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Accurate spike estimation from noisy calcium
signals for ultrafast three-dimensional imaging of
large neuronal populations in vivo
Thomas Deneux1,2, Attila Kaszas3,4, Gergely Szalay5, Gergely Katona5,6, Tamás Lakner1,6, Amiram Grinvald7,

Balázs Rózsa5,6 & Ivo Vanzetta1

Extracting neuronal spiking activity from large-scale two-photon recordings remains

challenging, especially in mammals in vivo, where large noises often contaminate the signals.

We propose a method, MLspike, which returns the most likely spike train underlying the

measured calcium fluorescence. It relies on a physiological model including baseline

fluctuations and distinct nonlinearities for synthetic and genetically encoded indicators.

Model parameters can be either provided by the user or estimated from the data themselves.

MLspike is computationally efficient thanks to its original discretization of probability

representations; moreover, it can also return spike probabilities or samples. Benchmarked on

extensive simulations and real data from seven different preparations, it outperformed

state-of-the-art algorithms. Combined with the finding obtained from systematic data

investigation (noise level, spiking rate and so on) that photonic noise is not necessarily the

main limiting factor, our method allows spike extraction from large-scale recordings, as

demonstrated on acousto-optical three-dimensional recordings of over 1,000 neurons in vivo.
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T
o understand how local networks process information, we
need experimental access to the activity of large sets of
individual neurons in vivo. Unlike multi-electrode probes1–3,

two-photon laser scanning microscopy4–7 allows unbiased sampling
and unambiguous three-dimensional (3D) localization of up to
thousands of neurons. Because of the recent introduction of
acousto-optic (AO) random-access scanning8–11, it has also become
technically possible to rapidly scan such large populations in two
and three dimensions.

However, the maximal number of neurons from which
workable functional signals can so far be obtained (a few
hundred at best) is at least an order of magnitude smaller than
what the current state of the technology allows to scan, because
the signal-to-noise ratio (SNR) of the recorded fluorescence drops
with the number of recorded cells. Indeed, action potentials
(spikes) need to be extracted from the recorded fluorescence
changes of a synthetic or genetically encoded (GECI) calcium
(Ca2þ ) indicator12,13. Single spikes lead to intracellular Ca2þ
increases with fast rise- but slow decay time (time-to-peak
B8–40ms, slightly longer in case of certain GECIs; decay constant
B0.3–1.5 s (refs 10,13,14)), causing the transients induced by
individual spikes to overlap, often adding up nonlinearly15.
Moreover, the signals are often contaminated by large noises,
including by baseline fluctuations similar to the actual responses.
Therefore, accurately reconstructing spikes from noisy calcium
signals is a critical challenge on the road to optically monitoring
the firing activity of large neuronal populations.

Numerous methods have been proposed for estimating the
spiking activity10,16–27. However, none tackles all three of the
following critical challenges: first, finding the optimal spike train
is algorithmically challenging. In popular spike estimation
methods based on template matching10,16–22, the time needed
to find the optimal spike train underlying a recorded fluorescence
time series grows exponentially with its number of time points,
just like the number of possible spike trains. To make
computation costs affordable, approximations become
necessary, thus curbing estimation accuracy. Second, the

baseline fluorescence level often fluctuates. Third, model
parameters (for example, the unitary Ca2þ fluorescence
transient’s amplitude A and decay time t) are inhomogeneous
across neurons and cortical areas. As a consequence, often only
spiking rates or -probabilities are extracted from Ca2þ signals,
rather than the individual spikes24–31. Despite the advantages of
determining such ‘activity levels’ at low SNRs, lacking the actual
spike trains hampers investigating temporal coding, causal
network relations and the like.

Our method ‘MLspike’ tackles the first two challenges by
finding the most likely spike train underlying the recorded
fluorescence using a maximum-likelihood approach. An ‘auto-
calibration’ procedure addresses the third one.

We tested MLspike (algorithm and autocalibration procedure)
on extensive simulations and on real biological data consisting of
55 neurons from seven different preparations, and we gauged it
against four state-of-the-art algorithms. The first one, Peeling10,
provides a unique spike train as does MLspike. The other three
algorithms provide spiking probabilities or rates, namely the
Sequential Monte-Carlo (SMC) method published in24 and the
recently published Constrained Deconvolution (CD) and Markov
Chain Monte-Carlo (MCMC) algorithms26,27. All these
algorithms were compared with MLspike on our biological data
set, while we chose only Peeling for benchmarking on the
synthetic data because of the type of its output (that is, spikes
rather than spiking rates) that makes the comparison more
straightforward, its recently published extensive simulations and
quantifications against noise32 and its robustness against baseline
drifts.

Results
Algorithm. MLspike’s key features consist in using a physiolo-
gical model (Fig. 1a) of both intracellular Ca2þ dynamics and
baseline fluorescence—which turned out to be a key step for
accurate estimations on real data—together with a filtering
technique that runs in linear time. The framework is general and
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Figure 1 | Model and algorithm. (a) Physiological model. Upon emission of s(t) spikes, intracellular Ca2þ concentration C(t) is driven by an increase A

(the unitary calcium response) � s(t), then decays to the resting value with time constant t. The measured fluorescence F(t) is the product of a drifting

baseline fluorescence B(t) with a nonlinear function of C(t) accounting for dye saturation and GCaMP nonlinearities; a noise term is added. Note the

similarity between the resulting trace (blue) and real fluorescence data (inset; numbers adjacent to spikes indicate their multiplicity). (b) ‘MLspike’

algorithm illustrated on a schematic example without baseline drift. (top and middle) The probabilities (white-green colour code) of ‘best trajectories’

originating from all possible calcium values (y axis, for display purposes same scale as fluorescence) at time t (x axis) are calculated, iteratively for

decreasing time. (bottom) Once time zero is reached, the best Ca2þ trajectory uniquely defines the ‘maximum posterior’ estimated spike train (bottom)

(see Methods and Supplementary Movie).
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the model is thus easily modifiable to incorporate additional
physiological details. In contrast to previous hidden Markov
model approaches24,26,27 that yield spiking probabilities, -rates or
distributions of spike trains, MLspike provides the unique spike
train that maximizes the likelihood of obtaining the recorded
fluorescence time series. To do so, we use a version of the Viterbi
algorithm33 to estimate the optimal input (the spike train) by
maximizing an a posteriori (MAP) distribution probability
(Fig. 1b and Supplementary Movie); for MAP estimation from
calcium signals in another context see (ref. 34).

Briefly, the concept underlying MLspike is to calculate,
iteratively for decreasing times t: the set of most likely Ca2þ
trajectories starting from all possible Ca2þ values (y axis) at time
t, and the relative probabilities of these trajectories (Fig. 1b, green
colour code). A conditional probability maximization then allows
to step from time t (top) to t� 1 (middle), and once time zero is
reached, the most likely trajectory defines a unique ‘maximum
posterior’ spike train (bottom). Importantly, for a given t, the set
of most likely Ca2þ trajectories has to be calculated only once,
thus ‘collapsing’ together trajectories that pass through the same
point(s). As a result, the number of trajectories to evaluate grows
only linearly with the number of time points, rather than
exponentially.

