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The Orr-Sommerfeld equation is solved numerically using expansions in Cheby- 

shevpolynomials and the QR matrix eigenvalue algorithm. It is shown that results 

of great accuracy are obtained very economically. The method is applied to the 

stability of plane Poiseuille flow; it is found that the critical Reynolds number is 

5772.22. It is explained why expansions in Chebyshev polynomials are better 

suited to the solution of hydrodynamic stability problems than expansions in 

other, seemingly more relevant, sets of orthogonal functions. 

1. Introduction 

In  this paper we reconsider the problem of the stability of plane Poiseuille 

flow, using expansions in Chebyshev polynomials to approximate the solutions 

of the Orr-Sommerfeld equation. We obtain results that are considerably more 

accurate than those obtained previously (and, apparently, at  considerably less 

computational expense). Our methods extend to stability problems for a wide 

variety of flows including Couette flows and Poiseuille flow in a pipe (Davey & 
Nguyen 1971). 

The present work originated with the author’s development of Chebyshev 

polynomial approximations to time-dependent viscous flows within rigid 
boundaries (Orszag 1971 a) .  It has been shown that Chebyshev approximations 

require considerably less computer time and storage to achieve reasonably 

accurate flow simulations than are required by finite-difference approximations. 

Also, Chebyshev approximations permit simulations of very high accuracy with 

little extra computation. It is the latter advantage that is particularly significant 

for the present paper. 

The stability problem that we wish to study numerically is that of plane 

Poiseuille flow in a channel. We measure all lengths in units of the half-width of 
the channel and velocities in units of the undisturbed stream velocity at the 
centre of the channel. In the Poiseuille case the undisturbed stream velocity in the 
x direction is U ( y )  = 1 - y2. The side walls are at  y = f 1 and the Reynolds number 
based on channel half-width and centre-stream velocity is R = l / u ,  where u is the 

kinematic viscosity. 

We assume a two-dimensional disturbance for which the y component of the 

perturbation velocity is proportional to the real part of the expression 

V = v(y) exp [ia(x - At ) ] ,  (1) 
44 P L M  SO 
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with a real. It may be shown (Lin 1955, $1.3) that the velocity perturbation 

equations obtained by linearization of the Navier-Stokes equations are reducible 

to the Orr-Sommerfeld equation 

with boundary conditions 

v(y) = 0, v'(y) = 0 a t  y = k 1. (3) 

According to (1) a solution to (2) and (3) with Im ( A )  > 0 is an unstable linear 

eigenmode, in the sense that the amplitude of the disturbance grows exponentially 
with time. 

In $ 2  we explain some properties of the orthogonal polynomial expansions 

used to solve the eigenvalue problem posed by (2) with (3). In particular, we 

explain why Chebyshev expansions are superior to expansions in other sets of 

orthogonal functions that may seem a priori to be more relevant to the solution 

of (2) with (3). In  0 3 we develop Chebyshev approximations to the solution of (2) 

with (3) for Poiseuille flow. In  5 4 some numerical results are discussed. Finally, in 

$ 5 we comment on the extension of the present methods to more general stability 
problems. Some results that are required in $ 5  3 and 5 involving manipulations of 

Chebyshev polynomial expansions are given in the appendix. 

2. Convergence of orthogonal expansions 

An important difference between finite-difference approximations to the 

eigenvalues and eigenfunctions of the Orr-Sommerfeld equation and the Cheby- 

shev approximations advocated here is their order of accuracy. Finite-difference 

approximations give only a finite order of accuracy in the sense that errors behave 

asymptotically like (Ax). for some finite p when the grid scale Ax approacheszero. 
On the other hand, if the undisturbed velocity profile 5(y) is infinitely differen- 

tiable, the Chebyshev polynomial approximations used here are of infinite order 

in the sense that errors decrease more rapidly than any power of 1/N as N-tco, 
where N is the number of Chebyshev polynomials retained in the approximation. 

