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four coupled integral equations for the state JP==O—
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racy by expanding the invariant amplitudes in terms of
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to form mesons as quark-antiquark bound states, the ratio
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1. INTRODUCTION

There are quite a number of situations in current elementary

particle physics where it is desirable to have at hand a numerically

1)

bound state region. By realistic we mean at present inclusion of the

accurate solution of the realistic Bethe-Salpeter equation’in the
spin of the constituents and non-zero mass for both the exchanged

particle and the generated bound state.

Such a B-S equation but restricted to scalar particles has
recently been discussed and solved in the bound state region by
several authors 2’3). The more general equations for the bound state

of two spin & fermions via the exchange of a pseudoscalar particle

: 4) 5)

‘have been written down and studied by Gourdin ; Goldstein and

Kummer 6). They have been discussed further in connection with

7) 8)

specific physical problems by Swift and Lee , Harte and by
Te will refer to these papers

Delbourgo, Salam and Strathdee 9)
for most of the basic formalism. The latter authors do not attempt

a numerical discussion of the spin equations. Goldstein and Kummer
discuss the zero mass cases only. Gourdin has obtained some solutions
of reasonable accuracy by employing spproximations which are good

only in the weak binding limit of the deuteron.

In the present note we are more interested in tightly bound

. . . . 10
systems - a situation we encounter, for instance, in the quark models )

3) that a simple

for the elementary particles. It was shown earlier
exchange potential is not able to reproduce the observed particle

spectrum on a Chew-Frautschi plot. Now we are asking how this situa-
tion is changed by the inclusion of spin. To be specific, we con-

sider the B-S equation for a feruion-antifermion pair which is bound
via the exchange of a pseudoscalar meson and generates a meson bound
state. The inclusion of the spin 12 character of the fermions leads

to four coupled integral equations for the generation of JP:=O_ state
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and to a set of eight for a 1 state. Due to the fact that we now

- get coupled equations, most of the previous methods would exceed

67/1020/5

computer capacity. We find it therefore advantageous. to expand the
invariant functions in terms of four-dimensional Euclidean harmonics.
This is possible after doing the Wick rotation 11). The use of this
method has been encouraged by our finding that retaining only the
leading n term which leads to one-dimensional integral equations
produces a four to five place accuracy in the scalar case. The re-
sulting set of coupled one-dimensional integral equations is solved
on the computer by direct matrix inversion or evaluation of the

Fredholm determinant.

In Section 2 we give a brief review of the situation for scalar
particles. Ve put special emphasis on the expansion in hyperspherical
harmonics and to the accuracy which can be expected. TFor very small
mass of the exchanged particle ( A4/m <€<1), the potential becomes
nearly singular. In this situation, however, we can obtain a per-
turbation formula for the eigenvalue. This allows us to obtain very
accurate results for the coupling constant and serves as a check on
the computer results in the domain where both methods are valid. This
perturbation formula is slightly more general in that it also allows
us to find the variation of the coupling constant for unequal masses

of the two particles. In Section 3 we present the B-S equation and

our solution for a spin Y2 fermion antifermion pair. We obtain the

eigenvalues (coupling constants) and bound state masses for the states
JP==O- and 1 after introducing a high mass cut-off. These states
are the ones'df'primary physical interest. Others can be obtained

by the same method. Our main observation, discussed in Section 4,

is that for the pseudoscalar exchange potential which we are uéing,
the triplet state is more tightly bound than the singlet for weak
couplings only. This is the same situation as one observes for the
deuteron. TFor strong couplings the situation is reversed in that the
0" state becomes less massive than the 1", a situation which is

observed in the elementary particle specitrum where the vector mesons

are heavier than the pseudoscalar ones.
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e discuss some of the implications of these results on the re-
lativistic quark model and show that the mass ratio of 4:1 of
vector mesons to pseudoscalar mesons results for a gquark mass of the

order of two nucleon masses.