The classical Viterbi algorithm applies to a discrete state space.
We were able to generalize it to a continuous one by discretizing
the state space and by interpolating at each time step (see
Methods for details). This allowed us to gain in speed and in
accuracy for the representation of probability distributions as
compared with particle filter representations24 or to Metropolis–
Hastings sampling26.

Benchmark on simulated data. We first benchmarked MLspike
on simulated data, assuming known model parameter values. We

quantified error rate (ER) as 1—F1-score (that is, 1—harmonic
mean of sensitivity and precision), which amounts to an average
of the percentages of misses and false detections biased towards
the worst of the two, see ref. 32 and Methods. Noise level was
defined as the noise root-mean-square (RMS) power in the
0.1–3Hz frequency band, normalized by A. As we shall see, this
quantification reflects the fact that low- and high-frequency noise
weakly affects estimation accuracy.

We began by characterizing ER as a function of white (that is,
photonic) noise (Fig. 2). Although the baseline was flat, its ‘level’
was unknown to the algorithm, which had to recover it. ER
remained below 1% up to noise levels of 0.2 (top left), except for
high spiking rates (bottom left), as is expected given the long
Ca2þ transient decay. Frame rate impacted little on ER, implying
that what matters for spike detection is the total amount of
fluorescence captured per unit time, rather than sampling rate. In
contrast, high frame rates obviously improved timing accuracy,
especially at low noise levels (Supplementary Fig. 1). We also
benchmarked MLspike against Peeling, yet in a slightly simpler
situation, that is, with provided baseline level, thus reproducing
the published results32 using the code available online (Supple-
mentary Fig. 2). With those settings, MLspike outperformed
Peeling by B20%.

Next, we characterized MLspike’s performance with respect to
the noise’s frequency spectrum (Fig. 3a–c and Supplementary
Fig. 3): white noise, low-frequency drifts (that is, slow baseline
fluctuations) together with white noise, and pink noise (which has
equal power in all octaves and includes complex baseline
fluctuations and photonic noise). As expected, pink noise induced
by far the largest ERs when noise was quantified by RMS power
calculated over the entire frequency spectrum (Supplementary
Fig. 3). However, when noise was quantified by RMS power
restricted to the 0.1–3Hz frequency range, MLspike handled all
noise types similarly (Fig. 3c). This reflects the fact that the
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Figure 2 | Simulations with flat baseline. (a) Four example spike reconstructions at high and low spiking rates and frame rates. Note how an accurate

baseline level estimation (unknown, well below the signal) warrants good performances even at high spiking rates. (b) Error in spike estimation (ER) and

timing (defined here and elsewhere as the average of the absolute value of the delay between an estimated spike and the corresponding true one), as a

function of noise level, defined as RMS/A restricted to the 0.1–3Hz frequency range. Here and elsewhere, numbered circles on curves mark the position of

correspondent example traces. Different colours and line styles denote different spiking- and frame rates. The legend below a defines the meaning of the

remaining symbols used here and throughout the article. For further characterization of the estimation error (misses, false detections, timing, dependence

on parameter values) see Supplementary Fig. 1. For a benchmark against Peeling, see Supplementary Fig. 2.
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critical noise frequencies are those that fall within the dominant
part of the calcium fluorescence response spectrum (Fig. 3d) and
justifies our quantification of noise level. MLspike was then
benchmarked against Peeling in extensive additional simulations,
largely outperforming it throughout all noise types and levels
(Fig. 3e, for details including parameter value explorations see
Supplementary Fig. 4). Importantly, in the case of spiking rates of
5 sp s� 1 and higher, MLspike could accurately estimate (for
example, at the ER r5% threshold) spike trains in the presence
of B10 times more noise than Peeling. This underscores one of
MLspike’s main advances with respect to current state of the art:

its capability to handle not only high noise levels but also dense
firing patterns (up to 20Hz), where fluorescence rarely decays
back to baseline.

All above simulations were generated using the same model
parameters values (A¼ 10%, t¼ 1 s), as is commonly done by
using the same ‘good estimate’ parameters for all cells as.
However, simultaneous electrophysiological and fluorescence
recordings both of ourselves and others10,20, show remarkable
variability among cells recorded using the synthetic calcium
indicator Oregon Green BAPTA-1-AM (OGB): sA/oA4E30-
40% and st/ot4E40-50%. In the case of GECIs, the variability
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Supplementary Fig. 3. For a benchmark against Peeling, see Supplementary Fig. 4. Frame rate: 100Hz in all panels.
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can be even larger. Neglecting it obviously reduces estimation
accuracy. Therefore, we developed an original ‘autocalibration’
method that estimates A, t and s (a parameter accounting for
noise level) for each neuron, directly from its recording. In
contrast to previous work20,24,26,27, our method takes advantage
of a priori knowledge of each parameter’s specific characteristics.
In particular, the estimation of A relies on the discrete nature of
spikes and thus of the amplitudes of isolated Ca2þ transients
(Fig. 4 and Supplementary Fig. 5); t is easily estimated by
single-exponential fitting because it governs the shape of the
transients and s is heuristically determined as a function of the
signals’ spectral content (see Methods). The remaining model
parameters, namely saturation, baseline drift and spiking rate were
found to impact less on the estimation and were thus assigned to

fixed values. In the GECI’s case, the saturation parameter was
replaced by two parameters coding for supra-linearity.

Autocalibration was tested at multiple noise levels on simulated
fluorescence signals with A and t drawn from a distribution
reflecting the statistics of our data acquired using OGB
(t¼ 0.81±0.40 s, A¼ 5.2±1.6%, ncells¼ 24). Even when run on
as few as three 30 s long trials, autocalibration yielded satisfying
estimates for A, t and s, at noise level up to 0.2 (Fig. 4b).
Importantly, the estimates obtained using ‘autocalibrated’ para-
meters were much more accurate than using ‘good estimates’,
closely approaching the level obtained using the true simulation
parameter values (Fig. 4c).

Obviously, autocalibration performance decreased with
increasing noise and spike density, mostly because the heuristics
used to estimate parameter A becomes less appropriate (Fig. 4b).
Indeed, for noise levels above B0.2 or spiking rates above
B5 spikes per second autocalibration did not perform better than
using fixed parameter values (Fig. 4c). For practical usage, in the
Supplementary Note 1 (‘Factor Box’) we provide an intuitive,
example-based analysis of how both MLspike’s and autocalibra-
tion’s estimation accuracies depend on a multitude of factors,
including primary (for example, frame- and spiking rate) and
secondary ones (for example, calcium indicator choice), and their
interaction with our method’s internal parameters.

