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The semiclassical determination of N(E;J) and p(E;J), the specific number and density of

quantum states at energy E, and fixed total angular momentum J, by Monte Carlo integration

of phase space is compared to recent exact quantum calculations on H,± and HD2 , which

yielded lists of up to 900 quantum states for single values of J. This allows for the first time

tests of such a procedure to be made without assuming anything about separability or

harmonicity of the potentials. The excellent agreement between semiclassical and quantum

state counts shows that the semiclassical numerical computation is a viable and simple method

for the determination of state numbers and densities in small molecules with a precision of the

order of 1 %. For J = 0, the procedure has been extended to state numbers for the different

symmetry species occuring in H,± and HD2 .

I. INTRODUCTION

The averaged microcanonical number of quantum

states, N(E;J), of a bound molecular system at given energy

E and angular momentum J, and its derivative with respect

to energy, the density of states p(E;J), are important data

needed in theories of molecular behavior, especially in the

statistical theory of unimolecular decay ( e.g., Refs. 1-6 ) . In

principle, this is easy: One must only compute all quantum

states of the molecule for a given Jand up to a given E, and fit

some smoothing function through the ensuing staircase. In

practice, the number of normal, chemically bound, polyato-

mic ( i.e., more than diatomic) molecules, for which a com-

plete set of quantum energies far from the ground state has

been or can today be calculated, is virtually zero. A first

exception from this rule was the calculation' involving one

of the authors of all bound quantum states for one angular

momentum of the molecular ion H,± , for which a very accu-

rate potential energy surface is available.'

All practical calculations of N(E;J) are therefore still

bound to use approximations. One such approximation is

the use of the semiclassical correspondence

N(E;J) 1 r(E;J),
h

which correlates the number of quantum states with the vol-

ume of classical phase space r, taken up to energy E at angu-
lar momentum J, and measured in units of the size of the

quantum cell h . Here s is the number of degrees of freedom

of the system, d = 2s the dimension of phase space.

The computation of r itself is nontrivial, since it implies

multidimensional integration in a space, which even for a

triatomic system has 12 dimensions. One of the best methods

to do this is Monte Carlo integration, which has become

more feasible with the advent of fast, inexpensive worksta-

tions. This has been discussed in the preceeding paper ( Ref.

9, henceforth referred to as Paper I ), where the following

questions were addressed: reduction of the dimension of the

integral to four by analytical manipulations; speedup of the

Monte Carlo procedure by 1 order of magnitude through the

use of quasirandom instead of pseudorandom numbers; and

correction of the semiclassical result for the effects of zero

point motion. But even if the Monte Carlo integral can be

shown to be converged to better than 1%, the question re-

mains: How exact is formula ( 1 ), which is only known to

hold asymptotically for large E, at those energies where we

need it? This has been tested in Paper I in a limited way only

by comparison with the rigid rotor harmonic oscillator

( RRHO ) model, which contains neither anharmonic and

nonseparable vibrations nor rovibrational coupling.

It is in this paper that we provide the crucial test by

comparing the semiclassical numbers of states computed ac-

cording to Paper I with sufficiently large sets of quantum

energies of H,± and HD2 for selected values of the total

angular momentum J. Both computations have been done

with exactly the same potential.' Because of their lightness

these systems are strongly quantal and provide the most

stringent test of our semiclassical procedure.

In addition, we address a problem arising for molecules

of high symmetry: How can one divide the semiclassical

number of states into fractions belonging to definite irreduci-

ble representations? The necessity to consider also the sym-

metry species of molecules in the discussion of state-specific

bimolecular and unimolecular reactions has been stressed

many times by Quack ( e.g., Refs. 10-12) . The limiting be-

havior for large E has been derived in these and other papers

( e.g., Refs. 13 and 14), and compared with direct state

counts of separable models. We derive here a method to

compute ( still approximate, but) E-dependent fractions,

( 1 )
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f( F ), which are valid at energies much lower than the infi-

nite energy limit. The formulas are explicitely given for the

irreducible representations of groups C„ and C 2 , which suf-

fice for the classification of states in 113 and HD 2+ .