SCALAR PARTICLES

In this section we will review and generalize an earlier

3)

solution of the B-S eguation for scalar particles. The main
reason for doing this is that it allows us to present the fundamental
method and especially the formulae for the expansion of thé amplitudes
in hyperspherical harmonics in a simple situation. It also provides
an excellent test for the approximation we introduce, of retaining

the lowest n term only. PFor the special case of very small exchange
masses ( /m <<-1) the matrix approximation on the computer fails
due to the fact that the potential becomes nearly singular. For this
case we derive an accurate and convenient perturbation formula for

the eigenvalue. Ye work in momentum space throughout although

- . . . _ 2
similar calculations could also be carried out in X space .

v /e write the homogeneous B-S equation for two spinless particles
of mass m which are bound via the exchange of_a similar particle of

mass /LL as

$(ra) = igl(zm‘l'[(cwp)%_mﬂj[@y p)tmﬂ'jd“;e Pplp.k) (1)
- J(gR)
A partial wave expansion of this equation results in a two~dimensional
integral equation. Numerical solutions of such an equation arising
from the zeroes of the Fredholm determinant have been discussed
elsewhere 3), Here we shall employ an expansion in hyperspherical
harmonics with the view to reduce the equation to an approximate but

accurate one-~dimensional integral equation. Thigs method can be

extended to the case of particles with spin.
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4.

11.)

of integration and go over to the Euclidean metric for the momenta p,

As a first step, we perform a Wick rotation of the contour

q and k. The amplitude can then be eXpanded . as

PN

$(ra) = = sz brem(ra) 7, () (2)

N 20 m=-€

in terms of the harmonics which are normalized byr4)
e .
Tin(&PW) = T(8) Y (bY) 5 (3)
S seat [ZO ,
1 E - — £
gl = (L) 0B ) o) ¢! (Ges)
LT ) ! | (4)

‘where "4, ( ) are the usual spherical harmonics and CL(cose)

are the Gegenbauer functions. The observation that the exchange

propagator has the expansion:

1 ) gvT?— 1 /=5 “', X LN ,
' (?:) Vo &9 X’ﬁ'm’(‘n’i)

(5)

and ﬁhe use of‘orthonormality properties of the harmonics enable us

to obtain the integral equation satisfied by the partial wave ampli-
tude P nfm(Pya) -

In Eq. (5), we have denoted

where k and q now stand for the Euclidean lengths. Thus, we
obtain

e

¢Y‘9m (hq/) = %—LJRbdR% AW‘(R,%)EfC\n’(PC!’) #)N{'W‘(Pi ‘Q) o (6)
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where

\

"y

A 14 (\ K

i

o
)
and

it
- -
Ern(Fa) = f Sin*O,,

<

(7)

(8)

We can now rotate the fourth component of p back to a Minkowski

metric by replacing po by

and the closed form so obhtained

ipo

Gegenbauer funciicons involved in En

. The angular integrafiion over the
b Z
(&) is in general complicated 12),13)

is not amenable to numerical evalua-

tion, whereas it is relatively ecsier if we specify the value of £ .

For A€==O, we obtain

Nt n r
o Vi 4 - ! ' A - - \!T,+n,,’
Ennlkiprz'/) = T—(-g-’}z L",u L 1 (=1
(. . Na't2 o An=r’] | )
= [ SR Dt RR )
( \2pg / \ 2pq /
- ~
where
Q< [@prme)” + 4 prab
b
R = (@%=pwmY (1)

S s
and p,q denote ng =Jp§—p2,
with Eqs. (7) and (9) describes

ing to

The kernel of Eq. (6) contains the functions

’\O .
and B, [Ba. (9)
therefore,

implies that Q™ R in Eq. (9)

« In the bound state region p2< m

especially for tightly bound systemsz,

qu respectively. Equation (6) together

a couplad and infinite set (correspond-

n,n' =0,1,2 ...) of one-dimensional integral equations.

[Bq. (7)]

and

L
p24<_m2+q2a This

and therefore Egn' vill be small



unless n=n'. We may further take the lowest value of 1n because
for all higher n the function 4 (7) is reduced by a considerable
factor. So we try to approximate the infinite system (6) by taking
only n=n'=0, in which case we obtain a single one-dimensional
integral equation for each partial wave. Computer capacity actually
allows us to retain several n values which we have done to test

the accuracy. It was found that using more than one n value did

not alter the fifth significant figure in the coupling constant.
Therefore this method is quite accurate and other errors introduced
by the use of the B-S cquation in ladder approximation are certainly

of much greater weight.