Performance on real data. Next, we tested the performance of
our method on real data acquired in multiple brain areas (barrel
cortex, V1 and hippocampus), species (rat and mice) and pre-
parations (in vitro and in vivo, anaesthetized and awake),
obtained using either the synthetic Ca2þ dye OGB or last-gen-
eration GECIs (GCaMP5k (ref. 15) and GCaMP6s/GCaMP6f
(ref. 13)) (Figs 5 and 6), Supplementary Figs 6 and 7). The GCaMP
data were either obtained by the authors themselves (awake mouse),
or taken from a public repository (anaesthetized mouse, see
Acknowledgements). Actually occurred spikes were recorded elec-
trically in cell-attached mode, simultaneously with the Ca2þ
fluorescence. We first assessed MLspike’s accuracy independently
from performance drops due to wrongly estimated model para-
meters: for each cell, physiological parameters A and t were first
‘calibrated’, that is, adjusted so as to best predict measured calcium
time courses from the recorded spikes (Supplementary Fig. 6), then
noise and drift parameters QUOTE and Z were ‘optimized’ by
minimizing ER with respect to the simultaneous electrical recordings
(Fig. 5a,b and Supplementary Fig. 7a). This yielded the estima-
tions we refer to as ‘optimized’ throughout this work. Average ER
was of 11.4% (OGB:oER4¼ 12.8% and ERo20% in 83.3% of the
cases; GCaMP6sþGCaMP6f: oER4¼ 9.8% and ERo20% for all
cells), fast spiking (Fig. 5a, second example: mean firing rate
5.4 sp s� 1) and noisy neurons yielding the higher values (correlation
r¼ 0.44 between noise level and ER, Fig. 5b). Noise level (which is
normalized by A), was inhomogeneous due to variability in cell-
specific amplitude of fluorescence transients, staining, Ca2þ indi-
cator, preparation, physiological condition and scanning
technology—galvanometric or AO deflectors (AOD) based
(Supplementary Fig. 6a,b). Laser intensity and the number of
simultaneously imaged neurons (between 20 and 1,011) more
specifically affected the photonic part of the noise (yellow in the
spectra).

We then ran the estimations again, this time using parameter
values autocalibrated from the fluorescence data themselves,
rather than calibrated using the electrical recordings (Fig. 5c and
Supplementary Fig. 7b,c). Strong correlations were obtained
between autocalibrated and optimal A and t values
(Supplementary Fig. 7c), in particular for OGB and GCaMP6s
(r¼ 0.5 and 0.9 for A estimation, r¼ 0.8 and 0.57 for t
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estimation), while autocalibration was more difficult on
GCaMP6f signals (r¼ 0.53 for A, 0.13 for t), possibly because
of the small amplitude of individual spike responses. Average ER
on spike estimations equalled 17.6% (OGB: oER4¼ 21.8%,
ERo20% in 45.8% of the cases; GCaMP6sþGCaMP6f:
oER4¼ 12.5% and ERo20% in 85% of the cases). These
estimations proved more accurate than when using fixed ‘good
estimate’ parameter values (Fig. 5d, left). In that case, using our
average calibrated values for A and t yielded an oER4 of 25.1%
for OGB (o20% in 20.8% of the cases; when using values from
the literature10 instead:oER4¼ 29.2%, ERo20% in 25% of the
cases) and of 22.2% for GCaMP6 (o20% in 45% of the cases). In
terms of temporal precision, in the case of OGB, MLspike
combined with autocalibration performed best (Fig. 5d, right). In
the case of GCaMP6, all estimations yielded comparable results
(the better temporal precision obtained on the GCaMP6 data set
as compared with the OGB one is probably the consequence of a
lower average noise level, rather than an indication of specific
differences between indicators). The optimal noise-level
bandwidth could be satisfactorily approximated to 0.1–3Hz for
both OGB and GCaMP6, despite some small differences between
the two (Supplementary Figs 7d,e).

Using the same data as above, we extensively compared the
performance of MLspike (with autocalibration) to that of four
other state-of-the-art algorithms, namely Peeling, MCMC, CD
and SMC (Fig. 6 and Supplementary Fig. 8). To do so also for
methods yielding spiking rates rather than individual spikes
(MCMC, CD and SMC), we quantified the estimation error of all
algorithms using the correlation between the measured and the
reconstructed firing rate time series as in ref. 27 (bin¼ 40ms). In
addition, we also compared the algorithms yielding actual spikes
(MLspike, Peeling and representative realizations of spike trains
estimated by MCMC), by quantifying the estimation error using
ER, which, as opposed to the correlation metric, is not invariant
for affine transformations of the unitary fluorescence response A.
The example in Fig. 6a conveniently illustrates this shortcoming
of the correlation measure: MLspike finds the most accurate spike
train (compare ER, oER4 and actual spikes), yet its estimation
accuracy is ranked inferior to that of the other algorithms when
quantified using correlation.

In Fig. 6b–d, we compare the performance of the five
algorithms on our various data sets. MLspike clearly out-
performed the other algorithms, both when using ER or
correlation as a measure for accuracy (Fig. 6b,d, respectively).
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We also tested temporally more restrictive criteria for assigning
estimated spikes to measured ones in the calculation of ER (from
the default coincidence window of 500ms down to 20ms) and
using different bin sizes when calculating the correlation
(20–500ms). As expected, decreasing these time constants
reduced estimation accuracy for all algorithms; yet, MLspike
remained the most accurate one at all tested temporal tolerances
(Fig. 6b,d, bottom). Finally, we also compared the estimated
spikes’ timing accuracy, first with fixed ER time constant (500ms)
and then by varying it and calculating the average resulting
temporal error (Fig. 6c left and right, respectively). Also here,
MLspike was more accurate than all the other algorithms, at least
on the grand average. Importantly, the mean temporal error was

always several times smaller than the maximally accepted
temporal tolerance; for instance, the spikes estimated with a
tolerance window of 50ms had, in the average, a temporal error
of only B15ms (Fig. 6c, right).

The specific choices made for the physiological models
underlying MLspike’s estimations appear to be largely responsible
for its superiority over other algorithms—at least on this data set.
For example, Fig. 6a and Supplementary Fig. 8a show how the
MCMC, CD and SMC algorithms that do not explicitly model
baseline drifts tend to explain those with (incorrectly placed)
spikes. In the case of Peeling (which does estimate baseline drifts),
the worse performance is rather due to a less sophisticated
statistical approach. Finally, the inclusion of nonlinearity in the
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and estimations are also displayed. Each algorithm was run using the parameter values obtained with its own autocalibration procedure, except Peeling,

which was run using a fix set of parameters (OGB: literature, GECIs: mean optimized from our data). See Supplementary Fig. 8 for two additional examples.