The latter statement is verified as follows. If U(y) is infinitely differentiable all 

the eigenfunctions v(y) of the Orr-Sommerfeld equation ( 2 )  are infinitely dif- 

ferentiable for - 1 < y < 1 (with one-sided derivatives at  the end-points). Let 
Tn(x) denote the nth-degree Chebyshev polynomial of the first kind, defined by 

T,(cos 8) = cos no (4) 

for all non-negative integers n (see, e.g. Hamming 1962 (chapter 19) or Fox & 

Parker 1968). Some examples are T,(x) = 1, T'(z) = x, T2(x) = 2x2- 1. It is 

possible to expand v(y) in the interval - 1 < y < 1 as 

m 

4 Y )  = r, a , ~ n ( y ) ,  (5) 
n=O 

where 
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with c,, = 2, c, = 1 (n > 0). The rapidity of convergence of (5) for lyl < 1 is 

easily demonstrated by observing that 

f(8) = v(cos8) 

is an infinitely differentiable, even, periodic function of 8. Consequently the 
theory of Fourier series ensures that f (8) possesses a Fourier cosine expansion 

m 

n=O 

f(8) = C ancosn8 (7) 

with the property that the error after N terms decreases more rapidly than any 

power of 1/N as N-tco. The expansion (7) is precisely (5) for y = cos0. Alter- 

natively, by directly estimating the orders of magnitude of a, and derivatives of 
T,(z) as n+m, it also follows that Chebyshev expansions give infhite-order 
approximations that may be differentiated termwise an arbitrary number of 

times throughout the interval - 1 < y < 1 (Orszag 1971a). It is possible to 

establish the same result for expansions in Legendre polynomials (Orszag 1971 b) .  

Legendre expansions are also conveniently applied to the Poiseuille flow stability 

problem; they give results that are quantitatively quite close to those reported 

in 94. 

The infinite-order accuracy of Chebyshev and Legendre polynomial approxi- 

mations to infinitely differentiable functions, no matter what the boundary values 
of the functions or their derivatives, should be contrasted with the situation when 
other sets of orthogonal functions are used. In  most cases, although expansions of 
v(y) are made in terms of orthogonal functions that seem to bear much closer 

relation to the Orr-Sommerfeld eigenfunctions than do the orthogonal poly- 

nomials, only finite-order rates of convergence are obtained. For example, 

Grosch & Salwen (1968) studied the stability of plane Poiseuille flow using 

expansions in orthogonal functions defined by 

$a( ~f: 1) = $A( k 1) = 0. (9) 

These orthogonal functions are generalizations of the Chandrasekhar-Reid 

functions (Chandrasekhar 1961, appendix V). The latter functions are obtained 

by setting a = 0 in (8). It follows from (8) and (9) that 

at y = k 1. Hence, unless v(y) satisfies (10) at y = k 1, the expansion of v(y) in 
terms of @,(y) cannot be differentiated termwise four times at y = 2 1. However, 

it follows from (2) and (3) that 

44-2 
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at y = & 1. The right-hand side of (11) is generally non-zero at  y = & 1, as it is 
proportional to the perturbation of viscous wall stress. Upon performing suitable 

integration by parts in the expression 

for the expansion coefficients of w(y) in terms of normalized 9, and noting ( 1  l ) ,  it 

may be shown that the nth expansion coefficient of v(y) is generally of order l/n5 

as n-tco; it may also be shown that the residue after N terms of the expansion is 

of order 1/N5. The origin of this behaviour is the non-uniform convergence of the 

four-times differentiated series near the end-points. Consequently, the results 

obtained by expansion of v(y) in a series of q5,(y) should not be expected to be 
significantly better than results obtained by fifth-order finite-difference approxi- 

mations [with errors of order (Ax)5 for a grid interval Ax]. 

Similarly, expansions of v( y) in terms of Chandrasekhar-Reid functions, as 

used by Gallagher & Mercer (1962) in Orr-Sommerfeld equation studies, give 

only fifth-order rates of convergence. Dolph & Lewis (1958) studied the stability 

of plane Poiseuille flow using expansions in the functions $,(y) defined by 

with $,( 1) = $A( & 1)  = 0. The error after N terms of this expansion is generally 
of order l/N4 as N-tco for functions w(y) satisfying (3); for example, equation 

(34) of Dolph & Lewis's paper shows that the expansion of y2&( y) in terms of 

$,(y) converges only like l/N4. 

The numerical results to be reported in $4 will illustrate the much greater 

accuracy achieved by Chebyshev expansions than by expansions in the functions 

defined by (8) or (12). Another advantage of Chebyshev expansions over expan- 
sions in the orthogonal functions (8) or (12) is the efficiency with which the co- 

efficients may be determined from the differential equation to be solved. The N 

coefficients of Chebyshev expansions truncated at  TN--l(x) may be determined in 
roughly the same number of arithmetic operations required to solve the differen- 

tial equation (2) by finite-difference methods with N grid points (cf. $3), viz. 

order N operations for both calculations. 

