinguishable from one with a
zero in X's position. Also, they clearly introduce errors no worse than p(n)eA. (Both these tests
may be unnecessarily dow for these purposes on machines where the quantities
lgl + lg_. | + Isl, lel + le_;l, Il + Is_1| + le_;1 and Il + Is_;| are computed and com-
pared in extended precision registers, where the effective € is much tinier than in working pre-
cision.)

Both tests are unsatisfactory for our algorithm. Test (4.1) introduces a zero singular value
where there was none before, so it is clearly unsatisfactory. The following example shows why
(4.2) is dso unsatisfactory. Suppose n is sufficiently smal that in floating point arithmetic
1+n=1. Consider the matrix

B(x) = 11

When x=n it is easy to verify that the smallest singular value of B(n) is about n°. Test (4.2)
would set x to 0, but B(0) has a smallest singular value of about n?/v 2, which is utterly
different.

Our convergence criteria must guarantee that by setting some g to 0 (clearly no nonzero
§ can ever be set to zero), no singular vaue is perturbed too much. Let o denote a reliable
estimate or underestimate of the smallest singular value. Such a o is provided by the
recurrences for B~1;1 and B™171 in (2.4). Then the simplest acceptable convergence criterion
would only set g to zero if it were less than tol*o. However, this method is overly conserva
tive, and generally waits much too long to set ¢ to 0. Much better estimates are given in sec-

tion 2 and justified by Theorems 4 and 5. We repeat them here;

17

Convergence Criterion la:
Let u; be computed by the following recurrence ((2.4) from section 2):
My = Isgl
for j=1ton-1do (4.3)
Mier = Isea (/0 + lgl))
If lej/u;l< tol, set g to O.

Convergence Criterion 1b:
Let Aj be computed by the following recurrence ((2.4) from section 2):
Ay = syl
for j=n-1to 1 step -1 do (4.4)
A= Il (N /(Ajg + lgl))
If lej/Nj4q1< tol, set g to O.

Convergence Criterion 2a:
Let u; be computed from (4.3). If singular vectors are not desired, and
ei_y < .5tol[(min u;/(n-1)Y%)2 - Is,12], set e,_; to zero.
j<n

Convergence Criterion 2b:
Let A; be computed from (4.4). If singular vectors are not desred, and
el < .5-to|-[(mir11 Ai/(n-1)12)2 - Is;12), set e, to zero.
1>

We have divided the criteria of section 2 into separate parts, because we will apply them
in separate situations; see the subsection on "Applying the convergence criterid' in section 5.

These criteria are more expensive than the standard LINPACK criteria, but avoid situa
tions like setting x to 0 in B(x) in the last paragraph, and recognizes that setting x to zero in

1 x
D
is harmless if Ix I< tol, independent of D.

Now we consider how to decide whether to use implicit zero-shift QR or standard shifted

QR. In order to estimate the rounding errors which would occur during shifted QR, we need

an estimate of B. We will use @ = max(Isl, lel), which is easily seen to underestimate B by
I

no more than afactor of 2. In termsof o, G, and tol, our decision agorithm is

if (fudge * tol * (0 /5) < ¢)
use the implicit zero-shift QR
else
use shifted QR
endif

The test asks whether the rounding errors €@ which shifted QR could introduce are greater
than the largest tolerable perturbation tol-o. The factor fudge= 1 is a fudge factor which makes
zero-shifting less likely on tight clusters of singular values; we currently use fudge=min(n,m) if
the original matrix was n by m.

In practice there is one further test for using the implicit zero-shift QR. If the above test
chooses shifted QR, we must still compute the shift a2, which is the smallest eigenvalue of the

18

bottom 2 by 2 matrix of BBT. From (3.3), we see the tangent of the first rotation angle is given
by
si*e1 € g?

o2-¢8 s ¢

so if 62/s? — 1 rounds to —1, the first rotation is the same as in implicit zero-shift QR and we
might as well use it, since it is faster and more accurate.

The choice of tol may be made by the user, or chosen automatically by the program. If tol
is chosen close to 1, one amost always picks shifted QR, which still computes the singular
values with good absolute accuracy, so only the smallest singular values will be inaccurate. If
one chooses tol near €, one will amost aways use implicit zero-shift QR unless al the singular
values are very close together, and therefore sacrifice the cubic convergence of shifted QR. See
section 7 for descriptions of numerical experiments on the effect of varying €. Choosing tol near
1 is useful for quickly obtaining estimates of singular values for rank determination. Note that
as singular values converge and are deflated off, 0 may be reestimated so that if tol is not too
small, by the time al the small singular values have converged, the algorithm is doing shifted

QR.

Note also that if one is only interested in computing the smallest singular value or values,
o provides a test for stopping the iteration early. If one or severa small singular values have
been deflated out, and the o for the remaining matrix exceeds them sufficiently, one is
guaranteed to have found the smallest singular value. A similar idea is expressed in [17].

Finaly, we consider computing the singular values to guaranteed absolute accuracy instead
of guaranteed relative accuracy. As stated in the introduction, this is what standard shifted QR
guarantees. However, the convergence criteria (4.1) and (4.2) in the current standard imple-
mentation are much more stringent than necessary to meet this goa. Instead of comparing le |
or Is!l to its neighbors to see if it is negligible, it is only necessary to compare to @ H B. In
other words substituting

if (Isl < tol*G) sets toO (4.5)
for (4.1) and
if (lgl < tol*G) setg toO (4.6)

for (4.2) will dso guarantee absolute accuracy but possibly speed convergence considerably. In
practice, our code uses the input parameter tol to choose between absolute and relative accu-
racy: if tol is positive, it indicates that relative accuracy tol is desired, and if tol is negative, it
indicates that absolute accuracy Itol |-G is desired.

Underflow must also be accounted for in the convergence criteria to ensure convergence.
For it may happen that the quantity to be subtracted from e,_; in the course of driving it to
zero may underflow, so that e,_; never decreases. On machines with |IEEE arithmetic, this may
occur if all entries of B are denormalized. To prevent this, we make sure the convergence
threshold to which we compare lgl is at least maxit*A, where maxit is the maximum number of
QR inner loops the code will perform, and A is the underflow threshold (the smallest positive
normalized number). If the matrix has singular values near A or smaler, this technique could
destroy their accuracy; in this case the matrix should be scaled up by multiplying it by maxit/e
before applying the algorithm, and multiplying the computed singular values by &/maxit after-
wards.

19

5. Implementation Details
In this section we discuss a number of details of the implementation of the code:

Chasing the bulge up or down

Applying the convergence criteria

SVD of 2 by 2 triangular matrices and robust shift calculation
Deflation when s=0

Finaly, we present high-level code for the entire algorithm.

Chasing the bulge up or down. A bidiagonal matrix may be graded in many ways, but most com-
monly it will be large a one end and small at the other. The implicit zero-shift QR algorithm
tries to converge the singular values in order from smallest to largest. If the matrix is graded
from large at the upper left to small at the lower right, and the "bulge" is chased from upper left
to lower right as in section 3, then convergence will be fast because the singular values are
"ordered" correctly, i.e. the diagonal matrix entries are fairly close to their fina values. If, how-
ever, the matrix is graded the opposite way (from small at the left to large at the right) then
the algorithm will have to invert the order of the matrix entries as it converges. This may
require many more QR steps. To avoid this, the implementation tests for the direction of grad-
ing (simply comparing Is;| and Is,!), and chases the bulge in the direction from large to small.
If a matrix breaks up into diagonal blocks which are graded in different ways, the bulge is
chased in the appropriate direction on each block. The algorithm in [17] does this as well.

In order to avoid the possibility that the code might frequently change bulge chasing
directions, and so converge very slowly, we only choose the direction of bulge chasing when
beginning work on a submatrix disjoint from the previous one. Whether this is the optima stra-
tegy is a question of future research.

This means the singular values may be quite disordered in the fina converged matrix, and
so must be sorted at the end (along with the singular vectors if desired). The LINPACK SVD
uses bubble sort a the end, which could require O(n?) swaps of singular vectors. Since the
LINPACK SVD aways chases the bulge down, the singular values tend to converge in nearly
sorted order, so bubble sort is relatively efficient. The new agorithm, in which the singular
values could converge in any order, uses insertion sort instead, which does at most 2n moves of
singular vectors.