We have solved the resulting integral equation by direct
matrix inversion where we have used Gaussian integration and have
taken 6, 12 and 24 supporting points for each of the variables q, k.

' erec 2),3) '

The results agree well with earlier ones and are accurate to
at least four places. It was also found that the one-dimensional
formulation is more stable against variations of the mesh size than
the full two-dimensional problem. In Table 1 we have plotted the

" values of the coupling constant )\nF==g2(41T)—2, obtained as zZeros
of the Fredholm denominator, against the square of the bound state
nass, S==m§ for different values of the ratio o =HV%u We have
selected as the physical solution the smallest positive XN which

- gives a bound state. To the coupling constant which for a given A
gives a zero mass bound state we refer as strong coupling. If the
‘coupling is increased beyond this limit, the bound state moves to

negative S or imaginary mass. For &= we have =
© I g J ‘ ? A strong

One can solve Eq. (6) also by a so-called variational ansatz
as Schwartz 2 did. We have opted for direcs matrix inversion because
the variational method works only for a positive (or negative) defi-

nite kernel. This property is quite easy to prove for the scalar
14) '

1

case but is not true for the coupled equations in the spin %

problem, to which we want to apply our method. Furthermdre, the
15) R

amount of computer time to be saved is nearly,negligible‘while the

analytic manipulations Lecome wcry comnlicated.
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' If the mass of the exchanged particle is very small (& Z 10),
the potential in Eq. (1) becomes nearly singular and can no longer
be described well by a 12 or even 24 point matrix approximation. For
this situation, we have therefore derived a perturbative formula by
making use of the fact that for p2==o, /k2==O, Bq. (1) is solved

exactly by Wick's ground state solution

43(@) L‘t m*) (11)

and

A = 2

(12)

The relation we shall derive below isg algebréic and describes very
accurately the connection between the coupling constant and the mass
of the bound state. Moreover, since it does not use the Wick rotation,
it can be generalized to the case where the two parallel propagators
carry slightly different masses: M1==m-rm1, M2==m-+m2. This latter
situation is of special interest to quark models with different quark

masses. Accordingly we generalize Eq. (1) to

pra)=ni -2t 0 ] ¢ R e | (15)
[ -4 (4 = oy ¢<r) |

1 2 _
‘than m. For p_=M=m =m,=0. ¥ick's solution (11}, (12) satisfies

‘where we assume that po, A, m and m, are all much smaller

(13) and if these parameters are non-zero but small, we can expect
to obtain a reasonable approximation for M. if we replace ¢ by
c?o in Eq. (13). In order to reduce Eq. 213) to an algebraic equjtion,
we multiply both sides by a function of q and integrate over d q.
This function has to ensure convergence and for convenience we have
chosen (?O (11), but the final result is independent of the specific

form of this function. We observe that in Eq. (13), A and mB==2pO
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occur quadratically, while m, and m, enter linearly (and, for
symmetry reasons, only as their sUm). We therefore seek‘a‘pertur-

bative formula of the form
N M\ M Ay
A(F%mﬁﬁﬂﬁfk> = A(qo,o)-+(wr>%,+ L_FTx/AL

2 4 PRI
+ %)\‘3 + O(‘M.BJ/"U‘) th!L)

(14)

X(0,0,0) is of course 2, which is Wick's value. By carrying out
the integrals arising from the left-hand side of Eq. (13) as Feynman

integrals, we obtain for the second and third terms
2
S o (15)

The fourth term is somewhat tricky to evaluate since the inner inte-

grand in

-1

oy :
SaR [ e

@) @ g

has no analytic expansion around A =0. This is understandable

since for small 4 Eq. (16) is expected to behave like /42 1og‘/12
due to the singularity in the exchange propagator. We shall therefore
caleulate X(x)- A(0), to be identified with the fourth term of