3. Chebyshev approximations for Poiseuille flow 

We seek an approximate solution of (2) and (3) of the form 

N 

n=O 
V(Y) = Z anTn(Y). 

Equations for the expansion coefficients a, are found by formally substituting 

(13) into (2) with E ( y )  = 1 - y2, re-expanding the left-hand side of (2) in terms of 

Chebyshev polynomials and equating the coefficients of the various T,(y) to zero. 
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Some details of this process are given in the appendix. The result is 

N 

p=n+4 
p 3 n  (mod 2)  

N 

- i4 x [p3(p2 - 4)2 - 3n2p5+ 3n4p3 -pn2(n2 - 4)2] ap 
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- 2 {[2a2 + i i a R ( 4  - 4A - c, - ~ , - ~ ) ] p ( p ~  - n2) - i iaRc,p[p2 - (n + 2)2] 
ll=ll.4-2 - 

p = n  (mod 2) 

- i iaRd,-,pb2 - (n - 2)2]}  ap + iaRn(n - l )a,  + {a* + i&[( 1 - A)  a2 - 2 ] }  c,a, 

- @a3R[c,-2a,-2 + c,(c, + cn-J a, + c,a,+,] = 0 (14) 

for n 2 0, where c, = 0 if n < 0, co = 2, c, = 1 if n > 0, and d, = 0 if n < 0, 

d, = 1 if n 2 0. The boundary conditions (3) become 

N N 

n = O  n = O  

N N 

n=l n=l 

X a, = 0, x n2a, = 0, (15) 

C a, = 0, Z: n2a, = 0 (16) 

nZ0  (mod 2) n=O (mod 2)  

n=l (mod 2 )  n = l  (mod 2) 

upon using the properties T,( ~f: 1) = ( ~f: 1)” and !PA( c 1) = ( &  1)n-lnZ. 

Before discussing methods of solving the system (14)-( 16),  a simplification can 

be made. The equations (14)-( 16) separate into two sets with no coupling between 

coefficients a, for odd and even n. Therefore there exists a set of solutions with 

a, = 0 for n odd; the corresponding solution v(y) is symmetric, i.e. v(y) = v( - y). 

Conversely, the solutions with a, = 0 for n even are antisymmetric, i.e. 

4Y) = - V ( - Y ) .  

It turns out that the only unstable eigenmode of plane Poiseuille flow is sym- 
metric. For the remainder of 8 3 we confine discussion to the symmetric modes, so 

that the relevant equations are (14) and (15) with a, = 0 for odd n. Some results 

for antisymmetric modes are given in 3 4. 

It is convenient to choose N even so that N = 2 M .  The M + 1 unknowns are 

a2, for n = 0, 1, . . . , M .  If (14) were applied for n = 0,2,4,  . . . , N ,  we would have 

M + 3  equations from (14)  and (15) in M +  1 unknowns, with only the trivial 

solution a, = 0 for all n no matter what the value of A. The trouble is that (13) 

is generally not exact so that the formal operations leading to (14) cannot be 

correct for all n. 

There are at  least two satisfactory ways to resolve this dilemma. The first is to 

use Galerkin’s method for constructing equations for the coefficients a,(Orszag 
1 9 7 1 ~ ) .  Here the expansion (13) [with a, = 0 for n odd] is specialized to an 

expansion in terms of the functions 

qzn(Y) = ‘ 2 n ( ~ )  -n2T2(y) + (n2- 1) ‘ob(~), 

for n = 2,3, . . . , M .  The functions qn(y) are symmetric and satisfy 

= qA(1) = 0, 

so that the modified expansion (13)  automatically satisfies the boundary con- 

ditions (3).  Galerkin equations are obtained by substituting the new expansion 
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into the left-hand side of ( 2 )  and demanding that the resulting formal expression 

be orthogonal to q,,(y) (n = 2, . . . , M )  with respect to the inner product 

(f99) = 1’ f(Y)9(Y) (1-Y2)-+dY. 
-1 

In  this way there result M -  1 equations for the M -  1 coefficients of q2,(y) 

(n = 2,  . . . , M ) ,  with a non-trivial solution existing only for certain eigenvalues A. 