Applying the convergence criteria. In section 4 we presented four convergence criteria Since
applying the convergence criteria costs approximately as many floating point operations (O (n))
as performing a QR sweep, it is important to test criteria only when they are likely to be
satisfied. Our decision is based on the following empirical observation: When chasing the bulge
down (up), the bottommost (topmost) entry s, (s;) often tends to converge to the smallest
singular vaue, with e,_; (e;) tending to zero fastest of all offdiagona entries. Therefore, when
chasing the bulge down, we expect convergence criteria 1la and 2a to be successful, and possibly
1b but only for the bottommost entry e,_;. Criteria 2b and 1b for the other off diagonal entries
are not as likely to succeed. Conversely, when chasing the bulge up, we only apply conver-
gence criteria 1b, 2b and la for e;. One advantage of this scheme is that testing 2a (for e,-4,
and if the test succeeds, for e,_, too) costs only a few more operations after testing la, since
they share the same recurrence from (4.3). Similarly, 2b (for e, and if the test succeeds, for e,
too) is very cheap after applying 1b.

SVD of 2 by 2 triangular matrices and robust shift calculation. The need for the singular value
decomposition of 2 by 2 triangular matrices, or at least the smalest singular vaue of such a
matrix, arises in two places in the code. The first time is when calculating the shift. As stated in
section 3, the standard choice of shift, called Wilkinson’s shift, is the smallest eigenvaue of the
bottom 2 by 2 block of BBT. It is easy to see that this is the square of the smallest singular
value of the bottom 2 by 2 block of B. The second need for the SVD of a 2 by 2 triangular

20

matrix arises when the code has isolated a 2 by 2 block on the diagona of B. Even though this
appears to be an easy case for the algorithm in section 4, it turns out that roundoff can prevent
convergence when the singular values are close. This is the case in

x

when lal and Ic| are close and b is much smaller, just larger than €-lal. It happens that on
machines with sloppy arithmetic, roundoff can cause b to be no smaller after one step of QR
than before, so that the algorithm never converges. It is aso difficult in this situation to com-
pute the singular vectors accurately, just as eigenvectors corresponding to multiple eigenvaues
are difficult to compute.

To get around these difficulties, we have written a subroutine which takes the entries a, b
and c of B and returns the two singular values as well as the left and right singular vectors.
Barring overflow and underflow, the returned values are accurate to nearly full machine preci-
sion, even for nearly coincident singular values. The algorithm is comparable in speed to a
straightforward implementation that does not attain similar accuracy. This property is based on
the fact that the algorithm uses formulas for the answer which contain only

B =

products, quotients, and square roots,

sums of terms of like sign,

differences of computed quantities only when cancellation is impossible, and

the difference lal — Icl, which, if cancellation occurs, is exact (except
possibly on a Cray or Cyber).

It is straightforward to use these properties to show that the final result is correct to nearly full
precision.

The code is also robust in the face of over/underflow. Overflow is avoided where possible
by using formulas in terms of ratios of matrix entries, and choosing the formulas so that the
ratios are always bounded by 1 in magnitude. As a result of these precautions, overflow is
impossible unless the exact largest singular value itself overflows (or is within a few unitsin the
last place of overflowing). Underflow (of the conventiona "store zero" variety) can damage the
results only if the data and/or results are themselves close to the underflow threshold,
specificaly less than the underflow threshold divided by €. Gradua underflow [2] makes the
calculation of the singular values impervious to underflow (unless the final results themselves
underflow) and the singular vectors much less susceptible to underflow problems.

Deflation when 5=0. The standard SVD algorithm [5] has special code to handle the case when
§=0. This code does a simplified sequence of rotations (similar to implicit zero-shift QR) to
introduce a zero on the superdiagona of the bidiagona matrix (adjacent to the zero on the
diagona) and so break it into two smaller problems. It is easy to see that the implicit zero-shift
QR algorithm does this deflation automatically, yielding one zero on the superdiagona for each
zero on the diagonal, but at the bottom (or top) of the matrix, rather than where the origina
zero occurred. This occurs after one pass of the agorithm, a which point both s, and &,_; will
be zero if chasing the bulge down (s; and e; will be zero if chasing the bulge up) meaning that
the zero singular value has been deflated exactly.

We can see this as follows. Assume we are chasing the bulge down. Whenever s5,,=0,
both g and h will be set to 0, causing the sn returned by the second call to ROT to be 0. At the
end of the loop, both f =h and oldsn=sn will also be zero. In fact, it is easy to see that from
now on both h and the f at the bottom of the loop will be zero: at the top of the next loop
iteration, the zero value of f causes the first call of ROT to compute cs=0; this causes
h=s,,.*cs to be zero and the pattern repeats. Also, when oldsn=0 (which happens when
s+1=0), e_1 is set to zero on the next iteration, i.e. 5,,=0 implies g becomes zero. Finaly, at
the end of al the loop iterations, h is still zero implying both e,_; and s, are set to zero. Note
that when f is zero, as it frequently is in this case, the first call to ROT need only set ¢s=0,
sn=1 and r=g; thisis what the first "if" branch in ROT does.

21

Finally, we present a high-level description of the entire algorithm. In the interest of
brevity we omit the code for updating the singular vectors or for the absolute error convergence
criterion.

€ = machine precision
A = underflow threshold (smallest positive normalized number)
n = dimension of the matrix

tol = relative error tolerance (currently 100¢g)
maxit = maximum number of QR inner loops (currently 3n?)

Bidiagonal Singular Value Decomposition

Compute 0 £ 0pin(B) using (2.4)

g = max(Isl, lgl)

thresh = max(tol-o , maxit-A)

/* any g less than thresh in magnitude may be set to zero */

L oop:
/* Find bottommost nonscalar unreduced block diagonal submatrix of B */
let i be the smallest i such that Il through le,_;| are a most thresh, or n if no such i exists
if i = 1, goto Done B
let i be the largest i less than i such that lg ! < thresh, or 0 if no such i exists
i=i'+1

/* Apply agorithm to unreduced block diagonal submatrix fromitoi */
if i = i+1, then ;

/* 2 by 2 submatrix, handle specially */

compute SVD of 2 by 2 submatrix, setting e to 0

goto Loop B
endif

if submatrix from i to i disjoint from submatrix of last pass through Loop, then
/* Choose bulge chasing direction */

if Isl= Isl, then
“direction = "down"
else
direction = "up"
endif
endif

22

/* Apply convergence criteria */
if direction = "down", then

Apply convergence criterion 1bto e_4

Apply convergence criterion 1a

Apply convergence criterion 2a to €_; and possibly €_,
else

Apply convergence criterion l1a to ¢

Apply convergence criterion 1b -

Apply convergence criterion 2b to g and possibly .1
endif N B

/* Compute shift */

if fudge*tol*0 /G < g, then
/* Use zero shift because tiny singular values present */
shift = 0

else
if direction = "down", then
s=§
shift = smallest singular value of bottom 2 by 2 corner
else
sS=5

shift = smallest singular value of top 2 by 2 corner
endif
if (shift/s)? < eps, then
/* Use zero shift, since shift roundsto 0 */
shift = 0
endif
endif

/* Perform QR iteration */
if shift = 0, then
if direction = "down", then
do implicit zero-shift QR downward
if leg_,l < thresh, sete_; =0
else
do implicit zero-shift QR upward
if lgl < thresh, sete = 0
endif B
else
if direction = "down", then
do standard shifted QR downward
if lg_,l < thresh, seteg_; =0
else
do standard shifted QR upward
if lgl < thresh, set g = 0
endif ~ B
endif
goto Loop

Done: sort singular values

23

6. Other Methods for Computing Accurate Singular Values

In this section we discuss other methods for computing the singular values of a bidiagonal
matrix B to high relative accuracy. These methods include bisection, Rayleigh Quotient Itera
tion, and iterative refinement. They are not competitive in speed with QR for computing al
the singular values on a serial machine, but can efficiently verify whether a computed singular
value is accurate or not. We have used it to verify the numerical results presented in section 7.
However, they are extremely easy to paralelize and will probably be among the best paralel
algorithms for this problem.

All the algorithms are based on bisection for the symmetric tridiagonal eigenproblem,
which we discuss first. Bisection is in turn based on Sylvester’s Law of Inertia, or equivalently,
Sturm sequences [15, p. 52]. As explained in section 2, the number of negative d; in recurrence
(2.1) is the number of eigenvalues less than x, a quantity we will denote by v(x). v(x5)—Vv(X1)
is therefore the number of eigenvalues in the interval [X,,X,), so this method can easily verify
whether an interva contains any eigenvaues. The identification of the singular value problem
for the bidiagonal matrix B with the eigenvalue problem for a symmetric tridiagonal matrix with
zero diagona later in section 2 makes it clear that we can use the same method to count the
number of singular values in any interval [Xq,X5).