The plan of the paper is thus as follows. Section II gives a

short account of the quantum calculations. In Sec. III we

discuss the separation of the semiclassical vibrational state

count into fractions for the different symmetry species. In

Sec. IV we present the comparison with quantum data. We

conclude, that—at least for triatomics with a typical poten-

tial well—the semiclassical procedure, if it includes the ef-

fects of anharmonicity and rotation, i.e., is numerically ex-

act, and after it has been corrected for zero point motion

yields state counts which are accurate to 1 %.

II. QUANTUM STATE COUNTS FOR H: AND H14-

Methods for the computation of large ladders of rovi-

brational states for triatomic molecules have recently been

developed by several groups. 15-17 They vary by starting from

different Hamiltonians, using different basis sets, and em-

ploying different methods to divide the full calculation into

steps in order to circumvent a brute force diagonalization of

matrices whose order would be many thousands. H,± and its

isotopomers are the ideal playground for these studies, since

the molecular potential is well known,' and spectroscopic

values for transitions between low lying states can be used to

check at least part of the calculation. 8 ' 18 Further spectro-

scopic data exist near and above the dissociation limit,19'20

but here the computational methods have still to be im-

proved.

In this paper we use the state counts N(E;J) obtained

from the quantum energies of H3 and HD2 , which were

computed by the group in London. For H3 estimates of all

( — 900) bound states for J = 0 have been previously com-

puted7'21 using a discrete variable representation ( DVR) .22

These calculations converged to 10 cm - 1 for all states below

dissociation ( assumed to be at 4.885 eV or 39 400 cm - 1 ) .

Lower levels, i.e., those most critical for our test of the semi-

classical corrections, are much better converged.

As yet no DVR computations have been performed on

HD2 . Conventional basis set calculations' have obtained

the J = 0 states which lie below the barrier corresponding to

linear geometry at about 2 eV. To test further the semiclassi-

cal predictions, quantal calculations on rotationally excited

HD2 have been executed. These calculations generated

long, but still incomplete, lists for J = 0 ( — 85 states ) ,

J = 10 ( — 730 states ), and J = 30 ( — 175 states) . HD2

was selected for these calculations to avoid the symmetry

problems encountered with H3 and is discussed below.

The calculations were performed using traditional basis sets

and a two-step variational procedure, 23 ' 24 and are similar

in spirit to, but more extensive than the ones performed on

H2 D ± . 23 '25 They were done in Jacobi coordinates, which

reflect the C2v symmetry of the system, using the TRIATOM26

program suite.

For J = 0 the eigenvalues were obtained by diagonaliz-

ing a Hamiltonian matrix of dimension 1600 for each sym-

metry. The basis functions were selected using energy order-

ing. 24' 26 The candidate list of functions was generated from

17 previously optimized" Morse oscillatorlike functions for

each of the radial coordinates, and Legendre polynomials up

to 36th order.

For the J = 10 and J = 30 calculations the first step as-

sumed that k, the projection of J along the body-fixed z axis

was a good quantum number. For HD2+ this axis was taken

to be along the Jacobi coordinate r. This first step used the

same basis and selection criteria as the J = 0 calculation. For
both J = 10 and J = 30 with p = 0, the second, fully coupled

step of the calculation was performed for each symmetry by

selecting the 10 000 lowest solutions of the first step calcula-

tions, again using energy selection. 24'26 The p = 1 secular

matrices [ the rotational parity is given by ( — Y ± P ] were

obtained by dropping the k = 0 blocks from the equivalent

p = 0 matrices.'

It is only possible to diagonalize these large final secular

matrix because of their sparseness.' A calculation with

J = 10 and p = 0 involves 11 separate k blocks, as opposed

to 31 for a J = 30 calculation. This means that for the same

size of the final Hamiltonian matrix, much better coverage of

the vibrational space is obtained for the J = 10 calculation.

We thus obtained reliable estimates for many more J = 10

states than J = 30 ones, as indicated above.