These equations for the coefficients of q,(y) are easily reformulated as equations 
for the M + 1 coefficients a,, (n = 0, . . . , M )  of (13). These latter equations are 

precisely (14) for n = 0,2,4,  ..., N with a term b,+n2b, added to the left-hand 

side of the nth equation. The two new unknowns b, and b, (‘boundary’ constants) 

give a total of N + 3 unknowns to be found from the modified version of (14) for 

n = 0 , 2 ,  . . . , N and the two boundary conditions (15). The boundary conditions 

(15) ensure that v(y) expanded as in (13) may be re-expanded in terms of q2,(y) 

for n = 2 ,  . . . , M .  A well-posed eigenvalue problem results. 
The second method to determine an from (14) and (15) is slightly simpler and 

often gives more accurate results. It is the method used to obtain the numerical 

results reported below. We have in mind Lanczos’s tau method (Lanczos 1956, 

chapter 7) as developed and extensively applied to ordinary differential equations 

by Fox and his school (Fox 1962; Fox &Parker 1968). The idea of the taumethod 

is to apply (14) for n = 0 ,2 ,4 ,  .. ., N - 4 only so that with the two boundary 

conditions (15) there are M + 1 equations in M + 1 unknowns. In  other words, the 

high frequency (i.e. high n) behaviour of the solution is determined not by the 

dynamical equation (14) but rather by the boundary conditions (15). A more 
palatable way of explaining the tau method (and the origin of its name) is the 

observation that (14) for n = 0,2,4,  . . . , N - 4 and (1  5) follow if a solution of the 

form (13) is sought for the boundary-value problem in which the right-hand side 

of ( 2 )  is not zero, but rather is 

7 ~ - 2  TN-,(Y) + 7~ TN(Y) + 7 ~ + 2  TN+z(Y), 

and the boundary conditions are still (3). The parameters rN--2, rN, rN+, are not 

fixed, but are determined by a,, (n = 0,2 ,4 ,  . . . , N )  from (14) with the right-hand 

side zero replaced by 7, for n = N - 2, N ,  N + 2. The series (13) solves this modi- 

fied problem exactly. The magnitude of 7, gives a measure of the error; frequently, 

knowledge of 7, can be used to give actual error bounds (cf. Fox & Parker 1968). 

Once the tau method has been selected to obtain equations for the expansion 

coefficients a,, there remains the problem of determining the eigenvalues A. 
Two principal choices are available. First, it is possible to make an eigenvalue 

search in the complex-h plane. Here a guess for A is made and equations (14) 

with n = 0,2, ..., N -  4 and, say, the first of (15) are solved for a, subject to 

the condition that, say, a, = 1. For each such guessed A, determination of a, 
(n = 0,2,  . . . , N )  requires only order N arithmetic operations (as commented at  

the end of 5 2 )  if care is taken to accumulate sums of the form 
N 

p=n 
p5aB.t 

t Induced numerical instability due to rapidly growing special solutions of (2) [that can- 
not satisfy (3)] is not a problem if (14) is solved for a, by backwards recurrence from 
n = N - 4  to n = 0. 
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Then h is varied according t o  some prescription, in order to  minimize the residue 

in the second equation of (15). If  a good initial guess for h is available this pro- 

cedure usually works quite well. It is the method used in most previous numerical 
studies of hydrodynamic stability.? 

The second method for determination of A, which is the one used here, may be 

less efficient when a good initial guess for h is available, but has a better chance of 

success when such a good estimate is not available. The eigenvalues h are deter- 

mined as the eigenvalues of the linear algebraic equations (14) and (1  5) using a 

matrix eigenvalue algorithm, as previously done for hydrodynamic stability 
problems by Dolph & Lewis (1958), Gallagher & Mercer (1962), Grosch & Salwen 

(1968), and Gary & Helgason (1970), amongst others. We use the QR matrix 

eigenvalue algorithm (Wilkinson 1965) as adapted for problems of the present 
type by Gary & Helgason (1970). The advantages of this matrix method are the 

accuracy of the eigenvalues and the fact that  a number of low-stability modes are 

determined along with the most unstable mode. The disadvantages are that the 

number of operations to  determine the eigenvalues scales as N3 and computer 

storage proportional to  N 2  must be allocated, where N is the total number of 

Chebyshev polynomials retained in the approximation. However, the total 

computer time involved in the present calculations is so nominal that the con- 
venience and accuracy of the matrix method easily outweigh its disadvantages. 

On the National Center for Atmospheric Research Control Data 6600 computer 

used for the calculations reported in $ 4, the timings given in table 1 were observed 

using single precision arithmetic (48 significant bits) and Fortran codes. 