What remains is an error analysis to show that the function v(x) is accurate. This is pro-
vided in [12, p.35]:

Let v(x) be the computed number of eigenvalues less than x for a symmetric tridiagona
matrix A. Barring over/underflow, the computed value of v(x) is the exact value of v(x)
for a perturbed matrix A+d3A where I3Al < 2eloffdiag(A)l + exl. Here, offdiag(A)
refers to the offdiagonal part of A. If A has a zero diagonal, this bound may be improved
to IBAl < 1.5¢€lAl

Therefore, by Theorem 2 or Corollary 2, if the computed value of v(x) is k, there must
be at least k singular vaues of B less than x/(1-(3n-1.5)¢) and no more than k singular values
less than x:(1-(6n-2)g)/(1-(3n-1.5)¢); we assume nel. If the computed vaue of
V(X,)—-Vv(Xxy) is j, there must be a least j singular vaues in the interva
[X1(1-(6n—-2)g)/(1-(3n—-1.5)e , x,/(1-(3n—-1.5)¢)).

There is one other important feature of the computed v(x). In exact arithmetic, since
v(x) is the number of eigenvalues less than x, v(x) must be a monotonic increasing function of
X. It is by no means clear that the computed values of v(x) should also be monotonic. Thisis
significant because a failure in monotonicity could cause an agorithm to misestimate the
number of eigenvalues in an interval, athough a bisection routine which begins with an interval
[X1,X5) where v(x,)—Vv(x4) is positive can always maintain an interval over which the com-
puted value of v increases. It turns out, however, that as long as the arithmetic is monotonic,
the computed value of v(x) will be monotonic [12, p. 27]. By monotonic arithmetic we mean
that if acb> ced in exact arithmetic, then fl(a-b)> fl(ced) as well. This holds in any well-
designed arithmetic, such as the IEEE Floating Point Standard 754 [10]. We have only shown
monotonicity holds if the recurrence is computed exactly as follows, with the order of evalua
tion respecting parentheses:

d = (& - (bEq/dioq)) - x .

Now we briefly consider Rayleigh Quotient Iteration and iterative refinement. Both algo-
rithms begin with a small interva containing a singular value, and refine it as does bisection.
The magjor difference from bisection is in the zerofinder used to refine the intervals. Aslong as
the zerofinders are implemented in a componentwise backward stable way (i.e. they compute
the correct result for a bidiagona having only small relative perturbations in each entry), then
Corollary 2 and Theorem 2 guarantee the relative accuracy of the computed singular values.

24

7. Numerical experiments

The numerical experiments we discuss here compare the agorithm of sections 3 through
5 with the LINPACK SVD [5]. Both codes were run in double precision on a SUN 3/60 with an
M C68881 floating point coprocessor, which implements |IEEE standard 754 floating point arith-
metic [10]; the machine precision e=2"%H 1.1-107 ¢ and the range is approximately 10* %€, |n
order to guarantee reliable timings, each matrix tested was run sufficiently often that the total
elapsed time was about 10 seconds. Singular vectors were computed by identical calls to drot [5]
in both agorithms.

The codes were compared with respect to

accuracy,
total number of passes through the inner loop of QR iteration,
(half the number of Givens rotations performed)
elapsed time when computing singular values only,
elapsed time when computing both left and right singular vectors as well,
elapsed time including bidiagonalizing the input matrix, and
elapsed time excluding bidiagonalizing the input matrix.

Also, the dependence of the new algorithm on the parameter tol (see section 4) was investi-
gated. At the end we comment on the implications of our results for the "perfect shift" strategy
for computing singular vectors.

The LINPACK code was modified to explicitly use the machine precision € in the stop-
ping criteria rather than implicitly as in (4.1) and (4.2). Specificaly,

if (Isl < ex(lgl+lg_ql)), setsto0 (7.1)
was used in place of (4.1) and
if (lg_1l < ex(Isl+lg_11)), sete_,t00 (7.2)

was used in place of (4.2). Thus, since both the new agorithm and modified LINPACK code
use stopping criteria with € appearing explicitly, there is no danger that the extended precision
registers on the MC68881 would cause tests like (4.1) and (4.2) to be executed with a smaller
effective € than expected, which could slow convergence.

The LINPACK code also used a corrected shift calculation rather than the erroneous one
in [5]. The version in [5] computes f = (d + sm)*(d - sm) — shift; this should be
f=(d + sm)*(d — sm) + shift instead (the corrected version is distributed by netlib [4]).

It turns out that the results depend strongly on the form of the bidiagonal matrix. For
example, the standard SVD behaves entirely differently on matrices graded from top to bottom
than on matrices graded in the opposite direction. Therefore, we present our results on 12
separate classes of bidiagona matrices, since this seems to be the only fair way to compare
results. The classes are as follows:

Class 1:
These 8 matrices are graded in the usua way from large at the upper left to small at the
lower right. All matrices have a 1 in the upper corner, and each superdiagona entry B; ;.
equas its neighbor B;; on the diagonal. Four of the matrices are 10 by 10 and have a con-
stant multiple between adjacent entries on the diagona and superdiagonal: 10%°, 10°, 102
and 10. The other four are 20 by 20 and are obtained from the first four by simply

repeating each entry once, e.g. a diagonal containing 1, 1079, 1072, ... , 10°* becomes
1,1, 1071, 10719, 100, 100, ..., 107%, 107 %.
Class 2:

This class is identical to class 1 except the order of the entries on the diagonal and super-
diagona are reversed. Thus these matrices are graded from small at the upper left corner
to large at the lower right.

Class 3:
These eight 20 by 20 and 40 by 40 matrices are obtained by abutting those in class 1 with

25

their reversals in class 2. Thus each matrix is small a the upper left, large in the middle,
and small again at the lower right.

Class 4:
These eight 20 by 20 and 40 by 40 matrices are obtained by abutting those in class 2 with
their reversals in class 1. Thus each matrix is large at the upper left, smal in the middle,
and large again at the lower right.

Class 5:
These 8 matrices are obtained from class 1 by reversing the order of the superdiagonals.
Thus the diagonal is graded from large at the upper left to small at the lower right, and
the superdiagonal is graded in the opposite direction.

Class 6:
These 8 matrices are obtained from class 5 by reversing the order of both the diagonals
and superdiagonals. Thus the diagonal is graded from small at the upper left to large at
the lower right, and the superdiagonal is graded in the opposite direction.

Class 7:
These 16 matrices are al small on the diagona and mostly large on the offdiagonal. Eight
of them are 10 by 10 with 1's on the off diagona and a constant diagonal, equaling 10™2,
1074, 1078, 1078, 107%°, 10712, 10", and 107, respectively. The other eight 20 by 20
matrices are obtained by putting two copies of each of the first eight together, and "con-
necting" them by setting the middle offdiagona entry B, ;; to be 10™*° times the vaue of
the diagonal entries.

Classes 8-11:
The ten 20 by 20 matrices in each class are generated by letting each bidiagona entry be a
random number of the form r-10', where r is a random number uniformly distributed
between —-.5 and .5, and i is arandom integer. In class 8, i is uniformly distributed from 0
to —15. In class 9, i is uniformly distributed from 0 to —10. In class 10, i is uniformly
distributed from O to —5. In class 11, i isidentically 0. Thus, in class 11 each matrix entry
is smply uniformly distributed on [-.5,.5].

Class 12:
This one 41 by 41 matrix is graded in as in class 1, with the ratio of adjacent entries being
10718 .79. Each offdiagonal entry is identical to the diagonal entry below it. This very
dense grading leads to different convergence properties than for the matrices in class 1,
which is why we put this example in a separate class.

Thus classes 1-6 and 12 consist of graded matrices, class 7 consists of matrices larger on
the offdiagonal than the diagonal, and classes 8-11 consist of random matrices with random
exponents.

First we discuss the accuracy of computed singular values. With tol=100e2 10" the new
agorithm aways converged in fewer than maxit=3n? passes through the QR inner loop and
computed al singular values to nearly full accuracy. Accuracy was determined using the method
in section 6: If ¢ is a computed singular value, the number of singular vaues in the interval
[0(1-ng) , o(1+ne)) were counted. Overlapping intervals were joined into larger intervals.
The number of computed singular values in each interval was then compared with the true
number of singular values in each interval. This accuracy test was passed in al cases but one
singular value out of 2041 singular values of all 105 matrices. In other words, 2040 singular
values were computed with a relative error of about 10™'* or better; the exceptiona singular
value (in class 11) had arelative error alittle less than 3-107 4.

The accuracy of the singular values computed by the LINPACK SVD were determined by
comparison with the singular values from the new agorithm. This data is presented in Table 1.
We called agreement to at least 14 digits with the verified correct results of the new agorithm
"al digits correct”; the notation "% all digits' in Table 1 means the percentage of such singular
values. The notation "% m—n digits' in Table 1 means the percentage of singular values com-
puted with m to n correct digits. 0 digits means that the order of magnitude is still correct. -1

26

digits means correct to within a factor of 10. The column "% nonzero, no digits' gives the per-
centage of computed singular values which were nonzero and had incorrect orders of magni-
tude. The column "% zero, no digits' gives the percentage of computed singular values which
were exactly zero, even though the matrix was nonsingular. The * in row 4 indicates that the
algorithm did not converge for one of the test matrices (this matrix was not counted in comput-
ing the percentages).