In HD2 the quantum states have two parity quantum

numbers: The reflection behavior in C2 ,, i.e., whether the

vibration belongs to species A, or B2 , and a rotational parity

(always zero for J = 0). So, the data come out in four ( two)

lists which have been merged for the comparison, since the

phase space volume corresponds to the number of all states.

Alternatively, we could have compared the state counts for

separate species, applying the method of Sec. III to divide

N(E;J) into fractions belonging to different symmetry spe-

cies. But since we seek a smooth approximation to the result-

ing quantum staircase, it has some advantage to have more

states to compare with by merging the lists.

For H3 a special problem arises from the fact that, for

technical reasons ( i.e., the use of Jacobi coordinates), the

computation was done like that for HD2 in C2, symmetry,

and not in D3h ( or C3v ) as it should have been. Again, we can

merge all states and compare with the full phase space vol-

ume. However, it is also important to know how one can

partition this number into fractions for the different irredu-

cible representations, since species A, is nuclear spin forbid-

den in the real world, species A2 has degeneracy four, and

species E degeneracy two. ( We use a description in terms of

group C„ , which is possible since the vibrational motion of

triatomics is never odd with respect to reflection at the mo-

lecular plane. ) This was the incentive to derive the formulas

of Sec. III, which allow us to compare with Ref. 7, where the

total number of states is given, i.e., that of A l + A2 + E

states counting the latter only once, and also with the sepa-

rate quantum state lists, which were obtained by counting

pairs of computationally almost degenerate states as species

E, the others as A, or A2 depending on their symmetry. Such

a decomposition is also vital to any application of the com-

puted density of states to properties such as partition func-

tions, which depend on nuclear spin statistics.
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III. NUMBER OF STATES FOR DIFFERENT SYMMETRY

SPECIES

The methods discussed up to now allow one to predict
the specific number of all quantum states, N(E;J). However,
in molecules which have point symmetry, one may also ask
for the number of states, N(E;J,F), or the fractions,

f(E;J,r ) = N(E;J,F)/N(E;J),

of a specific symmetry species F. Interest in these numbers
may arise, e.g., because selection rules allow only certain
species to be reached by dipole radiation, because selection
rules have to be obeyed in state-specific reactions, 1' 12 or
because quantum calculations for comparison have only
been done for a certain irreducible representation ( as in our
case ). Explicit limits of f(E;J,T) for E--. 00, and E-depen-
dent direct state counts N(E;J,r) for seperable models were
discussed in Refs. 10-14. The formulas derived below for
f(E,J = 0, r) contain terms down to 0(E - 2 ), and are thus
valid at much lower energies than those given before. For
J> 0 it is known that the zero order terms in Eqs. ( 6b ) or
( 13 ), will remain the same,'" 3 ( b ) but additional terms
cc (B /E)", n>1 will appear, as can be deduced from Refs. 11
and 12.

HD,± belongs to symmetry group C,,, and has the three
normal modes v, ( with classical J = 0 fundamental 2934
cm ', vibrational species A,), v2 ( 2100 cm - 1 , A ,) , and v3
( 2268 cm - 1 , B2 ) . Note that we must distinguish here be-
tween the vibrational symmetry species, defined if vibration
and rotation are separable including, of course, the case
J = 0, and the rovibrational species. Note also, that for high
lying states of a real molecule with nonseperable anharmonic
vibrations, the quanta v, , v 2 , v3 of normal mode excitation
are no longer good quantum numbers, whereas the assign-
ments to A, or B2 are.

H3+ belongs to symmetry group D3h , it has one normal
mode of vibrational species A ; ( 3438 cm - 1 ), and one de-
generate E' mode ( 2777 cm ' ) . Overtones of the latter lead
also to species A ;,. Vibrations of species A C' , A and E "

cannot occur, so we drop the prime in the rest of this paper.
In contrast to HD2 and H2 D ± nuclear spin statistics for-
bids one rovibrational species (A,) completely. For J = 0
therefore A, states cannot occur at all.