4. Numerical results 

A critical comparison between the accuracy of various methods for the solution 

of the Orr-Sommerfeld eigenvalue problem is conveniently made for the most 

unstable mode of plane Poiseuille flow with a = 1, R = 10000. This mode is a 
symmetric eigenmode. The results obtained by the Chebyshev approximation 

of $ 3  and the QR algorithm are given in table 2. The values of M +  1 listed in 

table 2 give the number of even-degree Chebyshev polynomials used to  represent 

the eigenfunction; w(y) is expanded in terms of T,(y) for n = 0,2,4,  . . . ,2M.  From 

these results it is plausible to  infer that  the exact eigenvalue equals 

0,23752649 + 0.00373967i 

to  within one part in lo8. From the results reported in table 2 and similar results 

obtained for other values of a and R, it has been inferred that, when more than 

25 even-degree Chebyshev polynomials ( M  > 25) are used in the method of $ 3, 

the results are accurate to  eight decimal places using single-precision arithmetic 
on the CDC 6600, at least up t o  a Reynolds number of 50000 with a = O( 1). It 
should also be noticed from table 2 that  there is rapid convergence of the eigen- 

value with increasing M ,  as expected on the basis of the results of 3 2. 

f It is also possible to implement orthogonalization or parallel-shooting methods to 
avoid strong-instability problems (see Wright (1964) for these Chebyshev techniques, 
applied using collocation methods). 
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The round-off error of the computer is a very significant quantity. By artifi- 

cially increasing the round-off error from about one part in 1014 to one part in 108 

and one part in 10l2, the eigenvalues determined by the Chebyshev method of 8 3 

are changed significantly, as shown by the results given in table 3. 

Number of 

Chebyshev poly- 
nomials (M+ 1) CDC 6600 time (see) 

17 0.42 
23 0.94 
26 1-31 

32 2.35 
38 3.75 
50 8.24 

TABLE 1. CDC 6600 time to find eigenvalues by the 
Chebyshev approximation and QR method. 

M + 1  

14 
15 

17 
20 
23 
26 
29 

32 
38 
50 

h 

0.23713751 + 0.00563644; 
0.23690887 + 0.00365516i 
0.23743315 + 0.00372248; 
0.23752676 + 0.00373427; 
0.23752670 + 0.00373982i 
0.23752648 + 0.00373967i 
0.23752649 + 0.00373967i 
0.23752649 + 0.00373967; 
0.23752649 + 0.00373967; 
0.23752649 + 0.003739676 

TABLE 2. Chebyshev approximation to the most unstable mode of 

plane Poiseuille flow for a = 1, R = 10000. 

M + l  h (round-off N 10-6) A (round-off N 10-12) 

20 0.23752685 + 0.00373451i 0.23752676 + 0.00373427; 
23 0.23754139 + 0.00383489i 0.23752670+ 0.00373982; 
26 0-23749300 + 0.00368897i 0.23752646 + 0.00373965; 
38 0.23714159 + 0.00352930i 0.23752648 + 0.00373966i 
44 0.23348160 + 0-00534311; 0-23752648 + 0.00373965; 
50 0.23813295 - 0’00296273; 0.23752655 + 0.00373979i 

TABLE 3. Effect of round-off error on the most unstable mode 
of plane Poiseuille flow for CL = 1, R = 10000. 

The results reported in table 2 may be compared with results obtained by other 

investigators. The first accurate numerical calculation of h for a! = 1, R = 10000 

was apparently done by Thomas (1953). Thomas used a five-point Numerov 

finite-difference method with up to 100 grid points in the interval 0 < y < 1 and 

a complex-eigenvalue search to find the most unstable symmetric mode. The 

truncation error of Thomas’s scheme is fourth-order in Ax. With 50 grid points 

Thomas found 

and h = 0.2375006 + 0.0035925i h = 0.2375243 + 0.0037312i 
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with 100 grid points. By extrapolating the error to  zero Ax, Thomas found 
h = 0.2375259 + 0.0037404i. 

Gary & Helgason (1970) reported calculations of h using finite-difference 

schemes of various orders of accuracy, along with a ‘stretched’ co-ordinate to  

account for the expected detailed structure of the eigenfunctions near the side- 
walls. Using a sixth-order finite-difference scheme and grid points uniformly 

spaced in terms of the stretched co-ordinate z = yeYa-l for 0 < z < 1 (only 

symmetric modes being sought), Gary & Helgason found h = 0.23752964+ 

0.00374248i with 43 grid points and h = 0.23752650 + 0.00373969i with 100 grid 

points. Without the stretched co-ordinate, the same finite-difference scheme 

gives h = 0.23730744 + 0.00375620i with 43 grid points. 