Table 1: Accuracy of Singular Values from LINPACK SVD
Class | %all % 12-14 | %8-12 | %4-8 | %0-4 | %-1 | % nonzero, % zero,
digits digits digits digits | digits | digits no digits no digits
1 100 0 0 0 0 0 0 0
2 42 14 11 0 29 1 0 3
3 99.5 .5 0 0 0 0 0 0
4* 59 11 4 2 21 1 0 2
5 94 0 0 0 0 0 0 6
6 94 0 0 0 0 0 0 6
7 90 1 5 0 .5 0 1 7
8 80.5 4.5 5 3 1 5 5 5
9 80 6.5 7 2.5 1 0 0 3
10 91 45 3 15 0 0 0 0
11 98 2 0 0 0 0 0 0
12 100 0 0 0 0 0 0 0

One striking feature about this table is the difference between classes 1 and 2. The only
difference between the matrices in classes 1 and 2 is the order of the entries. When the entries
are graded from large to small, the standard SVD gets all the singular values correct. Indeed, it
was constructed to perform well on matrices graded in this fashion. When they are graded in
the opposite way, only 42% are fully correct and another third have fewer than 4 digits correct.
3% are computed as 0 even though al matrices tested were nonsingular. This happens because
the standard SVD aways "chases the bulge" from top to bottom. When the matrix is graded
from large to small, this works well, but when it is graded in the opposite way as in class 2, the
algorithm must "reorder” al the matrix entries, and in doing so must combine tiny entries with
large entries, thereby losing precision. The same thing happens for class 4. The new algorithm
avoids the need to reorder by always "chasing the bulge" from the large to the small end of the
matrix. This is aso done in the algorithm in [17]; see section 5 for details. The nonzero singu-
lar values which are not even order of magnitude correct are off by factors of 1075 and 10™%
(class 7) and 10° (class 8). The last column indicates how often the computed singular vaues
were exactly zero, when in fact none of the test matrices were singular.

We evaluated the computed singular vectors by computing the norm of the residua
BV-UZ, where B is the bidiagonal matrix, V contains the right singular vectors, U the left
singular vectors, and X the singular values. The norm was the maximum absolute matrix entry.
In all cases for both new and old SVD this measure never exceeded 1.1-10"**H 100¢, which is
quite good and as expected from both algorithms (it is easy to show the convergence criteria for
both algorithms leave the residua near the roundoff level). We do not yet have a complete per-
turbation theory or better accuracy tests for the singular vectors; see section 9 for further dis-
cussion.

Table 2 provides a measure of the difficulty of the different problem classes which is
independent of matrix dimension. The usual rule of thumb for the number of QR sweeps it
takes to compute the SVD is two sweeps per singular value [15, p. 165]. If convergence aways
takes place at the end of the matrix, this means there will be 2 sweeps on a matrix of length i,
fori=n,n-1,...,3 (two by two matrices are handled specially). Here, n is the dimension of the
origina matrix. Thus, counting one QR sweep on a matrix of length i asi "QR inner loops," we
expect an average of about n(n+1) "QR inner loops' for the entire SVD. Thus, the quantity

27

"QR inner loops' divided by n(n+1)/2 should be a measure of the difficulty of computing the
SVD of a matrix which is independent of dimension, and we expect it to equa 2 on the aver-
age. For each of the twelve problem classes, and for the three agorithms old SVD (LIN-
PACK), new SVD without singular vectors, and new SVD with singular vectors, the minimum,
average and maximum of the quantity "QR inner loops' divided by n(n+1)/2 are given in
Table 2. Recal that we use different convergence criteria depending on whether or not we
compute singular vectors, which is why we have different columns for these two cases.

Table 2: OR Inner Loops/ (n(n+1)/2) for Old and New SVD Algorithms with tol=100¢H 10~

Class Old svD New SVD New SVD
without vectors with vectors

Min Avg M ax Min Avg M ax Min Avg M ax

1 .60 .90 1.33 .09 .36 91 .09 .49 1.11
2 .60 1.94 3.07 .09 .36 91 .09 .49 1.11
3 .61 .85 1.19 .56 .82 1.19 .56 .82 1.19
4 .32 1.04 1.80 31 .58 1.00 .35 .60 1.04
5 .07 .45 1.11 .09 .54 1.29 .09 .57 1.42
6 .07 .40 .93 .09 .54 1.29 .09 .57 1.42
7 .10 1.32 2.31 .10 1.04 1.85 .10 1.04 1.85
8 41 .64 .95 .25 A7 .75 .26 .49 77
9 .79 .94 1.29 .51 .73 .89 .57 .75 .93
10 1.07 1.29 1.57 .98 1.19 1.47 1.04 1.22 1.48
11 1.97 2.26 2.52 2.07 2.20 2.38 2.06 2.20 241
12 1.53 1.53 1.53 2.96 2.96 2.96 2.96 2.96 2.96

It is interesting to note in Table 2 that only in class 11 is our expectation of 2 QR sweeps
per singular value for the standard SVD nearly fulfilled. Recall that class 11 has matrices all of
whose entries are uniformly distributed between + .5. Otherwise, either the average is much
lower or there is a great variability in the number of QR sweeps needed (class 2). The same
comments hold for the new agorithm, except for class 12 which was chosen to make the new
algorithm look as bad as possible. Even so, it is within a factor of two of the old algorithm.

Table 3 gives timing comparisons between the old and new algorithms. The results
depend on whether singular vectors are computed (Job= v in Table 3) or not (Job= nv). There
were several statistics collected. First, the number of QR inner loops for each agorithm was
counted, and the ratio of QR inner loops for the new agorithm to QR inner loops for the old
algorithm computed; these statistics (minimum, average and maximum ratios, the same for the
other statistics) are shown in columns 3-5 of Table 3. The timings also depend on whether we
count the time to bidiagonalize or not. The time to bidiagonalize is quite large and can swamp
the second, iterative part. Therefore we computed timing ratios (new agorithm to old algo-
rithm) both with and without the initial bidiagonalization. The identical bidiagonalization code
was used for the old and new algorithms. We performed the bidiagonalization part of the algo-
rithm on a different, dense matrix, so that the algorithm and floating point hardware would not
recognize they were dealing with a bidiagona input matrix and so bypass some of the work.
Columns 6-8 of Table 3 include the bidiagonalization phase, and columns 9-11 exclude it.

28

Table 3: Timing Comparisons of Old and New SVD Algorithms with tol=100eH 104
Class | Job | Ratio of Inner Loops Ratio of Times Ratio of Times
(with bidiagondization) | (without bidiagonalization)

New SvD / Old Svd New SVD / Old SVD New SVD / Old SVD
Min Avg M ax Min Avg M ax Min Avg M ax
1 nv .15 .37 77 .69 a7 .85 .29 41 .63
v .15 .48 .84 .67 .75 .87 .26 .49 g7
5| NV .10 .18 .34 .37 .58 .82 14 .23 .37
v .10 .23 .36 .37 .51 .66 A3 .26 .34
3| nv .86 .96 1.02 91 .94 .96 .73 a7 .80
v .86 .96 1.03 .95 97 1.01 .88 .95 1.03
4| MV A4 .60 .99 72 .85 1.02 40 .58 1.15
v A4 .63 1.10 .69 .78 1.03 .46 .63 1.10
5| NV .67 1.23 2.00 .97 1.06 1.12 .94 1.76 3.42
% 67 1.26 2.00 | 1.01 1.09 1.16 1.06 1.33 1.77
6| NV 67 1.29 2.00 | 1.03 1.07 1.11 1.11 1.72 3.16
v .67 1.33 2.00 .99 111 1.24 .98 1.33 1.56
2| nv .10 .80 1.00 51 .91 1.12 .16 1.03 3.32
v .10 .80 1.00 44 .89 1.14 A5 .93 2.04
g | nv .38 .79 1.61 .81 .92 1.07 45 .75 1.32
v .40 .82 1.64 74 91 1.20 A7 .82 1.47
9| NV .52 .78 .97 .78 .89 .96 .48 .69 .87
v .52 .81 1.02 72 .89 1.01 .54 .80 1.00
0] v .62 .94 1.19 .78 .90 .98 .53 a7 .94
v .67 .96 121 .76 .95 1.09 .63 .93 1.18
11| NV .89 .98 1.12 .88 .93 1.00 .79 .87 .99
v .86 .98 1.13 .87 .96 1.06 .83 .94 1.09
12 nv 1.93 1.93 1.93 1.13 1.13 1.13 1.37 1.37 1.37
v 1.93 1.93 1.93 1.55 1.55 1.55 1.87 1.87 1.87