(b-d) Comparisons of the five algorithms’ performance on the whole population, separately for each data set and on all data pooled together (same graphic

conventions as in Fig. 5d). (b) First line shows performance quantification as mean ER using a spike-assignment time constant of 500ms (an estimated

spike was considered as correct if there was a yet unassigned recorded spike o500ms away). Second line displays the mean ER as a function of

correspondence window. (c) Spike estimation delay (mean temporal error) obtained using the different algorithms. The rightmost graph plots the delay as a

function of spike assignment time constant. Note that even for time constants down to B50ms the mean temporal error was much lower than the

maximally allowed one. This difference obviously decreased for very small time constants and finally converged to the maximal allowed value of 10ms for a

20ms time window. (d) Same comparisons as b, but using correlation as a measure of estimation accuracy rather than ER.
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model turned out to be crucial to correctly handle the responses
in case of GECIs (Supplementary Fig. 8b).

To account for the supra-linearity of GECIs, we used a
heuristic, cubic polynomial based, response model15 (Supple-
mentary Fig. 6). Indeed, somewhat surprisingly, performance did
not improve significantly (although temporal accuracy did) when
two more physiological models were used instead, one of which
included finite, computationally more expensive, rise times (see
Methods, Supplementary Fig. 9). This underscores the
importance of further efforts aimed to account more accurately
for the dynamics of GECIs.

Benchmark on data recorded simultaneously from 1,000 neurons.
Since the combination of the autocalibration method and the
MLspike algorithm allows more accurate spike estimation than so
far, lower SNR levels in the raw data become acceptable. This

allows to take better advantage of current AOD-based two-pho-
ton random-access laser scanning technology for very large
population imaging in 3D (ref. 11). As a proof of concept, we
recorded signals from 1,011 cells randomly distributed within
300� 300� 170mm3 (Fig. 7a), at 30Hz frame rate. Again, a cell
was patch-recorded simultaneously with imaging. Once more, its
noise power spectrum (Fig. 7b) shows that the photonic con-
tribution to noise in the critical bandwith (0.1–3Hz) is small.

Figure 7c shows the raw signals and raster plots of the spikes
estimated from the 1,011 neurons. The recurrent vertical stripes
visible at the global level (left and right panels) mark the presence
of correlated network activity, consistently with the presence of
slow collective oscillations (up-and-down states) that are known
to occur under various circumstances in the anaesthetized
preparation35, and in particular in the rat under Urethane
anaesthesia35,36. At a more detailed level, closer inspection
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(Fig. 7c, middle) shows clear differences between the fluorescence
traces recorded from different neurons, and the same is true for
the estimated spike trains.

The patched neuron allowed assessing estimation accuracy,
yielding an ER of 26%, which is clearly better than the ER
obtained when we fixed parameters to their mean values (36%),
or when we used MCMC (42%) or Peeling (57%) (CD and SMC
performing even worse, although using a correlation-based
measure). Even at the current proof-of-concept level, such an
accuracy improvement is highly relevant for the determination of
network connectivity (for example, following the theoretical study
of ref. 32, it would result in a gain of 1.2–2 in hub cell hit-rate
with respect to current state of the art).

Discussion
MLspike achieves model-based spike inference to reconstruct the
MAP spike train that best accounts for measured fluorescence
signal. With respect to current state of the art, MLspike divides
the estimation error by an average factor of B2 (Fig. 6), and
much more in specific contexts such as high (Z2 sp s� 1) spiking
rates (Fig. 3e). Other advantages compared with more ad hoc
methods such as the Peeling algorithm are a well-posed
mathematical definition of the problem, a small number of
parameters (in particular thanks to our model reparameteriza-
tion, see Methods), and flexibility with respect to changes in the
underlying model.

A simple, yet critical, novelty of our model formulation
compared with all previous methods is the inclusion of neuron-
specific fluctuations in the baseline fluorescence. Such baseline
drifts and -fluctuations are often encountered in vivo, but even
in vitro; they also appear during the firstB15 s of AOD operation
or even later, thus requiring the introduction of a ‘warm-up’
period before each data acquisition; they might also reflect slow
calcium concentration changes not related to the cell’s spiking
activity. It is particularly in the context of drift- and fluctuations-
containing signals that MLspike outperformed Peeling (simula-
tions in Supplementary Fig. 2 versus 4), as well as in the case of
so-far untreatable spiking rates up to 20 sp s� 1 (Figs 2 and 3).

With respect to the modelling of GCaMP6 nonlinearities,
somewhat surprisingly, polynomial and physiological models
appeared to perform similarly. While this calls for further
modelling of the underlying processes37, it also underscores the
adequacy of simple phenomenological models with few
parameters, as long as they capture the main features of the
underlying physiology.

Recently, estimations based on machine learning techniques
have been proposed31. Since they extract their inference
parameters directly from the learning data set, such model-free
methods could in principle learn by themselves how to ignore
drifts or other confounding effects. However, they require an
adequate choice of learning data set. Moreover, at present they
yield only spiking rates, rather than actual spikes; even less have
they be proven to be able to autocalibrate, that is, to adapt their
internal kernels to the individual statistics of each neuron.
Conversely, the advantage of model-based approaches is their
robustness in establishing a set of possible dynamics,
parameterized by well-defined quantities (A, t, ...), which allows
to adapt the estimation to each neuron’s characteristics, rather
than using average parameter values.

A number of methods estimate spiking probabilities or
instantaneous spiking rates24–31. This approach has advantages
when used on data that clearly lack single-spike resolution or
when it is important to assess the uncertainty of the estimation.
However, when it comes to investigating temporal coding and
causal network relations, estimating the optimal time series of the

spikes themselves, as do MLspike, Peeling and others, can be
advantageous. From the practical point of view, it should also be
noted that dealing with a single spike train has the advantage of
being able to use—essentially as-is—the large thesaurus of
standard methods available today for spike train analysis.

Importantly, when investigating network properties, the
tolerable jitter on the estimated spikes’ timing is considerable
(beyond 25ms in a recent study on synaptic connectivity38), thus
relaxing the constraints on temporal accuracy with respect to
electrophysiological standards. Furthermore, the ongoing
progress in both fluorescent marker- and imaging technology is
likely to make robust and precise single-spike estimation
increasingly accessible13.

Conversely, both approaches can be used to investigating rate
coding or average responses. Importantly, in our hands, MLspike
(and in most cases also Peeling) outperformed MCMC, CD and
the SMC method also at estimating instantaneous firing rates/
probabilities (in the former case calculated from the estimated
spikes, in the latter case deduced from the distribution of
estimated spike trains or directly extracted from the calcium
fluorescence). Part of this difference is likely due to MLspike’s
(and Peeling’s) better handling of baseline drifts, underscoring the
importance of this feature.