In this section we present formulas for the fractions of
states belonging to the different vibrational species for the
two cases mentioned above, i.e., for triatomics of point
groups C2, and D3h . Note that these fractions are energy

dependent, i.e., we determine not only the constant asympto-
tic fraction for E--. co . The formulas are exact only for un-
coupled, harmonic oscillators. For the general case (but still
assuming separability of vibration and rotation), we propose
as an approximation to use the same fractions as function of
the total number of vibrational states, Nvib (E), rather than as
function ofE itself. We feel that this will compensate, at least
partially, the effects of coupling and anharmonicity on the
number of states below that energy E. This is supported by
comparison with the quantum data for J = 0 within the lim-
its set by their fluctuations ( cf. Figs. 5 and 6 below) .

A. C„

The normal modes are A, A, B2 . We treat first a single
vibration of species B2 , and add the other vibrations by con-
volution:	N( v2 ,v3 ) = p(v2 ) ® N( v3 ),	N(v 1 , v2 , v3)

= p(v 1 ) ® N( v2 ,v3 ). For a B2 -vibration every odd over-
tone ( including the fundamental) has species B2 , every even
overtone species A,. If one draws the staircases for the
numbers N( v3 ,A 1 ) and N( v3 ,B2 ) one finds that they are
interplolated by the smooth functions

v + 1	v
N(v3 ,A 1 ) =	 and N(v3 ,B2 ) =	(2)

2	2

So the fractions are

N(v3,A,)	v + 1

v =

	

N(v3 ,A,) + N(v3 ,B2 )	2v + 1

	

=
1 .	1	_ 1 . ( 1	1

—2 1 ± 1/2v --2	—2v ± • • •)

and their ratio is

r(v3) 	
v

=	= 1 • 	
1	

,--, 1 • (1 — —1 + • • .) .	(3)
v + 1	1 + 1/v	v

What looks like a harmless correction becomes a large effect,
when we fold in the two A, vibrations. To this effect we have
to convolute on the energy scale

E

N(v2 ,v3 ) = f dE i N(v3)(E')p(v2)(E — E'), (4)
0

where N(v3 ) is either

N(v3 ,A, ) = —
E 

+ —
1 

, or N(v3 9B2 ) = 
E	1

2(1)3	4	26)3	4
	( 5 )

and p( v2 ) is 1/6)2 , and further to convolute with
p(v 1 ) = 1/6), . The final result for three harmonic oscilla-
tors is

	

N(v„v2 ,v3 ) = 	E3	• 1 . (1 +  30)3 ) ,	(6a)
66), 6)2 6)3 2	2E

i.e.,

36)3f(E,r) = 1 +	( 6b )
2E

where the + sign is for species A, the — sign for B 2 . The
ratio of state numbers at energy E is therefore

N(v 1 ,v2 ,v3 ,B2 )	E/6)3 — 3/2
r(v, ,v2 ,v3 ) =	=	

N(v„v2 ,v3 ,A,) E 4)3 + 3/2

,.,-,_ 1 — 3 - 
(03 ± 9  ( 6)3)2

E + 2	E 

+...	( 7)

for large E. This is a massive correction to the asymptotic
r = 1; the value r = 0.9 is, e.g., only reached for
E= 28.5.6)3.

As we said there is no unambiguous way to apply this
result to real molecules. We propose to express Eq. ( 6) in the

ft V3 ,B2 ) -

f(v3 ,A,) =
N(v3 ,A 1 ) + N(v3 ,B2 )	2v + 1

=11	1 + 1/v	1 (	1
, -. -, — • 1 + 	+ - • • 9

2 1 + 1/2v 2	2v

N(v„B2 )
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N scale [N = N(A,) + N(B2 )] using Eq. ( 8), which holds
for harmonic oscillators

E = (6co, co2 co 3 N) 1/3 = aco,N 1/3 ( 8)

with a = (6w 1 w2 /C01 ) 1/3 . ( We will drop the v's from now

on.) From Eq. (6) we then arrive at the fractions

N(A1) 	1	3	 )
f(A,) =	 =	-(1 ±	 (9a)

N(A,) + N(B2 )	2	2aN 1/3) 9

and

f(132 )
N(B2)
	= 11— 3  ) (9b)
N(A 1 ) ± N(B2 )	2 * (	2aN 1/3) 9

and their ratio

N(A,)

N(A2)

(12a)

(12b)
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N(B2 ) a•N 1/3 - 3/2
r =	=	.