Eq. (14). By going through the standard techniques, we obtain from (16)

L L N p |
A ) _-_-___L__[ , dé(df‘g Xy (-xy(i-9) ]
M 2m! ﬂ, | [mlx("X'Ez”)*f/*l('"X)(x—zu)]3 (17)
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which is evaluated numerically and fitted to a linear dependence on

H

2 12 ;
é%gl@gé;z which is valid over a wide range of values of = - We

arrive at the relationship

A= 20 - 2 (Teyt oy g (0TS
5 e S ¥
AL A ey A0 4 EJ (18)
L 2l I =

where

19

We see that Eq. (18) predicts a larger coupling for a more
tightly bound system and also a larger coupling for a more massive
exchange particle. This is in accordance with what we expect since,
for a massive exchange particle, the potential becomes less singular.
In Table 1 we have compared some values of N obtained on the
computer as a solution to Eg. (6) against those following from rela-

tions (18) and (19) with m =m,=0 and my=u. We may comment

1
that for large values of m4¢ the perturbative formula is more re-

]isble and more accurate than the numerical solution of Eg. (6), while

for m~u it should not be used. In the special case of M=0

a similar formula was apparently used by Glirsey, Lee and Nauenberg 16)

. - . . 17
in deriving a quadratic mass formula for mesons )°

1

3., SPIN & PARITCLES

We congider now the B-S equation describing the fermion-
antifermion system (spin VZ, mass m) bound by the exchange of a

pseudoscalar meson of mass/u

V() = LZJJ%W%HM o YRR (gepem)

G ()Rt DAt gyt me (20)

67/1020/5
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10.

FPollowing the standard procedure (4)-(7), we introduce scalar

and vector functions as invariant amplitudes and choose the ansatz:

.%(554—T)+l26‘“.(7+(,§) T (B+C)+LE(F+G)

Y= L SN B e
y(B-0)r LF(F-G)  (S-T g (v-ii)
= C 18)

where 6 1is the Pauli spinor .

On examination of the behaviour of Y under space reflection

V(4,2) » Pv@.3) = + ¥ via -8)y (22)

we associate‘even intrinsic parity with the amplitudes S, T, ﬁ, v
and odd parity with the rest. Ed..(QO) is invarignt under the com-
bined operation of charge conjugation x parity: CP .which is equiva-

19)

lent to spin exchange invariance: & Under CP, we have

V(%3 - Y9 - —wvia, Ty (23)

g

In terms of the components of ,\Y_ as contained in (21) it can be
seen that the CP invariance gseparates the sixteen amplitudes of

Eq. (21) into two disconnected groups:

i o ~
5} Vz_ 3 U 4 5 {13 5 F1)F3} 611 )Gl_g B A(‘L,)ﬂ,) = A(’%c.)%) y

Tj \/{") V_';; u'?— 3 E', Cv; F?-: G,Z : Ai(‘&p;;l/) = _A(_%@J—Gi) (24)

The subscripts 1, 2, 3 denote the Cartesian components of the

three-vector functions.



1.

" Tnserting the ansatz (21) into Eg. (20) and using the explicit

representation 20) for the Y matrices leads to two sets of eight coupled

integral equations for the scalar functions S(p,q)...T(p,q)u For p2< m2
the integral in Eq. (20) defines these funciions as analytic functions in
a cut qo plane. The familiar two cuts and four poles in the ko plane
of integration are avoided by an infinitesimal deformation of the contour
according to the Feynman prescription. In this way, the ko path of
integration would still pass close to these singularities which is not
good for numerical integration. We therefore carry out a Wick rotation of

the contour of integration and replace 9, = iq4 and ko — ik This

rotation is allowed here in the spin & case because the motion4of the
contour does not encounter any singularities in the first and third
quadrant. The infinite contour which is picked up does not contribute
if the integral exists in the first place. We will assure this in the
following by assuming the presence of an analytic cut—off function. We
show in the next Section that such a cut-off is actually necessary 1o
obtain physically meaningful solutions. This rotatioﬁ of ko cannot
affect the Fredholm type denominator because the latter is a function of

P, only.