Interestingly, the MCMC algorithm26,27 returns actual sample
spike trains that can be used, for example, to investigate network
properties based on spike times. At the same time, MCMC returns
many such spike trains, sampled according to the posterior
probability distribution, thus allowing both the estimation of
spiking probabilities and an indication of the level of estimation
uncertainty. Similarly, we have adapted MLspike so it can return,
upon user choice, the spiking probability distribution, or a set of
spike trains sampled according to the posterior distribution, rather
than the unique MAP spike train (see Methods and Supplementary
Fig. 10). Caveats apply, however, to the interpretation of such
sample spike trains. For instance, the ‘variability’ observed in
sample spike trains can be erroneous (and therefore misleading),
either because the algorithm is not robust enough to avoid local
maxima, or, more importantly, because of systematic errors. Those
can result, for example, from a mismatch between the used
response model and the data. Such a situation can be seen in
Fig. 6a (and Supplementary Fig. 8): different sample spike trains
returned by MCMC tend to reproduce the same estimation errors
but are very similar one to another. The resulting low variability
would make the user overly confident with respect to the quality of
the reconstruction.

In terms of algorithm and implementation, MLspike imple-
ments a Viterbi algorithm to estimate a MAP spike train from
calcium signals, for the first time to our knowledge. Additional
novelties include the representation of probability distributions as
discretized onto a grid, as in histogram filters, so they can easily
be spline-interpolated over the whole state space (as opposed to,
for example, particle representations as in ref. 24). This is critical
for computing the MAP estimate, and also contributes to faster
computations (at least up to state-space dimensions o4). For
additional details, including simplifications that further increase
computation speed, see Methods.

The need to further improve the response model may increase
the number of its dimensions and with it the dimensionality of
the grid onto which probabilities are represented. This would
result in a prohibitively large number of points at which the
probability has to be calculated. Luckily, however, this probability
would be non-negligible only within a thin subspace of the grid,
which opens the door to further improvements of our method by
using sparse representations, in order to computationally stream-
line also versions with a higher dimensional (43) response
model. A possible implementation would be to compute,

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12190 ARTICLE

NATURE COMMUNICATIONS | 7:12190 | DOI: 10.1038/ncomms12190 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


iteratively, the probabilities for time (t� 1) only for the states
(that is, grid points) that can be parents of states represented at
time t, and to set a probability threshold that determines which
states to represent and which not at each time-step.

Our autocalibration procedure is somewhat more ad hoc. Yet,
it runs fast and shows that estimating each cell’s model
parameters from its own raw signals—even at current error
levels—yields more accurate spike train estimates than using fixed
parameter values (population average or from the literature).
Other, more well-defined, methods maximize the likelihood of
the fluorescence signals24–29, but such optimization is
computationally more expensive. Moreover, these methods do
not include any a priori on the cells’ parameters. This is not the
case of our autocalibration, which uses such information by
allowing only a range of values for certain parameters (for
example, A), and even clamps some others to fixed values (such as
those governing nonlinearities, which are particularly difficult to
estimate). Such a priori can prove advantageous in situations with
noisy or little data, or when only few isolated spikes are available.
Ideally, autocalibration methods would be able to combine such
information with that provided by the data itself.

The open source code of our method is available as
Supplementary Software and includes introductory demos. A
number of practical considerations aimed at understanding the
principles and limitations of spikes estimation, such as the
concept of ‘noise level’ we introduced, can be found in the ‘Factor
Box’ (in Supplementary Note 1). It qualitatively but simply and
intuitively illustrates how to adjust the few parameters of MLspike
in the rare cases that the default values should be inadequate (for
a quantitative and systematic study of parameter dependencies,
see Supplementary Figs 1–4).

Our novel method makes it possible to optimally exploit the
capabilities of current hardware. Warranting more accurate spike
train extraction from larger sets of cells than so-far is a step
forward in the investigation of local network properties, such as
temporal coding (at very high SNR) and correlations (at the
single-spike level or, at lower SNR, at the level of changes in
spiking rate). It also extends the applicability of two-photon
imaging to investigating more densely connected networks than
so-far, improvements in the determination of functional
connectivity (for a quantitative analysis see ref. 32: the hub-cell
hit rate) and network topology (for example, of power-law versus
log-normal type39–41). Importantly, the constraints on timing
accuracy are relatively affordable in this context (for example,
using iterative Bayesian inference it has been shown that
network synaptic connectivity and flow direction can be
predicted even if spikes are encoded at a precision of 25ms and
below38).

These perspectives are especially interesting when the Ca2þ
probes are expressed in genetically modified strains14,42, where
the imaged volume is not limited by the spatial spread of extrinsic
fluorescent markers. Recent progress in waveform shaping43,44

that corrects for scattering-induced deformations should also
allow a significant extension of the volume accessible for imaging,
into depth in particular.

Recently, more general approaches have been proposed, aimed
to jointly infer regions of interest and spikes23,27,45,46. Although
the strength of these methods resides in exploiting the full spatio-
temporal structure of the problem of spike inference in calcium
imaging and in offering an unbiased approach for ROI
determination, they have the disadvantage of requiring that the
full two-dimensional (2D) or 3D data are available, which is not
the case in random-access scanning. Indeed, there, one scans only
the points of interest—albeit at 3D and at much higher speeds, for
instance using AOD-technology11. Nevertheless, MLspike could
straightforwardly be added to the list of available spike estimation

algorithms even in algorithms of these kind27, thus increasing
their data processing power.

Finally, we have shown that it is straightforward to modify our
method to include different response models—here, to account
for the specific nonlinearities of GECIs. Similarly, our method
could be easily adapted to event detection in other noisy signals,
such as the fluorescence of new voltage probes47 or even
intracellular patch- and sharp-electrode recordings of super-
and sub-threshold neuronal activity.

Methods
Software. MATLAB implementation of the MLspike and autocalibration algo-
rithms are available as Supplementary Software, and can also be found on the
depository https://github.com/MLspike. See also our Supplementary Note 1 and
the two demos in the code for guidance in using MLspike.

Experimental preparations and recordings. Surgical procedures. All experi-
mental protocols were approved by the Marseille Ethical Committee in Neu-
roscience (rats; approval #A10/01/13, official national registration #71-French
Ministry of Research), or by the Animal Care and Experimentation Committee of
the Institute of Experimental Medicine of the Hungarian Academy of Sciences
(awake mice; approval #PEI/001/194-4/2014 and 29225/004/2012/KAB). All pro-
cedures complied with the Hungarian Act of Animal Care and Experimentation
(1998; XXVIII, section 243/1998.), French and European regulations for animal
research, as well as with the guidelines from the Society for Neuroscience. All
experiments on anaesthetized mice were conduced according to National Institute
of Health guidelines and were approved by the Janelia Farm Research Campus
Institutional Animal Care and Use Committee and Institutional Biosafety
Committee13.