Grosch & Salwen (1968) found h = 0.237413 + 0.0036813 for a = 1, R = 10000 

using expansions involving up to 50 symmetric eigenmodes of the problem (8) 

and (9) and a matrix eigenvalue algorithm. This result seems t o  be dispropor- 

tionately in error; it is possible that round-off error is significant. Dolph & Lewis 

(1958) found Im (A )  = 0.034649 using eight symmetric modes of (12) and 

I m  ( A )  = 0.003772 using twenty symmetric modes of (12). 

These comparisons should make clear the important increase in accuracy 

achieved by use of Chebyshev approximations. The fact that  results of great 

accuracy are achieved using less than half the number of degrees of freedom 

required by other methods is significant because, as stated in 3 3, the computer 
time required to  use matrix eigenvalue routines is proportional to the cube of 

the number of degrees of freedom and the memory required is proportional to the 

square. 

We have determined the critical Reynolds number for instability of plane 

Poiseuille flow using the Chebyshev method of $3. The critical Reynolds number 

R, is defined as the smallest value of R for which an unstable eigenmode exists. 

The mode that becomes unstable a t  R, is symmetric so that we may again assume 

that the Chebyshev coefficients a, with n odd are zero. We find that the critical 

Reynolds number is 

the f i s t  unstable mode appears with a, = 1.02056 0.00001. I n  table 4 we report 
the values of h for the most unstable symmetric mode with a, = 1.02056 and 

R = 5772-22 and 5772.23 as a function of M + 1, the number of retained Cheby- 

shev polynomials. The behaviour of Im(h)  for the results reported in table 4 

also shows that single-precision arithmetic on the CDC 6600 allows determination 

of the eigenvalues to  about one part in lo8. 

The values R, = 5772.22, a, = 1.02056 may be compared with those found 

previously. Using the methods of asymptotic analysis developed by Lin (1955), 

Shen (1954) found R, = 5360, a, = 1.05. Thomas (1953) found R, = 5780, 

ctc = 1-026 using finite-difference methods. Nachtsheim (1964), as reported by 

Betchov & Criminale (1967), found R, = 5767, a, = 1.02 using finite-difference 
methods. Grosch & Salwen (1968) found R, = 5750, a, = 1.025 using expansions 

in the orthogonal functions defined by (8) and (9). 

The Chebyshev approximation matrix method of 9 3 also gives accurate values 

for a number of the stable eigenvalues of the Orr-Sommerfeld equation. By 

R, = 5772.22; 



698 S. A .  Orszag 

comparison of the set of eigenvalues obtained for M + 1 = 31,44,47 and 50, a set 
of 22 of the least stable eigenvalues for symmetric modes with a = 1, R = 10 000 

has been found. Similarly, by use of (14) and (16) with a, = 0 for n even, we 

obtained accurate eigenvalues for the 2 1 least stable antisymmetric eigenmodes 

for a = 1, R = 10000. The results for the 32 least stable of these modes are given 

in table 5. Only significant figures are given. 

M +  1 h (R = 5772.22) h (R = 5772.23) 

20 0.26400087 + 4.5i ( - 7) 

26 0.26400166+ 1.31 ( -  8) 
38 0.26400174- 3.2i ( -  9) 0.26400166+ 1.41 ( -  8) 

44 0.26400166 + 1.31 ( - 8) 

50 0*26400174+ 5.9i ( -  10) 0.26400166f 1.91 ( -  8) 

0.26400095 + 4.31 ( - 7) 
0.26400174 - 3.11 ( - 9) 

0.26400174- 1.71 ( - 9) 

TABLE 4. Cliebyshev approximation to the most unstable symmetric mode for plane 
Poiseuille flow at  the critical Reynolds number and wavenumber a, = 1,02056. 

Mode number 

1 

2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Symmetric (S )  
Anti- 

symmetric ( A )  

S 
A 
S 
A 
A 
S 
A 
S 
A 
S 
S 
A 
A 

S 
A 

S 
S 
A 
S 
A 
S 
A 
S 
S 
A 
s 
A 
A 

S 
A 
S 
S 

Eigenvalue h 

0.23752649 + 0.003739671 
0.96463092 - 0.03516728i 
0.96464251 - 0.035186581 
0.27720434 - 0.050898731 
0.93631654- 0.06320150i 
0.93635178 - 0'063251571 
0.90798305 - 0.0912227G 
0.90805633 - 0'09131286i 
0.87962729 - 0.1 19232851 
0.87975570- 0.11937073i 
0.34910682 - 0.12450198i 
0.41635102 - 0.13822652i 
0.8512458 - 0.14723391 
0.8514494- 0.14742561 
0.8228350 - 0.17522871 
0.8231370 - 0'1754781i 
0.1900592 - 0.18282191 
0.794388 - 0.2032211 
0.794818- 0'2035291 
0.532045 - 0.206466i 
0.474901 - 0.2087311 

