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Accurate Solution of the Volume Integral Equation
for High-Permittivity Scatterers

Jörg P. Kottmann and Olivier J. F. Martin

Abstract—We present a formalism based on the method of
moment to solve the volume integral equation using tetrahedral
(3-D) and triangular (2-D) elements. We introduce a regularization
scheme to handle the strong singularity of the Green’s tensor.
This regularization scheme is extended to neighboring elements,
which dramatically improves the accuracy and the convergence
of the technique. Scattering by high-permittivity scatterers, like
semiconductors, can be accurately computed. Furthermore,
plasmon–polariton resonances in dispersive materials can also be
reproduced.

Index Terms—Electromagnetic (EM) scattering, finite-element
methods, Green’s function, moment methods, plasmons, regular-
ization, resonance, singular value decomposition.

I. INTRODUCTION

E LECTROMAGNETIC (EM) scattering by high-per-
mittivity materials is a very important issue since most

semiconductors have a large index at optical wavelengths.
Typical values are, for example, for gallium arsenide
at 1 [ m] or for silicon at 546 [nm] [1].
Unfortunately, the computation of scattering by such a system
is difficult because of the very short effective wavelength inside
the material and the strong field discontinuities at its boundary.
Furthermore, practical situations often involve a combination
of localized scatterers with semiinfinite backgrounds, like
silicon particles on a wafer, defects buried in a multilayered
semiconductor, etc. Such intricate boundary conditions can be
difficult to handle for many computational techniques.

Our approach is based on the volume integral equation (VIE)

(1)

to compute the total scattered field when a system de-
scribed by a dielectric function embedded in an infinite ho-
mogeneous background mediumis illuminated with an inci-
dent field (throughout the paper, we assume nonmagnetic
materials and an time dependence for the fields). In
(1), represents the scatterer polarizability

(2)

with thevacuumwavenumberand theGreen’s tensor.
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The major advantage of this approach lies in the fact that only
the scatterer must be discretized. Moreover, nontrivial back-
grounds like multilayer structures can be included in the Green’s
tensor [2].

Different techniques can be used to solve (1) numerically. In
the coupled-dipole approximation [3], [4] the scatterer is dis-
cretized with cubes and the field assumed constant over each
element. Although there have been several efforts to overcome
its intrinsic limitations [5]–[7], this method does not seem suit-
able for high permittivities [8].

Another approach to solve (1) is to use finite elements. Since
the work of Richmond [9], the finite-element method has been
broadly used in computational EMs [10]–[14]. Here, the geom-
etry can be well discretized by elements like tetrahedra, and the
variation of the field over an element can be modeled using non-
trivial basis functions.

However, applying the method of finite elements to the VIE is
difficult because of the strong singularity of the Green’s tensor
[15], [16]. To handle this singularity, a modified point-matching
method [17]andmodified Galerkin methods wereproposed [18],
[19]. Moreover, the strong singularity of the Green’s tensor can
be circumvented by moving the derivatives that lead to the sin-
gularity of the Green’s tensor onto the test and basis functions
using partial integration. Toavoid surface integrals, rooftop func-
tions defined on cubical or tetrahedral elements can then be used
[10], [20]–[24]. In the same context, Mendes and Arvas com-
puted high-permittivity two-dimensional (2-D) scatterers, using
a special set of basis functions that avoids both spurious volume
and surface charges [25]. However, this type of basis functions
cannot be extended to three-dimensional (3-D) problems.

A formalism independent on the type of basis functions re-
quires a regularization scheme to remove the singularity of the
Green’s tensor [26]–[29]. In this paper, we introduce such a
scheme. In Section II, a general formalism is proposed for the
solution of the VIE using tetrahedral elements. We show how
to remove the singularity of the Green’s tensor by subtracting
a term that can be integrated analytically. To improve accuracy,
this regularization scheme is extended to neighboring elements.
In Section III, we apply this general formalism to 2-D geome-
tries. Numerical results to assess the accuracy of the formalism
are presented in Section IV.

II. FORMALISM

A. Basic Equations

The Green’s tensor in (1) can be written as [4]

(3)
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with the scalar Green’s function:

for 3-D

for 2-D
(4)

where we introduced . For 2-D, the geometry
has a translation symmetry in-direction and we introduced
the transverse coordinatedefined by and the
transverse wave vector : .