OGB-1-AM recordings were performed on juvenile Wistar rats (P28-40) of
either sex. Those were anaesthetized with Urethane (2 g kg� 1 body weight). Body
temperature was monitored and maintained at 37.5 �C with a heat controller and
heating pad (CWE). A metal chamber was attached with dental cement to the
exposed skull above the primary somatosensory cortex (2.5mm posterior and
5.5mm lateral to the bregma). A 3-mm-wide craniotomy was opened and the dura
mater was carefully removed. The chamber was then filled with agarose (2% in
artificial cerebrospinal fluid) and stabilized under a cover glass. The latter was
applied such as to leave a narrow rostro-caudal gap along the most lateral side of
the chamber, in order to allow access to the micropipette used for dye injection or
for electrical recordings.

The surgical procedures and strains for the anaesthetized mice GCaMP5k,
GCaMP6f and GCaMP6s V1 experiments are described in refs 13,15.

GCaMP6f recordings in awake mice V1 were performed in male C57BI/6J mice
(P70-80). The surgery procedure was performed under anaesthesia with a mixture
of midazolam, fentanyl and medetomidine (5mg, 0.05mg and 0.5mg kg� 1 body
weight successively). V1 was localized first anatomically (0.5mm anterior and
1.5mm lateral to the lambda suture) and then confirmed functionally by intrinsic
optical imaging. The rest of the surgical procedure was as described for rats. To
awaken the mice from anaesthesia for the imaging, they were given a mixture of
nexodal, reventor and flumazenil (1.2, 2.5 and 2.5mg kg� 1 body weight
successively). Mice were kept head restrained in the dark under the two-photon
microscope for about 1 h.

Slice preparation. GIN mice (P10-P24) anaesthetized with isoflurane were
decapitated; their brain was rapidly removed from the skull and placed in ice-cold
artificial cerebrospinal fluid (ACSF). The ACSF solution consisted of (in mmol):
NaCl 124, KCl 3.50, NaH2PO4 1.25, NaHCO3 25, CaCl2 2.00, MgCl2 1.30, and
dextrose 10, pH 7.4. ACSF was aerated with 95% O2/5% CO2 gas mixture. Coronal
slices (400 mm) were cut using a tissue slicer (Leica VT 1200s, Leica Microsystem,
Wetzlar, Germany). Slices were transferred to a recording chamber continuously
superfused (12mlmin� 1) with ACSF (32 �C).

Labelling. Oregon Green 488 (OGB-1-AM, Molecular Probes) was bulk loaded
by following the procedure described in ref. 48. Briefly, a glass micropipette (tip
diameter 2 mm) filled with the dye (containing 1mM OGB-1-AM and between 50
and 300mM sulforhodamine SR101, to allow identification of neurons and glia,
was prepared as in ref. 48). It was introduced below the cover glass from the side
penetrating the cortex laterally and advanced towards the centre of the barrel,
300mm below the cortical surface. The dye was pressure-injected under two-
photon visual control at 3–10 PSI for 1–2min. After the dye was taken up, neurons
were labelled in a region of 300mm diameter, centred on the injection site.
In the in vitro application, the pipette was introduced into the slice up to
220–260mm in depth and the dye was pressure-loaded under visual observation of
green and red fluorescence overlay for 10min until the slice surface reached
staining levels yielding a fluorescence at least 40 times that of the green channel
baseline.

The labelling methods of the GCaMP5k, GCaMP6f and GCaMP6s experiments
in anaesthetized mice V1 can be found in ref. 13.

In the awake mouse experiments, V1 neurons were labelled by injecting
adenovirus GCaMP6f construct AAV1.Syn.GCaMP6f.WPRE.SV40 (Penn Vectore
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Core, Philadelphia, PA). The injecting glass micropipette (tip diameter B10mm)
was back filled with 0.5ml vector solution (B6� 1013 particle per ml) then
injected slowly (20 nl s� 1 for first 50 nl then 2 nl s� 1 for the remaining quantity)
into the cortex, at a depth of 400mm under the pia, into V1. A cranial window was
implanted 2 weeks after the injection over the injection site as described in Surgical
procedures section.

‘Two-photon imaging’ was performed using one of the two following setups:
(i) a fast 3D random access AOD-based two-photon laser scanning microscope
(Femto3D-AO, Femtonics Ltd., Budapest) described in ref. 11. A laser beam at
810 nm for OGB imaging and at 875 nm for GCaMP6f imaging was provided by a
Mai Tai eHP Laser (Spectra Physics). We used either a � 20 Olympus objective,
N.A. 0.95 or a � 16 Nikon objective, N.A. 0.8. (ii) A custom-built microscope
described in ref. 4. A laser beam at 800 nm was provided by a Mira laser (Coherent)
pumped by a Verdi 10W laser (Coherent). Scanning was performed with 6-mm-
large scanning mirrors mounted on galvanometers (Cambridge Technology).
Objectives: either a � 20 Olympus objective, N.A. 0.95 or a � 40 Zeiss objective,
N.A. 0.8. In both setups, fluorescent light was separated from excitation light using
custom-ordered dichroic filters and collected by a GaAsP photomultiplier (PMT)
for the green calcium fluorescence and a multi-alkali-PMT for the red
sulforhodamine fluorescence.

Stimulation. In the in vitro experiment, cells were stimulated using a
tungsten electrode placed in the stratum radiatum of CA1 400 mm away towards
the CA3 region from the imaged area. Ten stimulus pulses of 100mA amplitude
were applied at 1Hz with 50ms pulse width at using a stimulus isolator
(WPI A365).

In the anaesthetized rat experiments, activity was recorded in the absence of a
stimulus. For imaging and stimulation in anaesthetized mice, see ref. 13.

In the experiments performed on awake head-restrained mouse, a visual
stimulus was delivered during data acquisition, in form of drifting gratings (spatial
frequency: 0.25cyc/�, eight possible orientations). Those appeared after 2 s of dark
screen, drifted for 5 s at 1 cyc s� 1, stopped for 1 s, and were then replaced by the
dark screen. For details see ref. 11.

The stimulation delivered during the GCaMP5k, GCaMP6f and GCaMP6s
experiments in anaesthetized mice V1 can be found in ref. 13.

Electrophysiological recordings. After the preselection of neurons showing
activity based on the bolus-loaded OGB1-AM, cell-attached (in vivo) or patch
(in vitro) recordings were started on visually targeted neurons using borosilicate
microelectrodes (6.1–8.5MO) filled with ACSF containing 100 mM SR-101 (Life
Technologies) for optimal visualization (overshadowing the glial cells in the red
channel in Fig. 7a). When patching, the dye also served to check membrane
integrity. Electrical recordings were made (Multiclamp 700B, Digidata1440,
Molecular Devices) simultaneously with imaging. During in vitro recordings,
temperature was kept at 32 �C (Supertech In-Line Heater, Supertech).

Table 1 summarizes type, origin and amount of the recorded data.

Simple physiological model and reparametrization. Our model equations for
OGB1 use equations given in refs 24,32,49 and reparameterize them so as to
decrease the total number of parameters and use final parameters whose effects on
the final dynamics are more intuitive.