In order to be able to expand our functions on the basis of the
Buclidean hyperspherical harmonics, we also rotate Py to ip4, This
secondary rotation is for convenience only and has nothing to do with the
solubility of the problem at hand. At the end of the calculation, we
undo the Py rotation by analytic continuation of our functions to the
physical region. We could entirely avoid this last rotation by expanding

our functions on the basis of 0(3,1) instead.

The coupled equations take the form

AL , ’%; e A o 2 ]J(qu KﬂkP ) fgiPﬁ>
2 Gy = ! s f F =Yt g Py R
OA} g (';;)“ \}74”%) * J ¢ i?') " ,)t g U’\'—'L)L"}“L (25)
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12.

-3 > —

where the 8x8 matrix X0 is given in Table 2, Ai_—‘.(s,T,v,U,B,c,?’,G)c
Our next task is to project, from Eq. (6), the bound states of well-
defined gquantum numbers n, J, m. We expand the scalar amplitudes in
hyperspherical harmonics and the vector amplitudes in vector-hyperspherical

harmonics :

S(k%$> = E%;ﬂ' njﬂx(b&) jﬂ1(JLP$)

- — —_— i
26
V(Pfi/) = é. vnj'i_m(F’if/) y?i..m(JLm’) : ( )
nILm
The harmonic YnJLm is a Weighted sum of Yan :
Yogim (£ ) = é CTmill Lom—u; 1 ) an/q(‘Q-)E o (2n)
A= -1 ' =

where gu - 1is a unit vector in the spherical basis. . In addition to the
orthonormality of the harmonics, we also need the following well-known

21)

projection formulae H

= - T+4i“ v <, ,/} j 3
9 yﬂ:}‘;‘n =9 Sun O\/;_;] %}3’11{ i +15 n&‘/r E’,‘ | yw TR m

— : 4
@' YYTIJ:MH’\ ﬁ/ \me 2;-_)_,’ yn'}m
—_ . P (28>
Vs, = @5"""9\/1;} 4>/me
- J—
Y NI T T o

and similar formulae for Ekfu Here q denotes the magnitude of the
Buclidean four-vector  g. On inserting (26) into Eq. (25), and making
use of Eqs. (5) and (28), we obtain 16 coupled integral equations
(i,3=1 to 16)
i
A‘n.‘}‘l_m<or’> = -———ded@ R“‘;mé A (h@) M <rci,:r{9)

29
?S(S)tf (&) (22

(Frai+ws) = 4 pgitod’s

nIUm
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13.

Here, AT (i=1 to 16) denotes the column matrix :
{: [
A= (5, T Vo s Ve, Ve Uy o = - = ) (30)

where V v and V are the components in the spherical basis of

J+17 ' J-1 J

V(p,a). The values of L and I! in Bq. (29) are specified by J,J,J+1,..
for i,j = 1,2,3,... as indicated by the subscripts in BEq. (30). The
parts of the matrix MTd  which are of interest to us will be discussed

below.

It is possible £0 separate the singlet and triplet states. In view

of Bq. (24), we define odd and even combinations
€ ¢ - - . — - —_
Aa3) = L[ ARE) E AT (31)

On rewriting Eq. (25)'using the spherical basis, we can immediately
separate the triplet and singlet amplitudes according to the evenness and
oddness under spin exchange invariance. Next, as a consequence of

Eqs. (22) and (26), we separate the amplitudes of parity (—1)J from

those of parity (—-’I)J+1

. The 16 amplitudes, together with their doubling
as in Bq. (31), thus fall into four classes as shown in Table 3. In
general, therefore; a state (triplet or singlet) of given parity is des-
cribed by a set of 8x8 integral equations. For the special case of
P:O“p the corresponding kernel reduces trivially to a 4x4 matrix.

The 1~ is still described by an 8x8 kernel.