N(A,) aN 1/3 ± 3/2

The calculation of fractions similar to those of Eqs. (9)

and ( 10) is a little more involved here than in C 2v , since the
overtones of the degenerate E mode have a more complicat-

ed species behavior. We first treat the case of a single E-mode

excited to quantum level v2 . Using for the first 12 overtones

the formulas given in Ref. 27, and then applying induction,

one can compute the "staircase" functions for the numbers

of states for each species. The following polynomials inter-

polate these in such a way, that on the average they pass at

half-height through the steps. (The cumulative error vanish-

es on every third step. ) One obtains

(v2 ± 1) 2	v2 + 1	1
N2 (A,) =	+ 	- ± — ,	(11a)

12	4	9

( v2 ± 1 ) 2	V2 ± 1	1
( 10 )	N2 (A2)

12	4 ± 9

( v2 ± 1 ) 2	2
N2 (E) =

3	9

We postpone the comparison with computed quantum states

until Sec. IV, and treat first our second example.

(11b)

(11c)

B. D„

The first incentive to tackle the problem of this section

came from the fact that the quantum states of H3 were

computed by the UCL group not in point symmetry D3h , but

like HD2 in C2 , . 7 As a consequence, the classification of

states in the correct group could only be done by identifying

Estates as (calculationally only near) degenerate pairs of A,

and B2 states. This procedure is limited to levels where the

computational error is well below the average level spacing.

In order to estimate the total number of states for each spe-

cies, therefore, in Ref. 7 the asymptotic statistical fractions

were used.

Their sum is ( v2 + 1) 2/2 or (E /6)2 ) 2/2 as semiclassically

expected for a two-dimensional oscillator.

We now have to include mode v 1 . The species of any

excited state of v2 will not change if v, quanta of v, (of

species A,) are also excited. Therefore, we can again use

simple convolution to derive our result. We get

1  E 3 + 1  E 2	1 E

36 co i co;	8 0)0)2 9 9 w 1 '

1  E 2	1 E
+ — — ,

8 (0 1 (02	9 w 1

1  E3=
36 CO I CO;

TABLE I. Numbers of states for different symmetry species of I-13 in J = 0 at E = 4 eV (32 262 cm -1 ) and

E = 4.8849 eV (39 399 cm - ', the nominal dissociation energy) computed in different approximations. Ener-

gies are measured from the bottom of the well. The zero point energy is 0.5410 eV (4363.5 cm - ' ).

Energy and

type of

calculation

C2,

Even	Odd

D3h

A, +A 2 +2E

"all", i.e.,

A, + A 2 + E A, A2 E

E= 4.00 eV

Semiclassicala 310 257 567 380 122 70 188

Quantal" 312 260 572 399" 104' 87' 191'
364d

381'

Assigned' 393 134 80 179

E = 4.8849 eV

Semiclassicala 684 593 1277 853 260 170 424

Quantal" 680 596 1276 879" 227' 199' 425'

823"

851'

a Data computed from phase space volume, corrected for zero point effects, multiplied by the fractions given in

Eqs. (14), and rounded to integers.

"Data computed after Ref. 7 in symmetry group C„, and partitioned as explained there, i.e.,

N(all states) = N( even) + AN- (odd).

`Computed from the asymptotic fractions: N(A,) = i • N(even), N(A 2 ) = A • N(odd), and from

N(E) = i • {N(even) + N(odd)}. Note from Eqs. (14) that for N(E) the asymptotic value is approached

much earlier than for N(A,) or N(A2).

d Computed as N(all states) = A • N(even ) + N(odd), an alternative to b.

e Computed as N(all states) = i- {N(even) + N(odd)}, which is the best asymptotic approximation in view

of Eqs. (14).