The model input is a spike train sðtÞ ¼ Pi dti ðtÞ, that is, a set of Dirac
functions placed at spike times ti distributed following a Poisson statistics of mean
rate l.

Free-calcium [Ca2þ ]i evolution and fluorescence F measure are described in
ref. 49 as

d½Ca2þ �i
dt

¼ 1

1þkS þ kB
ð� geð½Ca2þ �i � ½Ca2þ �restÞ þ D½Ca2þ �TSðtÞÞ; ð1Þ

F� F0 ¼ ðFmax ¼ F0Þ
½Ca2þ �i � ½Ca2þ �rest
½Ca2þ �i þKd

: ð2Þ

The different parameters are: [Ca2þ ]rest the free-calcium concentration at rest; and

kS and kB the calcium binding ratios, respectively, of endogenous calcium buffers
and of the dye, with kS being constant, and kB being dependent both on the dye
concentration and on [Ca2þ ]i itself. However, in order to limit the total number of
parameters, we simplify the model by ignoring the buffering capacity of the calcium
indicator that results in slowed transient decays32; this means that kB is assumed to
be constant. ge is the calcium extrusion rate; and [Ca2þ ]T the calcium intracellular
increase caused by one action potential (AP). F0 and Fmax the fluorescence levels at
rest and when the dye is saturated, respectively. Kd the dissociation constant of
the dye.

To reparameterize these equations, we first introduce a ‘normalized intracellular
calcium concentration’ (at rest c¼ 0, and upon the emission of one AP c¼ 1):

c ¼ Ca½ � � Ca½ �0
D Ca½ �T

; ð3Þ

and a decay time constant parameter:

t ¼ 1þ kS þkB

ge
: ð4Þ

The calcium evolution equation (1) now becomes

dc

dt
¼ � 1

t
cþ s: ð5Þ

Similarly, we introduce a transient amplitude A and a saturation parameters g:

g ¼ D½Ca�T
½Ca�0 þKd

A ¼ Fmax � F0
F0

g
: ð6Þ

Note that g is the inverse of the number of spikes for which the dye reaches half
saturation. We can now replace the measure equation (2) with

F ¼ F0 þ Fmax � F0ð Þ Ca½ � � Ca½ �0
Ca½ � � Ca½ �0ð Þþ Ca½ �0 þKdð Þ

¼ F0 þ Fmax � F0ð Þ c
cþ g� 1

¼ F0 1þA c
1þ gc

� �

: ð7Þ

We also introduce, instead of the fix baseline F0, a drifting baseline B(t). This yields
the model equations:

_cðtÞ ¼ sðtÞ� 1
t
cðtÞ

_BðtÞ ¼ Z dWðtÞ
_FðtÞ ¼ BðtÞ ð1þA cðtÞ

1þ gcðtÞÞ þ seðtÞ

8

>

<

>

:

ð8Þ

The ‘evolution noise’ dW(t) denotes a Brownian motion and the ‘measure noise’
e(t) is white.

A major advantage of the reparameterization is to reduce the total number of
parameters, which had redundant effects on the original model dynamics. Thus,
our OGB model now has only six parameters: A, the relative fluorescence increase
for one spike; t, the calcium decay time constant; g, a ‘saturation’ parameter; s, the
amplitude of the expected measure noise; Z the baseline drift amplitude; and l, the
rate of the Poisson spike train.

When g¼ 0, and Z¼ 0 (that is, B(t)¼ constant¼ F0), the model becomes linear
and equivalent to a simple convolution

FðtÞ ¼ F0ð1þ sðtÞ�A exp ð� t=tÞÞ þ seðtÞ: ð9Þ

Physiological models for GECI probes and reparameterization. In the case of
GECIs, three different models were assessed. These three models are compared in
Supplementary Fig. 8. The results displayed in Figs 5 and 6 use the first model,
slightly modified by introducing a fixed delay (20ms for GCaMP6s and 10ms for
GCaMP6f) between a spike and the (immediate) rise of the single exponential
transient.

The first and largest difference between genetically engineered and organic
calcium sensors is the supra-linear behaviour of the fluorescence response function

Table 1 | Data summary.

Indicator System (if not specified, in vivo

anaesthetized)

Setup Experiment location or

shared data

#cells Min #trials

per cell

Max #trials

per cell

Average trial

length

Average time

per cell

OGB Rat barrel cortex AOD CNRS, Marseille 13 4 75 25 s 9min

OGB Rat barrel cortex galv. Weizmann Institute 10 2 28 25 s 3.5min

OGB Mouse hippocampus, in vitro AOD CNRS, Marseille 1 10 10 25 s 4min

GCaMP5k Mouse visual cortex galv. refs 13, 15 9 1 1 193 s 3min

GCaMP6s Mouse visual cortex galv. refs 13, 15 9 1 4 216 s 8min

GCaMP6f Mouse visual cortex galv. refs 13, 15 11 1 6 222 s 13min

GCaMP6f Mouse visual cortex, awake AOD IEM, Budapest 2 3 4 9 s 30 s

‘AOD’ and ‘galv.’: data acquired with microscope using acousto-optic and galvanometric scanning, respectively. OGB, Oregon Green BAPTA-1-AM.
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to calcium. In the first model, we followed15, that is, fitted this function with a
cubic polynomial:

FðtÞ ¼ BðtÞð1þAðcþ p2 c2 � c
� �

þ p3 c3 � c
� �

Þ: ð10Þ
where A is the unitary fluorescence transient upon emission of a single spike (that
is, when c¼ c2¼ c3¼ 1). The Ca2þ and baseline evolution equations were kept
unchanged.

In the second and third model (see Supplementary Methods for details), the
supra-linear behaviour was modelled in a more physiological manner, by
considering a cooperative binding of Ca2þ to the sensor49 (this introduced the Hill
exponent parameter n, and the normalized Ca2þ concentration at rest c0, but the
latter could be set to zero for our data), as well as dye saturation. In the second
model, the measure function was thus replaced by

F tð Þ ¼ BðtÞð1þA
cn

1þ gcn
Þ: ð11Þ

To account for the finite rise time of GECIs, in the third model we also introduced
a rise time ton governing a non-immediate Ca2þ binding to the sensor. This
increased the state dimension to 3, as the evolution of the fraction of probe bound
to Ca2þ , was now uncoupled from Ca2þ evolution.