The coupled equations can be cast in the form

al ¥ :
A:'x':rl.m ( PCL} = ;%—T-‘Z de k>= o, (kg KL)(F"LR) A'er’ TU (¢ k) (32)
A ' '
if the angular integrations of Eq. (29) are performed. For this purpose,
we utilize BEq. (4) together with the well-known properties of the
Gegenbauer functions to express the ??;(@) in terms of simple trigono-—
metric functions 22), For a few low values of T and n, the express—
ions for"fﬁ(é) are shown in Table 4. Tor each element (i,j), we
pick the lowest occurring value of n (and the same for n' which
ocours in the sum over n') by the criterion that n-L is even (0dd)

for A® (AO), The resulting kernels are shown in the tables as follows,

67/1020/5



14.

as

For the case of O , we express Klaolsn,

. T &
By KU = %_J‘JB Sin B R(.,) ( £%°)

F-2-mD) 4 Py (s (32.2)
and for 1
G i e56)e, ()
AWKJZ Jdi& Sin @ 12(0)(‘0/6(/) 8) AP '2 < =
() 4Pt B (32.b)

) and R%g) are shown in Tables 5 and 6, respectively.

The R?g
Both these systems of one-dimensional integral equations do not

exceed the memory of the computer even if we allow as much as 12 points

for each variable. This is sufficient by use of Legendre Gaussian inte-

gration. The integrations over the angle € in the kernel were also

performed numerically and the results tabulated for faster use in fhe

actual matrix calculation. We have made all integrals well defined by

introducing a cut-off at k2==m2 and have evaluated the Fredholm denomi—

nators D(S) for the two states O and 1 . Figure 2 shows the

behaviour of D for O as a function of the coupling A . We see

that there exists an anomalous solution for negative coupling A = -2.8.

The smallest positive coupling A = 2.31 (mB:=O, mé& = 10) is the one

of physical interest, while the figure shows that one can also get solutions

for higher A . A similar situation holds for 1 . In PFigs. 3 and 4, we

have plotted the couplings for O and 1 against the bound state mass

squared. We observe that both are monotonic decreasing functions, a

result one might expect intuitively, although it has not been proved

analytically for any one of the B-S equations. In Fig. 5, we have drawn

both the couplings for O and 1 for the value K= n/w =10 on

the same plot. The interesting observation is that for weak binding and

for a given coupling constant, the 1 (triplet state) is bound more

67/1020/5



15.

tightly than the o (singlet)° For strong binding this situation is
reversed in that again for a given coupling the 17  becomes a heavier
particle than the 0 . TPor larger values of the cut—off, the numerical
values of AN decrease but we found that the qualitative gituation as

given in Figs. 2 to 5 is maintained.

4. INHERENT CUT-OFF DEPENDENCE OF THE SPINOE B-S PROBLEM

An investigation of the special case = O, My = 0 reveals
a fundamental feature of the spinor case (in contrast to the spinless
problem)? namely, the need for introducing a cut—off in order to obtain
physically meaningful solutions. In this Section we propose to study
the cut—off dependence of the solutions by discussing the limiting case
of the B~-8 equation describing the 0 state. Before taking up Eq. (32),
it is instructive to discuss briefly the solutions obtained by Goldstein 5)
for the homogeneous equation when the exchanged particle as well as the

bound state has vanishing mass.

Retaining only the S waves, the wave function for a + parity
bound state is decomposable into scalar invariant amplitudes, using a

23)

basig of the sixteen Y matrices, as

V@) = [ ran@) sy s wr-zp)v@]
since p,d are the only momenta available in the problem. The wave

function here transforms according to

@ \‘V(ma )Zj/) = X@ WV C@OJ’F‘L/" Y. = l“t)(cf/o, Fi)\ (34)

under spatial reflections (in the c.m. system) whereas for odd intrinsic

parity, a factor < will be inserted in the right-hand side of

5

Eq. (33). When the total energy is zero, corresponding to a massless

bound state, the ansatz (33) degenerates into

67/1020/5
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V(@) = WE) + % @) (35)

Now the B-S equation for the fermion~-fermion bound state problem is

(P=O9 /4'-‘-0) 3

V(2) = L [dte @rm)T v Tm-E) ()
: @-m>)" (3-r)*

where T' =1, ]’5 or @@ depending on the nature of the interaction.