'Quantal data from Ref. 7 assigned by counting near degenerate even and odd states as E states.
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1	3 6)2 +	("2

6 — 4 E
+ 3

 E2

9

f(E) = —
2 4 ct4

3 — 3 E 2 •

f(A2)

1	3 N _ I/3

— 6 4a
f(A2)

I	II

.5	.75	1	1.5
	

2

E [eV]

6.9
	

7.0
	

7.1
	

7.2
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1  E 3	2 E
N(E) = —	— 	,	 ( 12c )

9 (0,04	9 co,

which sums to E 3 /6c o,ct4 as it should. Finally, the fractions

of the species are

1	3 (02 ± 2 (02 ,

=	E	E2

Again, the correction to the asymptotic value for the A, and

A 2 states is large, e.g., 90% of the asymptotic value is only

reached at E 45 • w2 .The correction to the E state is

smaller, since it has no term cc 1/E; see also Table I. We

apply Eqs. ( 13 ) to the real molecule by setting

E = (6c o 1 ct4N) 1/3 = aco2 N 1 /3 to convert to the N scale, and

identifying N with the semiclassical number of states,

(E), of the real molecule. This leads to

f(A  1 ) 1	3 N 1/3
= -- ± -z-ra 

	V 2/3,

6

2 iv

3a2

2
—

a2 
N 2/3,

3a

and

PE) =
2 —4 

N 2/3.

3	3a2

It is in this form with a = ( 6co,/co2 ) 1/3 that the fractions

have been applied in the following section.

IV. RESULTS AND DISCUSSION

Quantum state counts from the calculations described

in Sec. II are the yardstick for measuring the accuracy of the

semiclassical numbers of states, which were generated from

Monte Carlo integrated phase space volumes, and corrected

for zero point effects as described in Paper I. The intramole-

cular potential for both calculations was identical. Except

for the semiclassical replacement of J by J ( 1/2 ) and 1J1

by V.I(J + 1) in the phase space integrals, and the correction

for zero point motion, nothing has been adapted or fitted.

We first show results in which phase space and quantum

states have not been partitioned according to symmetry spe-

cies. Figure 1 shows the results for H3 in J = 0. The stair-

case of all quantum states (including the forbidden A, states,

and counting the E states twice) is plotted against energy E,

measured from the bottom of the effective (i.e., J depen-

dent) potential well. (For the A 2 states alone see Fig. 6. ) The

reduced energy scale

E — Ez
E' =		 (15)

Ez

(E, is the zero point energy) is also indicated. The semiclas-

sical result is shown with and without correction. One sees

that the correction improves the agreement systematically.

Better resolution is obtained in Fig. 2, which shows the dif-

ferences between semiclassical and quantum counts. Apply-
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(a)
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4.4
	

4.45
	

4.5	4.55
	

4.6

E [ eVJ
(b)

FIG. 1. Numbers of quantum states for H 3+ , J = 0 vs energy E ( lower

scale), and reduced energy E' [Eq. ( 15 ) ( upper scale). The staircase gives

the quantum result, the upper smooth curve the semiclassical result without

correction, the lower one the corrected semiclassical result. In (a) we show

at the lower right also the so-called "classical" approximation (e.g., Ref. 1),

in which the full zero point energy is subtracted. Note that (a) has a loga-

rithmic scale.

ing the correction leaves a mean difference of the order of

one count in 900 at about 4.7 eV. The steep increase of AN

above 4.9 eV seems to indicate a systematic deviation of the

quantum state count due to loss of convergence near the first

dissociation limit (assumed to be 4.885 eV in the quantum

calculations' ).

For this J = 0 example all absolute differences are small

numbers. For J> 0 they grow by a factor somewhat less

J. Chem. Phys., Vol. 96, No. 9, 1 May 1992
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FIG. 2. Difference AN between the semiclassical number of states and the

number of quantum states for H3 in J = 0 vs E and E'. Upper trace and left

scale: taken with uncorrected semiclassical N(E). Lower trace and right

scale: with corrected N(E).

than, but of the order of 2J + 1. Larger differences occur

therefore for J = 10 and 30, where we have quantal energies

from HD? . Figures 3 and 4 show some sample data. It is

obvious that the Whitten–Rabinovitch correction improves

the agreement between quantum and semiclassical state

numbers appreciably, and that the application of the correc-

tion to the vibrational part of the energy only, called method

(b) in Paper I is superior to the simpler method (a ), in

which the total energy is shifted. Only Fig. 4 (b) for J = 30

shows some residual difference, which may indicate, that the

correction is still too small. Another possibility is a large

fluctuation (note that due to so much energy bound in rota-

tion the vibrational excitation is small here). An unambigu-

ous decision would need more computed quantum states.