Whenever a number less than 1 appears in the table, it means the new algorithm was fas-
ter, and numbers greater than 1 indicate the old agorithm is faster. An examination of the
table shows that on the whole the performance of the two algorithms is comparable. Counting
bidiagonalization, the new agorithm varies from over 2.7 times faster (class 2) to 1.55 times
slower (class 12). Not counting bidiagonalization the extremes are 7.7 times faster to 3.42 times
slower; the extra overhead of bidiagonaization moderates the extremes. On simply graded
matrices (classes 1-4) and on random matrices (classes 8-11) the new algorithm aways did
better than the old on the average. With the diagonal and offdiagona being graded differently
(classes 5-6), the old agorithm was generaly a little faster. In classes 5-7 the largest ratios
occurred in examples where convergence was very fast with both algorithms, the old SVD’s fas-
ter convergence criterion winning out over the new agorithm’s more careful but more expen-
sive convergence test. In class 7 without bidiagonalization and without computing singular vec-
tors, there were only two matrices where the old algorithm beat the new (by factors of 2.42 and
3.32); in both cases both agorithms converged after a single QR sweep. Thus the difference in
times can be attributed to the slower convergence criteria of the new algorithm; in both cases
convergence was nearly immediate. Similarly, in classes 5 and 6 without bidiagonalization and
without computing singular vectors, whenever the old agorithm beat the new agorithm by
more than 32%, the ratio "QR inner loops'/(n(n+1)/2) was less than .17. In class 7 and many
examples in classes 5-6 there were generaly a few very small singular values and the rest large
and evenly spaced over a range of at most a few factors of 10; the new algorithm deflated out
the smallest singular values after 1 or 2 sweeps and spent the rest of the time working on the
closely spaced singular values. It appears our criterion for choosing between zero and nonzero
shift chooses the zero shift quite often, sometimes sacrificing cubic convergence until many

29

singular values have been deflated. The single matrix in Class 12 was therefore chosen with
very closely spaced singular values in order to make the new agorithm perform as poorly as
possible; in this example the average number of (mostly zero shift) QR sweeps per singular
value was 2.96 for the new agorithm, whereas the average number of (shifted) QR sweeps per
singular value was 1.53 for the old algorithm, which still computed them all correctly. We are
not currently able to find another criterion permitting more frequent nonzero shifts while still
guaranteeing high relative accuracy. Nonzero shifts for fairly small singular values frequently do
not cause inaccuracy in practice because small rotation angles prevent mixing large and small
magnitude matrix entries; unfortunately this phenomenon seems hard to exploit systematically.

From Table 3, it appears that Convergence Criteria 2a and 2b are not very effective, since
the ratio of inner loops (columns 3-5) does not change very much when Job= nv (singular vec-
tors are not computed and Criteria 2a and 2b are used) and when Job= v (singular vectors are
computed and Criteria 2a and 2b are not used). This is somewhat misleading, however. Closer
inspection of the test cases shows that in classes 1 and 2, Criteria 2a and 2b cut the ratio of
inner loops in haf for matrices which have constant ratios between adjacent diagonal matrix
entries. In these cases, the agorithm converges in a single QR sweep, instead of two QR
sweeps. But for the other test matrices in classes 1 and 2, where matrix entries come in equal
pairs, Criteria 2a and 2b have no effect at al. The excellent performance on the first set of test
matrices is watered down in the statistics presented. Of course, since this speed up is only for
matrices for which the algorithm is aready quite fast, we could simply omit Criteria 2a and 2b
altogether; this would have the advantage of computing identical singular values independent of
whether we also compute singular vectors.

Another interesting feature of Table 3 is the difference between classes 1 and 2. Recal
that these matrices differ only in the order of the data. In class 1, the old and new agorithms
are aways chasing the bulge in the same direction; in class 2 they always chase the bulge in the
opposite direction, which degrades the accuracy of the old agorithm as mentioned above. It
also degrades the performance by about a factor of 2: in class 1 (without bidiagonalization and
without computing singular vectors) the new algorithm is about twice as fast as the old on the
average, and in class 2 four times as fast.

We next present some timings for our agorithm with tol=10*¢H 102 compared to the
new algorithm with tol=100eH 1014, This low accuracy requirement speeds up the algorithm
while still providing order-of-magnitude correct singular values,; thus it may be of use for rank
determination. Only "Job= nv" (singular values only) cases were run. The new agorithm with
tol=10e was aways faster than the new algorithm with tol=10%¢ except for two matrices in
class 4 and one in class 5. In &l cases the computed singular values were good to at least 2
figures as expected.

30

Table 4: Timing Comparisons of New SVD_Algorithm with tol=10"eH 1072 and tol=10%¢H 10°4

Class Ratio of Inner Loops Ratio of Times Ratio of Times

(with bidiagonaization) (without bidiagonalization)

SVD (tolH 1072) / SVD (tolH 1072) / SVD (tolH 1072) /

SVD (tolH 107%) SVD (tolH 1071) SVD (tolH 107)
Min Avg M ax Min Avg M ax Min Avg M ax
1 19 .58 1.00 .80 91 1.00 .33 .65 .95
2 19 .58 1.00 .79 91 1.00 .32 .66 .95
3 A7 .70 .84 .88 .95 .98 .68 .81 .92
4 .56 .86 1.05 .94 .99 1.08 71 .93 1.24
5 .07 .35 1.00 .61 .85 1.00 19 .54 1.00
6 .07 .35 1.00 .61 .85 1.00 .19 .53 1.00
7 .09 .33 1.00 .46 .70 1.00 13 .37 1.00
8 .10 .23 .46 .80 .88 .96 .26 .45 71
9 .07 .20 .40 77 .83 91 21 .36 .57
10 .04 A7 .30 .68 74 .81 .15 .29 44
11 27 A1 .48 .63 71 .76 31 .46 .53
12 14 14 14 .68 .68 .68 21 21 .21

As mentioned at the end of section 4 on convergence criteria, we may use the much less
stringent criteria (4.5) and (4.6) if only absolute accuracy rather than relative accuracy in the
singular values is desired. In Table 5 we show timing comparisons between new algorithm
where each singular value is computed to an absolute accuracy of tol-A = 100eA H 107 A,
and the new agorithm with a relative accuracy tolerance tol=100¢E 10" as in Table 3. The
format is the same as in Table 3. As can be seen from Table 5, the absolute convergence cri-
terion amost aways leads to faster convergence than the relative convergence criterion.

31

Table 5: Timing Comparisons with Absolute Accuracy tol=100s-AH 10" %A
Versus Relative Accuracy tol=100eH 10”1
Class | Job | Ratio of Inner Loops Ratio of Times Ratio of Times
(with bidiagondization) | (without bidiagonaization)
SVD (absolute tal) / SVD (absolute tal) / SVD (absolute tal) /
SVD (relative tol) SVD (relative tol) SVD (relative tol)

Min Avg M ax Min Avg M ax Min Avg M ax
1] v 21 .48 1.00 .87 .91 .97 .32 51 .92
\ A7 .40 77 .76 .83 .89 .32 A7 74
5| NV 21 .48 1.00 .87 .91 .97 .32 .52 .92
v A7 .40 77 .76 .83 .89 31 .46 75
3| v .06 .39 .87 .81 .88 .97 A3 42 .85
v .06 .39 .86 .59 .73 .92 .09 41 .85
4| NV .03 .25 .70 .82 .88 .94 A1 .30 71
v .03 .25 .73 .66 73 .85 .07 .28 72
5| v A4 A7 .92 75 .89 .94 21 A7 .87
v A4 .46 .86 .68 .85 91 .26 .50 .85
6| nv A4 A7 .92 75 .89 .94 21 A7 .87
v A4 .46 .86 .68 .85 91 .25 .50 .85
7| nv .82 .94 1.00 .92 .96 .99 41 .83 .98
v .82 .94 1.00 .92 .96 1.00 .66 .88 1.00
g | v .26 .40 .64 .82 .88 .93 .32 43 .55
v .25 .40 .62 .66 .78 .89 .29 43 .62
9| NV .50 .68 .95 .88 91 .97 .54 .67 .87
v 51 .68 .93 .78 .85 .96 .53 .68 91
10| .60 .83 1.00 .88 .93 .98 .65 .82 .96
v .61 .83 .97 .78 .90 .97 .62 .83 .95
11| nv .97 1.00 1.00 | 1.00 1.01 1.02 .99 1.01 1.04
v .97 1.00 1.05 .98 1.00 1.04 .97 1.00 1.05
12 | NV .88 .88 .88 .95 .95 .95 .89 .89 .89
v .88 .88 .88 91 91 91 .87 .87 .87

Finaly, we discuss the implications of our results for the "perfect shift" strategy for com-
puting singular vectors (or eigenvectors). This strategy advocates computing the singular values
(or eigenvaues) by the quickest available method without accumulating singular vectors, and
then using these computed singular values as "perfect shifts' in the QR iteration to compute the
singular vectors in 1 or possibly 2 QR sweeps. The hope is that by avoiding the work of accu-
mulating vectors while converging to accurate singular values, time will be saved by computing
the singular vectors afterwards in one or two sweeps each. Unfortunately, our numerical results
indicate this approach will not work in general. For when our hybrid agorithm chooses to do an
implicit zero shift, it isin fact doing a perfect shift within the limits of roundoff error. Depend-
ing on the distribution of singular values, this can take more or less time to converge. There-
fore one cannot assume 1 or 2 sweeps with the "perfect shift" will results in converged singular
vectors, and we could well end up doing as many sweeps to compute the singular vectors as the
singular values. This will not happen in general, and a clever agorithm might be able to decide
when perfect shifts are useful and then use them, perhaps by keeping track of which deflated
subblocks of the matrix do not require zero shifts and using the perfect shift strategy on them.