To solve (1) we use the method of moments and divide the
scatterer into tetrahedra (triangles in 2-D) with volumes
(surfaces in 2-D), . On each element, we
assume a constant polarizability and define scalar basis
functions that vanish outside . For the field
inside the scatterer, we write

(5)

with the unknown vectorial coefficients. Inserting (5) in
(1), symmetrizing by multiplication with and applying
Galerkin’s scheme, we obtain the system of vec-
torial equations

(6)

with

(7)

(8)

(9)

The numerical solution of (6) gives the unknown coefficients for
the field inside the scatterer. The field outside the scatterer can
then be determined from the field inside the scatterer using (1).

B. Evaluation of the Integrals

Standard Gaussian integration technique is applied to eval-
uate the integrals in (7)–(9). To carry out this numerical quadra-
ture, we map each elementon the canonical element with the
transformation [Fig. 1(a)]. Since the Gaussian points and the
basis functions are originally defined on the canonical element,
we will need the inverse transformation [Fig. 1(b)]:

(10)

In (10), is the space dimension (3 or 2), are
the edges of element, and is our new,local
coordinate [Fig. 1(a)].

On the canonical element, we defineGaussian integration
points and their weights [Fig. 1(b)].
The correspondingglobal Gaussian points on ele-

ment are given by inserting in the transformation
(10) [Fig. 1(b)]. The basis functions are
also first defined on the canonical element. They are related to
the global basis functions on element via the transfor-
mation (10), i.e.

(11)

Using (10) and (11), we perform the integration on tetrahedron
by Gaussian quadrature. Equations (7)–(9) become

(12)

(13)

(14)

with the Jacobian of the transformation (10). It represents
the volume of element in units of the volume of the canonical
element (1/6 in 3-D and 1/2 in 2-D).

With (12) and (13), we have numerical expressions for the
coefficients and of (6). Note that for polynomial basis
functions the coefficients can also be evaluated analyt-
ically [30]. To evaluate the tensorial coefficients we must
distinguish two cases depending whether the elementsand
are different or coincide.

1) Evaluation of for Different Elements:When
, we can apply standard Gaussian integration to in (14)

and obtain

(15)

Note that, even located in different elements, the two Gaussian
points and can be very close to each other, which leads
to an inaccurate value for using (15) because of the sin-
gular behavior of the Green’s tensor for small arguments. A
workaround for this will be proposed in Section II-B-3.

2) Regularization of for Identical Elements:For
we have to introduce a regularization scheme for the evalu-

ation of because of the strong singularity of the Green’s
tensor for ( in 3-D and in 2-D).

The main idea of the regularization is to subtract from the
integrand a function with the same singular behavior, but which
can be integrated analytically. This is fulfilled by

(16)

where we choose for the regular part

(17)
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Fig. 1. Affine transformation. (a) TransformationT of triangle A onto the canonical element. (b) Inverse transformationT . The Gaussian points and the
basis functions are originally defined on the canonical element.

and for the singular part

(18)

with the static Green’s function:

for 3-D (19)

for 2-D. (20)

Note in (17) the important relation . The op-
erator in (17), (18), and in the following has to be applied
for .

The integrand in (17) is still singular for . However,
this singularity is now weak and Gaussian quadrature can be
applied to the integral with a special treatment if the integration
variable is near [Fig. 2(a)]. For the numerical value of
we take

(21)

where is a sphere with volume centered at
[Fig. 2(a)]. This approach is illustrated in Fig. 2(a).

In a further step, let us divide the integral in (21) into two
terms:

(22)

where we used . The first integral does not de-
pend on the explicit form of the basis functions and can easily be
performed analytically. The second integral, however, depends
on the explicit form of the basis functions. It vanishes for con-
stant basis functions since . For higher-order
basis functions, the integrand must be expanded in a Laurent se-
ries with respect to using the spherical coordinates of

, and retaining only the singular and constant terms with
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Fig. 2. (a) Gaussian integration is performed forI . Instead of the (undefined) value forr = r we take the integral inside a sphere of volumew J .
(b) The pointr for the regularization in (26)–(28) is the Gaussian point on B with the minimal distance tor .

respect to . (Note that, for a regular function without
singularity, Gaussian quadrature corresponds to retaining only
the constant term and dropping the others.) For polynomial basis
functions this leads to integrals that can be solved analytically.