0.76588 - 0.231 191 
0.76649 - 0.23159i 
0'36850 - 0.23882i 
0.73741 - 0.258723 
0.73812 - 0'2596% 
0.63672 - 0'2598% 
0.38399 - 0.2651 11 
0.58721 - 0.267161 
0.71232 - 0.285511 
0.51292 - 0.286631 
0.70887 - 0'28765i 

TABLE 5. Least stable eigenvalues for a = 1, R = 10000. 
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We observe from table 5 that modal pairs 2 and 3, 5 and 6 ,  7 and 8 , 9  and 10, 

13 and 14,15 and 16 ,18  and 19,22 and 23 ,25  and 26, and 30 and 32 are nearly 

degenerate. Notice that all these nearly degenerate pairs are ‘fast ’ modes in the 

sense that Re ( A )  is close to 1 so that the phase speed of the modes is close to the 

centre-stream velocity. On the other hand, the ‘slow’ modes with Re@) c Q 
(which is the average velocity in the channel) are not nearly degenerate. The 

nearly degenerate modal pairs of symmetric and antisymmetric eigenfunctions 

are not exactly degenerate; the figures given in table 5 are significant, as they do 

not vary when the order of truncation of the Chebyshev expansion is varied. The 

behaviour of the higher eigenvalues (not listed in table 5 )  is consistent with 

equations (58) and (59) of Grosch & Salwen (1968); in particular Re ( A )  N Q .  

5. Generalizations 

The considerations of § 3 may be generalized to give Chebyshev approximations 

to the Orr-Sommerfeld equation for arbitrary nearly parallel flows. It is possible 

to include arbitrary undisturbed velocity profiles 5(y), e.g. the Blasius boundary- 

layer profile, and boundary conditions including flexible walls, rigid walls and 

free streams. 

We consider in detail the case of arbitrary nearly parallel flow within rigid 

walls. Equations ( 2 )  and ( 3 )  are to be solved with U(y) a given function of y and 

the only change from 5 3 concerns the re-expansion in a Chebyshev series of the 
terms multiplied by -iaR in (2 ) .  At this point the choice of Chebyshev poly- 

nomials over other sets of orthogonal polynomials as expansion functions is very 

convenient. Chebyshev polynomials obey the extremely simple multiplication 
law 

which ensures that the product terms multiplying - iaR in ( 2 )  take on a simple 

form in the equations for a,. Some details of the manipulations necessary to 

derive equations for a, are given in the appendix. The result, analogous to (14),  is 

N 

n=n+4 
I x [p3(p2 - 4)2 - 3n2p6+ 3n4p3 -pn2(n2 - a)%] ap 2 4  

N 

p=n+2 
pEn(mod 2) 

- (2a2 - iaRh) x p(p2  - n2) up + (a4 - ia3Rh) c,a, 

N 

- IPKN 2 lip m= In I: -pl+2 m[m2-(n-p)2]brn)  = 0, (17) 

In-plSN m+n=p (mod 2) 

where a,, bn(n = 0, . . ., N )  are the Chebyshev coefficients of w(y), 5(y), respectively 
and ii, = clnlal,l, b, = clnlblnl for - N  < n < N ,  where co = 2 and cn = 1 for 

- 
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n > 0.f The boundary conditions are (15) and (16) as before. By carefully 

accumulating sums such as 
N 

C (m,mS)bm, 
m=In--pl+2 

m f n = p  (mod 2) 

it is possible to evaluate all the N 2  elements of the matrix of coefficients of the 

system (15)-( 17) using only order N2 arithmetical operations, assuming the 

Chebyshev coefficients b, of U(y)  are given. If only U(y)  is given, then approxi- 

mate b,(O 6 n 6 N )  are calculable in order N log N operations, since the relation 

N nmj 
COST (j = 0, ..., N ) ,  

which is a convenient way to define approximate values for b, (0 6 m < N ) ,  is 
invertible using properties of discrete Fourier transforms as 

2 N  

where Eo = C, = 2, E j  = 1 for 0 < j < N .  The discrete Fourier transform (19) is 

efficiently computed in order N log N operations by means of the fast Fourier 

transform algorithm (Cooley, Lewis & Welch 1970). 