32

8. Detailed Error Analysis

In this section we present a detailed error analysis of the implicit zero-shift QR algorithm
(Theorems 6 and 7). We begin with the assumptions used in the error anayses. Our model of
error in floating point arithmetic was given above in (3.5). It implies that overflow and
underflow do not occur; we discuss susceptibility to overflow and underflow briefly at the end.
In our anaysis €s with numerical subscripts denote quantities bounded in magnitude by €,
where ¢ is the machine precision. Our analysis will be linearized in the sense that we will
replace quantities like (1+¢€41)* (1+¢€,) by 1+(g,+€,) and (1+¢gq)/(1+€,) by 1+(g1—¢€5); such
approximations can be made rigorous by assuming all ¢; are less than .1 in magnitude and
increasing the fina error bound by a factor 1.06 [18, p. 113].

Lemma 5:; Let cosB, sinB and p denote the exact outputs of ROT for inputs f and g and exact
arithmetic. Now consider the floating point version of ROT applied to the perturbed inputs
f=f(l+te) and g = g(1l+eg), and let cs = (l+eg)cosh, sn = (l+eg)sing, and r = (1+¢g,)p
denote the computed results, where we assume neither overflow nor underflow occurs. Then we
may estimate the relative errors e, €4, and €, as follows:

21

s = (E¢-€g)SIN?0 + £ ,Where e/l < 7
21
En = (€4-€1)COS?0 + €4, ,Where leg'l < Vi
. 13
€ = £49n%0 + g,c05°0 + ¢, ,where lg/'| < Vi

Proof: We only consider the case |fI> Igl; the other case is analogous. In the following £s with
numeric subscripts indicate quantities bounded by € which may be functions of previous ;s as
described in the first paragraph of this section. Then applying (3.5) systematically to the expres-
sions in ROT, and using the fact that Ig/fl< 1, yields

t= % (1+eg—gs+eq)
tt= (1+e,) [(1+e3) (1 + t?(1+ep))]"?
= (1+7e5/4)[1+12]/?
= (1+7es/4)[1+(9/f)%(1 + 2(eg—grtey))]"?
= (1+7es/4) (1 + (gg—er+e1)(0/f)%/(1+ (g/F)?)) [1+(g/F)?]H?
= (1+ 9eg/4 + (g4—€1)SiN?0) secd
cs= (1+g;)/tt= (1 + 13eg/4 + (g4~ €4)Sin®6)cosd
sn = (1+gg)t-cs = (1 + 21e19/4 + (g4~ €()cOS?6)SING

r=(l+egy)ftt= (1+ 13e5,/4 + £45n?0 + £;C0s°6)p
U

To anayze the errors in the implicit zero-shift QR agorithm, we need to investigate how
the errors accumulate from one pass through the loop to the next. It turns out the errorsin f
and oldcs are the essential ones:

Lemma 6: Let f; and oldcs denote the true values of f and oldcs at the entry to the i-th iteration
of the loop in the implicit zero-shift QR algorithm. Let 8; and 8, be the true values of the two
rotation angles in the i-th iteration of the loop. In other words, f;, oldcs, 6 and 6, are the
values that would have been computed had all arithmetic been exact. Let fi(1+g;) and

33

oldes (1+€gq4) denote the actud floating point values of f and oldcs at the top of the loop, with

all previous loop iterations having been done in floating point without any overflows or
underflows. Then

&g, | sin?0y; Ol leg,| { 25¢ /4
i

lEoics., || = |2008%6;-5n20, sin?6,| |leaas || T 216 /4 + 21e-sin20, 12 (B

In terms of these expressions, we can bound the errorsin the computed values of ¢ and s:

g ="trueg"(1l+¢g,) and §="trues"(1+ &)

where
€q = — Eoldes 'COS? 0y — 2€4°C0S?0y;°COS? 0y + €y, "COSO; 41 + 20€ (8.2)
and
€g = £f,°C0S°0°COS20y + Ejgeq "COS By + 175814 + %sinzezels . (8.3)
€q and g5 may be further bounded by:
‘Sei‘ < ‘€0|dCS‘ + Z‘Efi‘ + ‘sfi+l‘ + 20¢ (84)
and
legl < leg | + legae | + 25€sin?6y /4 + 15€/2 . (8.5)

Proof: We apply (3.5) and Lemma 5 systematically to the expressions in the algorithm. As
before, €s with numeric subscripts denote expressions bounded in magnitude by «.

Note that at the top of the loop, g is known exactly. Therefore, after the first call to ROT we
have

cs = cosfyi*(1 + g°Sin?0y + %81)
sn = sinBy+(1 - & -cos’0y; + %az)

r = "true r'"-(1+ &;-cos?0y + %83)

The errorsin f, gand h are given by

f = (1+e4)-oldest = "true f":(1 + €qeq+ €r;7COS 0y + %85)

g = (1+€g)'S.+1Sn = "true g'(1 - g4cos”6y; + %57)

h = (1+&g) s, °Ccs = "true h"-(1 + Efi.sinzeli " %59)

After the second call to ROT we have

s = COSBy (1 + Egaeg 'SIN?Oy + 2€(,°COS°By;°SINBy + %Slo'gnZGZi + %811)

SN = SiNB (1 — €qges "COS? 0y — 2€4,°COS?0y;°COS By + éslz-coszez + %813)

2
o o 15 %5 .,
r = "true r":(1+ €-c0s*0y;;"COS20y + €gigeq "COS By + €4+ €SN 8,)

Since oldcs = csand f = h at the bottom of the loop, we have shown that at the start of the
next loop

34

f=fi,l(1+ g sin?6y + %39)
_ - s 21 s 21
oldcs = oldcs 4 1(1 + €giges'SIN“Oy + Zsfi-coszeli-sn 0y + 7810-sm 0y + 7811)

as desired. The expressions for the errors in ¢ and s follow from plugging the above bounds
into the expressions g_; = oldsn*rand s = r. O

From (8.4) and (8.5) we see that the errors in the computed ¢ and s are governed by the
errors g and €q4c5, and that the growths of these errors are governed by the recurrence (8.1).

A simple but somewhat pessimistic bound on these errorsis given by
Lemma 7: Let €, €yq4eq, € AN € be asin Lemma 6. Then

leg | < 25(i-1)e/4

l€oigeg | = 113(i-1)e/4

leg | < (138i-53)e/4

leg| < (113i-58)e/4

Proof: Replace the recurrence (8.1) by
E.i=AE+F

where

Ai:

sin®fy; 0 25¢ /4
2c05°0;;°sin?0, sin®B,| ' ' T |21e/4 + 21e'sin?6y /2

and the entries of E; are upper bounds for le; | and leqqe |- Taking E;=0, this recurrence has
the solution
i i
E.1=2 (1 AF (8.6)
j=1 k=j+1
Trivial bounds for A; and F; are

sin?0y; 25¢/4)
Al < s, 1 @9 IRil< lg3e/4 (8.7)

A simple induction shows that
i
. Sinzek 0
; szelk ﬂ 1S
= i
i (299500 57 o0 - snzey) 1
k=j+1

and the rest of the proof is a straightforward computation. O

In other words, the relative errors in the computed ¢ and 5 are bounded by alinear func-
tion of i, and so the largest relative error is bounded by a linear function of the matrix dimen-
sion n. We can now apply Theorem 2 of section 2 to bound the errors in the singular values of
the transformed matrix:

Theorem 6: Let B be an n by n bidiagonal matrix and B' the matrix obtained by running the

implicit zero-shift QR agorithm on B. Let the singular values of B be 6,= - - > g,, and the
singular values of B' be g,'2 - - - = g,'. Then if
w= 69n%e< 1 , (8.8)

the relative differences between the singular vaues of B and the singular values of B' are
bounded as follows:

35

loj—a;'l < i
0i~0j 1—000|
Let B, be the matrix obtained after k repetitions of the implicit zero-shift QR agorithm, and let
Ok1= "2 0y, beitssingular values. Then if condition (8.8) holds we have
1 2
‘O-i_o-ki‘s (W— 1)'0]@ 69kn €0 ,

where the approximation to the last upper bound holds if kwl.
Proof: Plug the bounds of Lemma 7 into Theorem 2. [J

Actualy, Lemma 7 and Theorem 6 are quite pessimistic, since the upper bounds in (8.7)
are unattainable. In fact, as we approach convergence, we expect the rotation angles 8 and 0y
to approach zero, which means the matrix A; should approach zero. We can use this fact to
obtain a much stronger error bound in the region of convergence:

Lemma 8 Let &, €yqg5, E¢ anNd €5 be as in Lemma 6. Assume further that al the rotation
angles 8 during the course of the algorithm satisfy sin’8 < t < 1. Then

25¢
lee | <
R TR
e | < 50te + 21te + 21e
ST g1-1)2 2(1-1) 0 4(1-T)
‘8q‘s 50t¢ + 21te + 24¢ + 20¢

41-1)2 2(1-1) 1-t
| 50t¢ 21te 23¢ 25t¢ 15¢
s = 5 + — + ~ + +
4(1-1) 2(1-1) 2(1-1) 4 2

le

Proof: Use the bounds

T 0 25¢/4
Al < 2T 1 and IRl < 21e/4 + 21et/2

The rest of the proof is a straightforward computation from (8.6). O
These bounds permit us state the following improvement to Theorem 6:

Theorem 7: Let B be an n by n bidiagonal matrix and B’ the matrix obtained by running the
implicit zero-shift QR agorithm on B. Assume that all the rotation angles 6 during the course

of the agorithm satisfy sin0 < 1 < 1. Let the singular values of Bbe o> - - - > o,, and the
singular values of B' be 0,'> - -- 2= o, Then if
88ne

W= <1, 8.9

(1-1)2 (89)

the relative differences between the singular vaues of B and the singular values of B' are
bounded as follows:

w
‘O-i_o-i" < Tci

Let By be the matrix obtained after k repetitions of the implicit zero-shift QR agorithm, where

we assume al rotation angles 8 satisfy sin8< 1< 1. Let 0,2 - - -2 0y, be the singular
values of B,. Then if condition (8.9) holds we have
1 88kne
loi—ol < (——-1)-0; 8
i ki ((1_00)k) i (1__[)2 i

where the approximation to the last upper bound holds if kwl.
Proof: Plug the bounds of Lemma 8 into Theorem 2. [J

36

Thus, if the rotation angles are al bounded away from 11/2, the error after k iterations of
the implicit zero-shift QR agorithm can grow essentially only as the product kn. The algorithm
can easily compute T as it proceeds, and so compute its own error bound if desired. In the
numerical experiments in section 7, we observed no error growth at al, and so as is often the
case an algorithm behaves much better in practice than rigorous error bounds can guarantee.

Now we briefly consider over/underflow. Most of the error analyses presented here can
be extended to take over/underflow into account. Techniques for error analysis in the presence
of underflow are discussed in [2]. If over/underflow is handled as suggested in the |IEEE Float-
ing Point Standard [10], then using Sylvester’s theorem to count the number of eigenvalues
less than x (2.1) can be made completely impervious to over/underflow [12]: If some di=% O,
then d,,,=% « and d;;»,=a;,,, and we count the number of d, whose sign bit is negative (i.e.
including -0 and —«). Rules for arithmetic with + 0 and + « are described in detail in [10].

37

9. The Accuracy of the Computed Singular Vectors

In this section we assess the accuracy of the computed singular vectors. Just as with the
standard SVD, the new agorithm guarantees a small residual in the sense that both Bv-6u and
BTU-GV are on the order of €B, where G is the computed singular vaue and U and v are the
computed singular vectors. However, in contrast to the singular values, high relative accuracy
in the bidiagona matrix entries does not guarantee high relative accuracy in the singular vec-
tors, we will give a 2 by 2 example to illustrate this. It aso turns out to be impossible to
guarantee a tiny componentwise relative backwards error, where each computed singular vector
of B would be the exact singular vector of a smal componentwise relative perturbation B+ 0B
of B, with I6Bl < nIBI, n on the order of machine precision. We will also demonstrate this
with a small example.

In place of such simple a priori forward or backward error bounds, our bounds will depend
on the singular value distribution. Briefly, the closer together singular values are, the less accu-
rately their corresponding singular vectors can be computed. This dependency is captured in the
well known "gap" theorem [15, p. 222] which can be used to show that the angular error in the
computed singular vectors corresponding to ¢; is bounded by the largest roundoff error com-
mitted divided by the "gap" or difference between o; and its nearest neighbor ¢, ;. This well
known bound holds for the standard SVD applied to dense matrices as well as the new ago-
rithm.

Numerical experience leads us to make the following conjecture for the new algorithm
applied to bidiagonal matrices which would significantly strengthen the bound in the last para-
graph: the "gap" minlo;— g, ;! in the denominator of the above error bound can be replaced by
the "relative gap" min(lo;—o;. 1!/0;). Since the relative gap can be much larger than the gap,
the resulting error bound can be much smaller. For example, if B is 3 by 3 bidiagona matrix
with singular vaues 0,=1, 06,=2:10% and 03=10"%, the old error bounds for the vectors
corresponding to the two tiny singular values are on the order of 10¥¢ since the gap is 10”2,
However, the conjectured bounds are both ¢ since the relative gap between 2:10% and 10”2 is
1. Proving this conjecture rigorously remains an open problem, athough a supporting result
appearsin [1].

Now we present a two by two example showing that small relative perturbations in the
entries of a bidiagona matrix can cause large perturbations in the singular vectors:

1+n ¢
A(n) = { 0o 1

As n varies from 0 to €, an easy computation shows that both left and right singular vectors
rotate by 22.5 degrees.

The same example can be usedA to shgw that no tiny componentwise relative backward
error bound can hold. Specifically, let u; and v; be the left and right unit singular vectors of

1+¢ ¢
0 1

A =

computed by the new algorithm (for ease of presentation we ignore the fact that 2 by 2 matrices
are handled specially by the algorithm; this same phenomenon holds for larger examples as
well). Suppose that U; and v; differ by at most €; from the exact unit singular vectors u; and v,
of a componentwise relative perturbation A+3A of A, where I8Al < &,lAl. Then if
€,=0(e%?), €,¢, = Q(€). In other words, g; is Q (£'/%). Therefore, any attempt to prove a
small componentwise relative backward error o(€%®) must permit errors in the computed vec-
tors at least as large as e¥/3>> €.

The proof goes as follows. Applying the new algorithm to A (and ignoring the fact that 2
by 2 matrices are handled specially), we set A, , to 0 and get the columns of the identity matrix
as left and right singular vectors. Now we make relative perturbations of size a8 most €,=¢"
(o> 2/3) in each entry of A (here, le, < €5):

38

(1+e)(1+ey) e(l+ey)

B =A+0A = 0 1+e,,

Compute

B™B = + O(e2+¢€3)

2e+2e5, €
I+ € 2€53

| + ¢

X 1
1 4 + O(e?+€3)

| + eC + O(e%+¢))

where Ix| < 2+2¢,/e and lyl < 2g,/e. We consider the eigenproblem for C. Suppose [1n]"
is an eigenvector of C; we will show
1

———— < Inl< 3+ 4g,/¢
3+ 4g,/e d 2

implying the angle between an eigenvector of C and [1 0]" is Q (g/g,) = Q (¢¥7%). We compute
as follows. If [1n]T is an eigenvector of C, N must satisfy n?+(x-y)n-1=0 or

n= (y;X) + (((y—X))2+ 1)1/2]

Since I(y—-x)/2l < 1+2¢,/¢, it is easy to see both Inl and In~!l are bounded by
1+2e,/e + ((1+2e,/€)%+1)Y2 < 3+4g,/¢
as desired.

Now consider the so far ignored perturbation O (g2+€3). The gap between the eigenvalues
of C is computed to be ((x-y)?+4)¥2 > 2. Thus the perturbation O(g2+¢€3) can change the
eigenvectors by at most O(e+¢€3/e). When g,=¢%, this is a perturbation of a most O (g2 1).
But when o> 2/3, 20-1> 1-a and so the perturbation cannot change the lower bound
Q (g% on Inl.

Thus, arelative perturbation of size €* (a> 2/3) to A means the right singular vectors are

least Q (e1"%) = Q(g;) away from the computed right singular vectors. Thus g,-€,=Q (¢) as
desired.