Results for specific symmetry species are shown in Figs.

5 and 6. The first shows the ratio of quantum states of species

A 1 and B2 for HD2 , J = 0 compared to the result of Eqs.

( 7 ) and ( 10). There is a clear tendency for Eq. ( 10) to give

the better fit, especially at high E, though one would like to

have a few more computed quantum states for an unambigu-

ous decision.

Figure 6 shows the number of states function, N(E), of

the lowest A ; states of H3+ in J = 0. They were obtained

from the quantum calculation done in symmetry C2v ( Ref.

7 ) by looking for near degeneracies between A, and B2

states, and assigning those almost coinciding as E states in

Dm. Their number is compared here with the semiclassical

N(E) from Paper I multiplied by the fraction f(A 2 ) from

Eq. ( 14b ) . The agreement is rewarding, even though one

sees the limits of the method of classifying Estates from near

energy coincidences at the upper end of the energy scale. A

(a)
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FIG. 3. Similar to Fig. 1 for HD,± in J = 10. The curves corrected after

method (a) of Paper I are shown, they practically coincide with those from

method (b ).

more precise estimate for the total number of states (i.e., A,

plus A 2 states plus E states counted singly) below an energy

of 4.885 eV ( which is the assumed dissociation energy mea-

sured from the bottom of the H,± well to the lowest level of

H2 + H ± ), which was given as 881 in Ref. 7 is now 853 + 2

states. A breakdown of the semiclassical state numbers at

E = 4.00 and 4.885 eV is given in Table I.

Let us stress again that this is the first test of the numeri-

cal virtues of semiclassically computing the number of states

for a system, which is more realistic than a nonrotating mod-
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FIG. 4. Similar to Fig. 1 for HD,± in J = 30. The smooth curves are from

top: uncorrected semiclassical, corrected after method (a) of Paper I, cor-

rected after method (b); in (a) at the lower right also the so-called classical

approximation.

el of uncoupled harmonic oscillators. It is possible, because

quantum ladders of a length, which makes such a compari-

son meaningful, have been computed for the first time for

any molecule. The agreement obtained is, indeed, gratifying.

It shows that, given the potential, the calculation of hun-

dreds or thousands of quantum states only to get a correct

state density will not be necessary. Though the results apply

immediately only to 113 and its isotopomers, one expects

them to hold at least for the broad class of "normal," chemi-

FIG. 5. Ratio of number of states of species B 2 to that of species A, for

HD2± in J = 0 vs energy E and reduced energy E'. The true ratio of quan-

tum states jumps at every new state. The dashed curve implements Eq. (7),

the dotted one Eq. ( 10) identifying N with the continuous semiclassical

N(E).

cally bound triatomic molecules. In addition, there is no rea-

son to believe that floppy triatomics or other polyatomics

will behave much differently. The bottleneck in the precise

determination of quantum state counts and state densities

will, obviously, always be the knowledge of the intramolecu-

lar potential. Without that knowledge one will always be

80

70

N(E;J)
so

50

40

30

10

iltItIlltItItItItl ,I,I.Iiiiiii. IIIIIkj_L:
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FIG. 6. Number of states of species A, for I-1,+ in J = 0. The staircase is the

quantum result determined (Ref. 7) from the C2 ,, calculations as described

in the text, the smooth curve the corrected semiclassical result multiplied

with the fraction, f(A 2 ), Eq. (14b).
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constrained to the use of approximations of the RRHO type

modified by well known—but not so well proven—correc-

tions for anharmonicity and similar effects.
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