If the form (35) is inserted above, one derives, for NI

Vi) = - B [ dte () (k) S
A J (q/L‘mv_)((L__‘R)Q_‘ ) (37)

It should be noted that the equations do not diagonalize in such a way if
one considers négative parity, or the fermion—antifermion bound state

with positivé intrinsic parity. It is easily verified, however, that for
the case of our interest, viz., fermion-antifermion bound state of negative

parity that causes the singlet O ground state, one again obtains Eq. (37).

This equation can be solved as a differential hypergeometric
equation and is known 5) to possess soluticons for all positive values of
A. This situation is related to the highly singular nature of the
potential at the origin (in x space).’ As can be verified by power
counting, Eq. (37) is seen to have a solution only if \V(Q) falls off
agymptotically as fast as q_3° The exact solution, on the other hand,
has an asymptotic behaviour which is governed by the coupling constant
and hence makes the integrals diverge, as was shown by Goldstein. A
well-defined prqcedure’would then be the introduction of a cut—bff at

some large momentum _ . Goldstein used this procedure to select one

67/1020/5
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specific solution for N\ out of the continuum by the observation that
for ) = 1/4 his solution apparently becomes independent of _fL . 8o
it would appear that the only solution for  that is insensitive to

the cut—off is the one for A= 1/4. We point out, however, that if one
sets A = 1/4 in Goldstein's solution [his equation (17.¢)] :

4 , , A —of~1
¥(s) = ;;[’C,GO F(tie , &, 20 s (~5)
g - Y
+C, () F{2=a =, 2726055 ) (-3) ]
o
where s=g° and N= o(1- &), one finds that Y vanishes identically
for all qz, This comes about because at this point the two hypergeometric

functions F become identical and C,=-C,. Equation (%8) therefore is
ne longer the non-trivial solution and we conclude that it is necessary
to accept the introduction of a cut-off as a meaningful procedure and to
look fTor solutions which are cut-off dependent. One cannot imagine that
momenta which are much higher than the highest mass in the problem should
play an important role in a well~defined bound state problem. Also in

an even more realistic situation our vertices which are simple coupling
constants should be replaced by form factors which then provide the cut—-

off and guarantee convergence of the integrals.

Goldstein only discusses the full equation (37) and therefore the

principal quantum number n does not appear in his analysis. We can

show that the 18 state with n=0 indeed satisfies Goldstein's equation.

A look at our Table 5 tells us that for pO::O the four coupled equations
reduce to block diagonal form 3 + 1. One solution is provided by solving
only the equation satisfied by the amplitude A1 (in the notation of
Section 3) :

M) = x| Rde ac(ra) AR (39)

@fVFWNL
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Setting a°=s, k°=t we obtain for M= 0
- S s @
S(sem) AS) = A [ Edea ) + as[ A e (109
. o : JS

which is equivalent to Eq. (32) of Ref. 5). We have investigated the
solutions of this equation by introducing a cut-off _5) on the computer.
We find that for finite .41 the eigenvalue A behaves roughly like .Jljﬂa
Considering this situation, we must accept the fact that the
solutions of the spinor equation are cut—off dependent. In the entire
calculation of the present note we have kept the cut-off equal to the

highest mass appearing in the problem : 2= m.

5. DISCUSSION

We have presented mainly in Section % an accurate solution of the
B-S equation for a fermion-antifermion pair forming a 0 ora 1
bound state via the exchange of a pseudoscalar meson. The equations were
found to have meaningful solutions only after the introduction of a cut-
off., For the present analysis this was kept fixed () =m) at the
highest mass which is present in the problem. The main results are
contained in the Figs. 1-6. Therefore we will keep this discussion short
and refer +to these figures for the specific numbers. The main qualita-
tive results are as follows. We find that the anomalous solutions which
are known as odd solutions in the spinless equal mass case are still
present in that our systems have solutions for negative coupling constants.
Restricting our discussion to the smallest positive coupling constant we
found that this one is a monotonic function of the bound state mass even