Since our agorithm handles 2 by 2 matrices as special cases, a4 by 4 matrix like
1100

01¢0
0011
0001

could be used in the proof, but the computations are more complicated.

As stated above, rigorous error bounds on the computed singular vectors depend on the
singular value distribution, and that the closer together singular values are, the less accurately
their corresponding singular vectors can be computed. The "gap" theorem [15, p. 222] expresses
this dependency by bounding the angular error in the computed smgular vectors by the residual
BvV,-G;u; , BT uI 0, vI (the norm of the n by 2 matrix [Bv,—0,;U; , BTU;—6;v]) divided by the
gap (here U;, v, and 0; are the computed singular vectors and singular vaue). Standard back-
ward error analysis shows that the residual may be bounded by largest roundoff error commit-
ted (which is p(n)eB, p(n) a modest function of n and € the machine precision). This yields
the error bound

39

max(0(U;,u;) , 8(Vi,vi)) < p(n)e B /gap= p(n)e B / min lo;—0;, 4! ; (9.1)
here u; and v; are the exact singular vectors.

The bound (9.1) is true for the standard SVD of a dense matrix as well as the new algo-
rithm. A natura question is whether the bound can be improved for the new algorithm applied
to the bidiagonal singular value problem. Numerical experience and Proposition 7 in [1] sup-
port the following

Conjecture: Let B be an unreduced bidiagona matrix with singular values o; and left and right
singular vectors u; and v;. Let the singular vectors computed by the new algorithm be u; and v;.
Then the errorsin u; and v; are bounded by

max(6(U;, u;) , 6(Vi,v)) < p(n)e / relative gap = p(n)e / min (lo;—0;, ;!/0;) . (9.2)

The justification for this conjecture is as follows. In section 8 we proved that the zero-shift
part of the algorithm is forward stable across a single QR sweep; numerical experience indicates
that it is actualy forward stable across many QR sweeps. (It is straightforward but tedious to
show that after k sweeps, rounding errors can grow by at most a factor which is O(k), but it
appears difficult to estimate the constant.) This forward stability means the accumulated
transformation matrices are computed accurately. Thus, the only serious errors are committed
on convergence: setting an offdiagonal to zero. If we use a "conservative" convergence criterion,
where only offdiagonals smaller than €0, are set to zero, the numerator in (9.1) is reduced
from p(n)eB to p(n)eo i, Which implies the conjecture. Extending this argument to the stop-
ping criterion described in section 4 appears difficult, and it is possible that with the more con-
servative stopping criterion the algorithm will occasionally compute more accurate vectors than
the criterion of section 4.

40

10. Conclusions and Open Problems

We have described a method for computing all the singular values of a bidiagona matrix
to nearly full machine precision, and showed it to be comparable in speed to the LINPACK
SVD agorithm. This computation is justified because small relative errors in the bidiagona
entries (from roundoff in the agorithm or from previous computations) can only cause small
relative errors in the singular values, independent of their magnitudes. The technique can be
extended to computing the eigenvalues of symmetric positive definite tridiagonal matrices with
high relative accuracy as well [1].

A number of open questions remain. First, how accurate are the singular vectors com-
puted by this agorithm? We cannot generaly expect high relative accuracy in al singular vec-
tors, because clustered singular values can have arbitrarily ill-conditioned singular vectors. Still,
singular vectors might be computable fully accurately so long as the relative differences between
corresponding singular values and their neighbors are big enough, at least if we use a stopping
criterion more conservative than the one in section 4. When in practice is it necessary to com-
pute such accurate singular vectors for tiny clustered singular values? Do applications demand
accurate singular vectors, or are tiny residuals sufficient, and if so, how tiny?

Second, since we have shown that it is possible to obtain accurate singular values from
accurate bidiagona matrices, we may ask when it is possible to guarantee accuracy in the reduc-
tion to bidiagona form. This is clearly not possible in general, but for some special classes of
matrices (such as positive definite symmetric tridiagonal matrices [1]) reduction to bidiagonal
form is accurate. It may also be possible for graded matrices arising from integral equations.
For what classes is this true?

Third, how generally can our implicit zero-shift technique be employed to guarantee accu-
rate singular vaues and eigenvalues? As mentioned in section 3, a similar technique was used
in root-free versions of symmetric tridiagonal QR; can it be modified to produce a tridiagonal
symmetric QR algorithm which guarantees accurate eigenvaues for at least some interesting
classes of symmetric tridiagonal matrices? This question is addressed in [13].

Finaly, what is the best paralel algorithm for high accuracy singular values? As men-
tioned in section 3, zero-shift QR can be paralelized, but it is not as easy to see how to incor-
porate shifts and convergence testing. In section 6, we showed that bisection and its
refinements could be used to compute high accuracy singular values. Such a technique has been
successfully paralelized for finding eigenvalues of symmetric tridiagonal matrices [14]. Another
possibility is an agorithm based on divide and conquer [11], athough it appears difficult to
guarantee high accuracy. The answer will probably depend on whether al or just some singular
values are desired; in the latter case hisection will likely be superior.

The code is available electronically from the first author. It will aso be incorporated in the
LAPACK linear algebralibrary [3].

41

References

[1] J. Barlow, J. Demmel, Computing Accurate Eigensystems of Scaled Diagonally Dominant
Matrices, submitted to SIAM J. Num. Anal.; Courant Institute, Computer Science Dept. Report
421, Dec 1988

[2] J. Demmel, Underflow and the Reliability of Numerical Software, SIAM J. Sci. Statist. Com-
put., vol. 5, no. 4, 1984

[3] J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, D. Sorensen, Pros
pectus for the Development of a Linear Algebra Library for High Performance Computers, Argonne
National Laboratory, Mathematics and Computer Science Division, Technical Memorandum
No. 97, September 1987

[4] J. Dongarra, E. Grosse, "Distribution of Mathematical Software via Electronic Mail,"
Comm. of the ACM, vol. 30, no. 5, July 1987, pp 403-407

[5] J. Dongarra, C. Moler, J. Bunch, G. W. Stewart, LINPACK User's Guide, SIAM, Philadel-
phia, 1979

[6] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959

[7] G. Golub and W. Kahan, Calaulating the Singular Values and Pseudo-inverse of a Matrix,
SIAM J. Num. Anal. Ser. B, Vol. 2, No. 2, 1965, pp. 205-224

[8] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins, Baltimore, 1983

[9] N. J. Higham, Efficient algorithms for computing the condition number of a tridiagonal matrix,
SIAM J. Sci. Stat. Comput. 7 (1986), pp. 150-65

[10] IEEE Standard for Binary Floating Point Arithmetic, ANSI/IEEE Std 754-1985, |IEEE 1985

[11] E. R. Jessup and D. C. Sorensen, A Parallel Algorithm for Computing the Singular Value
Decomposition of a Matrix, Argonne National Laboratory, Mathematics and Computer Science
Division, Technical Memorandum No. 102, December 1987

[12] W. Kahan, Accurate Eigenvalues of a Symmetric Tridiagonal Matrix, Technical Report No.
C$A1, Computer Science Dept., Stanford University, July 22, 1966 (revised June 1968)

[13] J. Le and B. Parlett, On the Forward Instability of the QR Transformation, submitted to
SIAM J. Mat. Ana. Appl.; also Report PAM-419, Center for Pure and Applied Mathematics,
University of California, Berkeley, July 1988

[14] SS. Lo, B. Phillipe, A. Sameh, A Multiprocessor Algorithm for the Symmetric Tridiagonal
Eigenvalue Problem, SIAM J. Sci. Stat. Comp., Vol. 8, No. 2, March 1987, pp s155-s165

[15] B. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, New Jersey,
1980

[16] G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue
problems, SIAM Review, Vol. 15, No. 4, October 1973

[17] S. Van Huffel, J. Vandewalle, A. Haegemans, An efficient and reliable algorithm for comput-
ing the singular subspace of a matrix, associated with its smallest singular values, J. Computational
and Appl. Math. 19, (1987) 313-30

[18] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, 1965
Acknowledgements

W. Kahan was supported at times by grants from the Research Offices of the U.S. Army, Navy
and Air Force under contracts numbered respectively DAA629-85-K-0070, N00014-85-K-0013
and AFOSR-84-0158. J. Demmel has been supported as a Presidential Young Investigator and
under NSF grant ASC-8715728. The authors acknowledge the suggestions of the referees as
well as various colleagues who over the years have pointed out deficiencies of the standard
SVD, in particular Augustin Debrulle, Cleve Moler, Beresford Parlett, and G. W. Stewart. This
paper was originally presented at Gatlinburg X, Fairfield Glade, Tennessee, in October 1987.

42