To determine the integral , given by (18), one has two op-
tions: The first one is to take the Cauchy principal value by intro-
ducing an exclusion volume around the singularity, as done by
Yaghian [15]. This approach is well suited for simple elements,
like a sphere or a cube, where the integration on the element
volume is easily performed [4]. For tetrahedral elements, how-
ever, the theory of generalized functions described by Gel’fand
and Shirkov is more appropriate, since it reduces to integration
on the element boundary [31].

Following this approach, we obtain after one partial integra-
tion for the th component of the tensor :

(23)

with indicating the boundary of element. As stressed by
Leeet al.in a similar context [26], one can write this tensor as

(24)

Here is the unit outward normal vector on , and is
defined as . This integral can be solved analytically.

Combining (21) and (24), we finally obtain the value of
for identical elements

(25)

where the integral over the sphere has to be solved as in (22).
3) Regularization of for Neighboring Elements:As

discussed previously, even for different elements , the
evaluationof withGaussian integration [(15)]canbe inaccu-
rate when is close to the element [Fig. 2(b)]. It is, however,
possible toapplyasimilar regularizationscheme in thatcase.

As for identical elements, let us divide into two parts (the

tilde in indicates neighboring elements)

(26)

with

(27)

and

(28)

The Gaussian point in (27) is such that the corresponding
global Gaussian point of (27) is the Gaussian point on tetra-
hedron with the minimal distance to [Fig. 2(b)].

Applying Gaussian quadrature to and using (24) (which
is also valid if is outside the integration region) we obtain
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(29)

which completes our general formalism.

III. A PPLICATION OF THESCHEME FOR THE2-D-CASE

The general scheme derived in the previous section will now
be applied to the 2-D case, i.e., we assume a scatterer with an in-
finite symmetry axis in the-direction. Furthermore, we assume
that the wave vector of the incident field is in the -plane
(i.e., , ). In that case the Green’s tensor reads [4]

(30)

with now given by

(31)

with .
As implied by the form of the Green’s tensor [(30)], we can

distinguish two cases when the electrical field is polarized in
-direction [transverse magnetic (TM)] or when it is in the

-plane [transverse electric (TE)].
We use triangular elements. The corresponding basis func-

tions up to cubic order can be found in [11], [30], and [32],
whereas appropriate Gaussian points up to order 10 can be found
in [33]–[35]. Note that all the Gaussian points must be defined
inside the element. The computation of the matrix elements
and is straightforward. We will only detail the procedure for

, i.e., we give expressions for defined by (14) for iden-
tical and neighboring elementsand .

A. TM Case

In the TM-case, the Green’s tensor is given by the scalar
Green’s function itself, (31). Hence, no regularization is nec-
essary and we only have to handle the weak singularity of the
scalar Green’s function as described in Section II-B.2. (Note
that the formulas of the general description are still valid, but
all the derivatives vanish since they are with respect toin the
TM-case.)

To determine (which now is a scalar), we first evaluate
the analytical integral over . Following (22) and expanding
the last integrand in a Laurent series, we see that in the TM-case,
for polynomial basis functions, this series does not have any sin-
gular or constant terms with respect to . We can there-
fore omit it. Performing the other integral in (22), we finally
obtain for

(32)

with the radius corresponding to , namely

(33)

Since a regularization scheme is not necessary for this polariza-
tion, neighboring elements can simply be treated with (15).

B. TE Case

In the TE-case, the Green’s tensor is a 22 tensor, given
by the -components of (30). To determine for identical
elements, we first evaluate the analytical integral over. Fol-
lowing (22) and expanding the last integrand in a Laurent series,
it turns out that for polynomial basis functions all integrals over
the relevant terms (i.e., the singular and constant terms with re-
spect to ) vanish because of the integration over the
polar angle . The other integral in (22) can easily be performed
and (21) becomes

(34)

To determine the value of given by (24), we parameterize
the boundary of element and determine its unit outward
normal vectors. Defining , the parameterization of
the th side of triangle is given by

(35)

and the unit outward normal vector for this side is

(36)
Like this, (24) becomes

(37)

where we introduced and given by

(38)

(39)

where the 2-D vector product is a scalar.
The symmetry of the tensor is easily verified using the re-
lation .