It is also a straightforward matter to use Chebyshev polynomials to  study the 

&ability of pipe flows (Davey & Nguyen 1971). In  contrast with expansion in 

series of Bessel functions, used by Davey & Drazin (1969) and others, expansion 

in series of Chebyshev polynomials gives infinite-order accuracy. Furthermore, 

the recurrence relation 

ensures that division by x is readily accomplished within the Chebyshev series. 

This fact is important for the simple evaluation of terms like r-ldvldr in the 
stability equation expressed in cylindrical co-ordinates. 

Although we have not done so here, it is possible to formula6e efficiently 

implementable Chebyshev approximations using stretched co-ordinates in order 
to resolve the boundary-layer structure better. 

In  conclusion, expansions in orthogonal polynomials, especially Chebyshev 

polynomials, give convenient, accurate, and efficient approximations to the 

solutions of hydrodynamic stability problems. 

The author would like t o  thank P. D. Coyle for his capable assistance with the 

machine computations. This work was done while the author was a visitor at  the 

National Centre for Atmospheric Research, Boulder, Colorado under tenure 

of an Alfred P. Sloan Research Fellowship. The National Centre for Atmospheric 
Research is sponsored by the National Science Foundation. 

If b, = 0, except for b, = -b, = 3, then (17) reduoes to (14). 
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Appendix 

In  the appendix we present some of the manipulations with Chebyshev series 
necessary to derive (14) and (17) [see also Fox & Parker 19681. Let the Chebyshev 
expansion of an infinitely differentiable function v (y )  be (6) and let the Chebyshev 
expansions of its derivatives dqvldyq be 

W 

d*v/dv  = x a$)Tn(y), (A 1)  
n=O 

where a:) = u,. It follows easily from (4) that 

for n 2 0, where cn = dn = 0 if n < 0, c0 = 2, 

Consequently, 
do = 1, c, = dn = 1 if n > 0. 

so that equating coefficients of Tn(y) for n 2 1 gives 

cn-lagLl-u$Jl = 2nag-l) (n 2 1). (A 3)  

c n n  a(l) = 2 x pap (n 2 0) ,  (A 4) 

It follows from (A 3) that 
" 

p=n+l  
p+n=l (mod 2 )  

where a = b(mod 2 )  that means u - b is divisible by 2 .  Further, it follows from 
( A  3)  and ( A  4) that 

M 

m P-1  

= 4 x Pa, x m, 
p=n+2 m=n+l 

p=n (mod 2 )  m+n=l (mod 2) 

m 

so that; c n n  a@) = C p(p2-n2)up (n 2 0). (A 5) 
p = n i %  

p E n  (mod 2 )  

Similarly, it may be shown that 

1 "  
c n n  ~ ( 4 )  = - p b z ( p 2  - 4)2 - 3n2p4 + 3n4p2 - n2(nz - 4)2] up. (A 6) 

24 p=n+4 
p=n  (mod 2)  

Using the recurrence relation 
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it follows that the nth Chebyshev coefficient of 2yv(y) is cn-lan-l + anfl for n 2 0; 

similarly, the nth Chebyshev coefficient of 4y2v(y) is 

~n-2an-z + (Cn + cn-J an +an+, for n 2 0. 

These latter facts together with (A 5 )  and (A 6) may be applied to (2) to give (14) 

The derivation of (1  7) is only slightly more complicated. It is sufficient to give a 

rule for computing the Chebyshev coefficients of the product v(y) w(y) given that 

n=O n=O 

To find such a rule, it  is simplest to define 

Tn(x)  = exp [in cos-1x1 

2Tn(x) = Fn(x)  + T&), 

SV~Y) = c znFn(Y), ~ w ( Y )  = Z bnynfy), 
n = - w  I t = -m 

for 1x1 < 1 and -00 < n < 00. It follows from (4) that 

while it is trivially verified that Fn(x)  Tm (2) = It follows that 

- _  W 

where 5, = clnlalnl and 6% = clnlblnl for --oo < n < 00. Therefore, 

m W 

~ ~ ( Y ) w ( Y )  = I; znpn(Y) = 2 x enTn(y), 
n= -m n=O 

where 

Consequently the nth Chebyshev coefficient of v(y) w(y) is Be, for n 2 0. This 

latter result together with those used to derive (14) is sufficient to give (17) .  
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