1

in the spin % problem. PFigure 4 shows that for a given ratio méu

the two curves representing X(mB) cross each other. This means
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that for a strongly bound system the 1~ particle is heavier than the
0 . This situation is observed in the elementary particle spectrum where
the vector mesons are generally heavier than the pseudoscalar particles.
Tor weak binding we found that for given X the 0 is less tightly
bound than the 1 & situation which is familiar from the deuteron
where only the triplet state is bound 24)a

We may recall that in an earlier note we have investigated the
influence of orbital angular momentum excitation (Regge recurrences) in
a scalar B-S cquation guark model 25) on the masses of q—a bound states.
It was found that as long as we admit only the single Yukawa type poten-
tial in the kernel of the equation the states with orbital angular
momentum 4 2 1 become much too massive to be interpreted as meson
states. This result persists in the spin case where we have verified
that for J=2 we would again get a mass which is out of range. The
result of the present calculation shows that for strong coupling one can
get quite close to the observed mass ratio 4:1 between vector mesong
and pseudoscalar mesons. Figure 6 shows that for a quark mass of 1Q/%'
we find a ratio 4.2:1. To our knowledge this is the first accurate
calculation which gives anything so close to the realistic ratic in the
bound state region of the quark model. Unless one introduces an effective—
ly non-relativistic square well type potential and a hard core which in
momentum space corresponds to a cut—off much lower than the one we have
used, one may consider this result as a hint to look for the ¢ meson
actually as a 17 triplet state of a g—-q system and that X excita—
tion is negligible. The obvious difficulty with this model is that the
J=72 mesons now must be constructed out of four quarks. A more detailed
investigation of this question, as well as an analysis of the influence
of vector meson exchange using the tools presented in this note, is under
investigation. We also hope to generalize the perturbation formula
derived for the scalar system in Section 2 to the spin % B-S equation

with cut—-off,
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TABLE CAPTIOCNS

Table 1 Comparison of the eigenvalues of the scalar B-S equation
as obtained by numerical solution and from relations (18)
and (19) for different values of méu_ and for zero and

unit mass of the bound state.

Table 2 The kernel matrix of the full spin % equation corresponding
to the K, of Ea. (25). q° = 3° here and  of , for¥ =

= 1,2,3 refer to the space components.

Table 3 Classification of the amplitudes into even and o0dd parity
triplet and singlet states. Superscripts (o,e) refer

to the (odd9 even) character of the functions under Ay =%

Table 4 Explicit expressions for Cfi(@) for a few low and integer

values of n and L

Table 5 The keggg} R%% of Eq. (32.&) for the 0O  state.
2
q —Jqo+q .
Table 6 The kernel R%?> of Bg. (%2.b) for the 1  state.

_1e2:62.
q =|q.+q -
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FIGURE CAPTIONS

Figure 1 Shows the coupling constant XN as function of 8 = mg

for different ratios K= mé,v for 8- waves. The
values on the lower right indicate the critical couplings
for bound states of zero binding energy. For M =0

we get the Coulomb case and know that /\(O) = 2 and
/\(41112) = 0. The curves agree well with the values

given in Refs. 2) and 3)5

Pigure 2 Shows the Fredholm denominator D()\) in arbitrary units
as function of the coupling constant A . By definition
D(O) = 1. We see that there are zerogs at least for
N=-2.8, 2.31, 5.7 and 12.4. Here we have taken S = 0
and o = 10.

Pigure 3 Shows the coupling constant N(= g2(4ﬂ)~2) as function
of S = mg for a O bound state and for different ratios
o . For of{=1 the value of X that gives a zero mass

bound state is AN = 6.59.

Figure 4 Shows the coupling constant A as function of S = mg for
a 17 bound state and different ratios o . The couplings
which give a zero mass bound state for of = 1,2 are

N, = 8.66 and N, = 4.38.

Figure 5 Shows X(S) for both a O and a 1  bound state and
for & = 5. It shows that for S ~ 0.6 m2 the two curves

Cross 0Over.

Figure 6 Shows /\(mB)9 linear, for both a 0C and a 1  bound
state in the strong binding region 0 £ iy < m. We gee that
for ¢f = 10 the same coupling constant A= 2.29 which
gives a 0  with My =M produces a 1  state with

ny = 4:2/un
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