With these results, reads

(40)
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Fig. 3. Differential scattering cross section as a function of scattering angle
for " = 4 and size parameterx = 10:43, for both TM and TE polarization.
The numerical results are compared to the reference solution obtained with Mie
theory [30].

with , respectively, , given by (34), respectively, (37).
For neighboring elements, we obtain

(41)

with

(42)

and can be obtained from , (37)–(39), by the substitu-

tions , , ,
where we want to keep in mind that the Gaussian point

corresponds to the global Gaussian pointwith minimal dis-
tance to [Fig. 2(b)].

IV. 2-D CALCULATIONS

In this section, we present 2-D-calculations. To assess the ac-
curacy of the numerical results we choose examples where an an-
alyticalsolutionexists.Throughout theexamplesweuseconstant
basis functions and Gaussian points corresponding to order 7.

In the first example we compare the differential cross section
for a cylinder ( , diameter ) for both TM and TE with
the analytic Mie solution. The size parameter is
10.43.

As Fig. 3 implies, for a certain scattering angle we can define
an error for the numerical result by taking the square of the dif-
ference between the numeric and analytic far-field amplitude,
normalized to the square of the analytic far-field amplitude. In-
tegration over the scattering angles gives us the absolute error
of our result.

To show the convergence of our formalism, Fig. 4 gives this
absolute error as a function of the number of elements used to

Fig. 4. Absolute error as a function of the number of elements for" = 4 and
" = 16:64+0:23i (Silicon) for both TE polarization (continuous line) and TM
polarization (dashed line). (� = 546:1 [nm] and cylinder diameterd = 100

[nm]).

Fig. 5. Absolute error as a function of the number of elements for TE
polarization with (continuous line) and without (dashed line) the regularization
for neighboring elements. (Same parameters as in Fig. 4.)

discretize the geometry for both TM and TE polarization. The
cylinder diameter is 100 [nm] and the wavelength 546 [nm].
We show the result for and , the
latter corresponding to silicon at that wavelength [1]. We see
that even with few elements, the formalism gives very accurate
results including for bodies with a high permittivity.

To demonstrate the importance of the regularization for
neighboring elements presented in Section II-B.3, we compare
in Fig. 5 the error of the numerical result with and without this
regularization for TE polarization. We use the same parameters
as in Fig. 4. These results emphasize the importance of the
regularization for neighboring elements.

Dispersive materials like silver are known to exhibit a reso-
nant behavior at particular optical wavelengths (plasmon– po-
lariton) [36]. Many numerical methods are known to be inac-
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Fig. 6. Scattering cross section as a function of the wavelength for a silver
cylinder (diameterd = 100 [nm]), for TE polarization. The plasmon resonance
at 347 [nm] is very well reproduced with our approach.

curate at the resonance. The scattering cross section of a silver
cylinder with diameter [nm] is represented in Fig. 6 as
a function of the wavelength of the incident TE field (TM does
not exhibit resonant behavior), 132 triangles were used. The res-
onance is very well reproduced by the present method.

In our numerical calculations, it turns out that higher-order
basis functions like linear or quadratic basis functions provide
even better results in the TM-case for the same number of ele-
ments. This is also the case for TE polarization. However, for a
very small ratio of the element length to the wavelength, con-
stant basis functions give better results for TE polarization. This
surprising issue may be understood in the following manner:
For very small elements (compared to the wavelength) a con-
stant basis function can approximate the field over the element
very well and therefore the natural advantage of high-order basis
functions decreases. Furthermore, for higher-order basis func-
tions, the size and the condition of the system of equations in-
crease rapidly. Finally, for small elements, the Gaussian points
lie very close to each other and the regularization procedure
becomes extremely important. This regularization procedure is
most accurate for constant basis functions since then

[(17)].

V. CONCLUSION

We applied the method of moment to the VIE using 3-D and
2-D elements. We presented a regularization scheme to handle
the strong singularity of the Green’s tensor. This regularization
scheme was further developed to take into account neighboring
elements, which strongly enhanced the accuracy and the con-
vergence of the method. The formalism was given in a gen-
eral way that can be easily implemented for 3-D systems. We
demonstrated that our approach is well suited for scattering cal-
culations in high-permittivity materials. Furthermore, we were
able to accurately reproduce the plasmon resonances in small
metallic particles.
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