The slower rise time is due to a slower calcium binding to the indicator, and the
supralinear behaviour is due to the cooperative binding of more than one calcium
ions to one indicator protein49. The full kinetics of the binding process should be
taken into account then:

½Ca�n þ B½ �!
kon

 
koff

½CanB�; ð12Þ

d CanB½ �
dt ¼ kon Ca½ �n

0
B½ � � koff Ca

nB½ �
¼ kon Ca½ �n

0
B½ �T � CanB½ �
� �

� koff Ca
nB½ �

; ð13Þ

where [B] and [CanB] represent, respectively, the indicator free and bound to
calcium, and [B]T¼ [B] þ [CanB] is the total concentration of indicator; kon and
koff are the association and dissociation rates (note that Kd¼ koff / kon); n is the
number of binding sites per protein and n’ is the Hill parameter: the true dynamics
in (13) are best represented with a value of n’ that does not necessarily match n but
has to be determined empirically; however, for convenience, we will drop the ’ sign
in the following. Thus the evolution of calcium and bound indicator concentrations
must be dissociated in two distinct terms, while the fluorescence measure (2) is
replaced by

F� F0 ¼ Fmax � F0ð Þ Ca
nB½ � � CanB½ �0

B½ �T � CanB½ �0
: ð14Þ

These new equations introduce a significant number of new parameters. To keep
this number reasonable, we continue to ignore the buffering capacity of the calcium
indicator that results in slowed transient decays, that is, we keep kB constant in
equation (1), which can therefore still be rewritten as in equation (5); this is true in
particular if the buffering of the dye is small (kBoo(1þ kS)); if calcium buffering
by the dye is non-negligible, at least two additional parameter values would be
needed.

We introduce the following normalized concentration of bound calcium
indicator:

p ¼ 1

g

CanB½ � � CanB½ �0
B½ �T � CanB½ �0

; ð15Þ

where the saturation parameter g is updated as g ¼ konD½Ca�nT
kon ½Ca�n0 þ koff

. Similarly to c, p¼ 0

at rest and PE1 for one spike, however contrary to c, p is upper-bounded by 1
g
, its

saturation level.
We also introduce two new parameters:c0 ¼ Ca½ �0

D Ca½ �T is the normalized level of
baseline calcium concentration and ton ¼ 1

kon Ca½ �n0 þ koff
is the binding time constant

when calcium is at baseline.
We obtain

dp

dt
¼ 1

g B½ �T � CanB½ �0
� � kon Ca½ �n B½ �T � CanB½ �

� �

� koff Ca
nB½ �

� �

:

¼ kon Ca½ �n B½ �T � CanB½ �0
� �

� koff Ca
nB½ �0

g B½ �T � CanB½ �0
� � � kon Ca½ �n þ koffð Þ CanB½ � � CanB½ �0

� �

g B½ �T � CanB½ �0
� � :

¼ kon Ca½ �n � Ca½ �n0
� �

g
� kon Ca½ �n þ koffð Þp:

¼ konD Ca½ �nT c0þ cð Þn � cn0
� �

g
� kon Ca½ �n0 þ koff þ konD Ca½ �nT c0þ cð Þn � cn0

� �� �

p:

¼ 1

ton
c0 þ cð Þn � cn0

� �

� 1þ g c0þ cð Þn � cn0
� �� �

p:

¼ 1

ton
1þ g c0þ cð Þn � cn0

� �� � c0þ cð Þn � cn0
1þ g c0þ cð Þn � cn0ð Þ � p

� �

:

ð16Þ

(the step between the second and third lines used that, at rest, we have
kon½Ca�n0ð½B�T � ½CanB�0Þ� koff ½CanB�0 ¼ 0).

The evolution and measure equations altogether can be written as

dc
dt ¼ � 1

t
cþ s

dp
dt ¼ 1

ton
1þ g c0 þ cð Þn � cn0

� �� � c0 þ cð Þn � cn0
1þ g c0 þ cð Þn � cn0ð Þ � p

� �

dB
dt ¼ Z dW
F ¼ B 1þApð Þ

: ð17Þ

Note that they effectively reduce to equation (8) (that is, the second and fourth
lines in (17) reduce to equation (7)) when ton¼ 0 and n¼ 1.

Time discretization and probability details. The model is discretized at the
signal’s temporal resolution t (below, t will be used for discrete time indices rather
than continuous time). We will note the input as nt (number of spikes between
time t� 1 and t), the hidden state xt (¼ ct in the simplest model where baseline is
constant and known, ¼ (ct,Bt) when baseline fluctuates, ¼ (ct,pt,Bt) when a rise
time was introduced) and the measure yt :¼ Ft.

We detail here this discretization and the full derivations of probability
distributions p(xt|xt-1) and p(yt|xt) in the case of the simpler physiological model.
The model equations become:

ct ¼ e�
Dt
t ct� 1 þ nt

Bt ¼ Bt� 1 þ Zwt

Ft ¼ Btð1þA ct
1þ gct
Þþset

;

8

<

:

ð18Þ

Random variable nt follows an exponential law with parameter lDt:

pðntÞ ¼ e� lDt ðlDtÞnt
nt !

: ð19Þ

The other probability relations defined implicitly in the system (wt and et are
independent Gaussian variables with mean zero and variance one) are

pðxt jxt� 1Þ ¼ pðct j ct� 1ÞpðBt jBt� 1Þ ¼ e� lDt ðlDtÞnt
nt !

1
ffiffiffiffiffiffiffi

2ps2
p exp � ðBt � Bt� 1Þ2

2Z2

� �

pðyt jxtÞ ¼ 1
ffiffiffiffiffiffiffi

2ps2
p exp � Ft �Bt ð1þA ct

1þ gct
Þ

� �2

2s2

 !

8

>

>

<

>

>

:

:

ð20Þ

Note that the first line of the equation is a simplification for the more rigorous but
complicate formula

pðct j ct� 1Þ ¼ e� lDt ðlDtÞk
k !

if 9k 2 N; ct ¼ e�
Dt
t ct� 1 þ k; 0 otherwise: ð21Þ

The last probability needed to fully describe the model is p(x1)¼ p(c1)p(B1). It is
the a priori probability of the hidden state, in absence of any measurement. In
practice, we used a uniform distribution for both c1 and B1.

Regarding c1, indeed we found that when the true spiking rate was not known, a
uniform probability was better than a distribution determined mathematically
based on the value of a priori spiking rate, because if that value was not correct,
errors were increased. If the true spiking rate is known however, the following a
priori can be used: one can observe that c1 is a weighted sum of Poisson random
variables:

c1 ¼ n0 þ e�Dt=tn� 1 þ e� 2Dt=tn� 2 þ e� 3Dt=tn� 3 þ :::; ð22Þ

Its probability distribution can thus not only be computed exactly with iterative
convolutions but is also well-approximated with a truncated normal distribution:

pðc1Þ / N ðc1;
lDt

1� e�Dt=t
;

lDt

1� e� 2Dt=t
Þ; c140: ð23Þ

Spike extraction algorithm. Let T be the number of time instants. We determined
the best x¼ (x1,y,xT) that maximizes the posterior probability p(x1,y,
xT|y1,y,yT), and hence obtain the best spike train n¼ (n2,y,nT), by using a
dynamic programming algorithm, more precisely, a version of the Viterbi
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algorithm33. This approach relies on the following recursion of maximizations:

max
x1 ;:::;xT

pðx1; :::; xT j y1; ::::; yT Þ

¼ max
x1 ;:::;xT

pðx1; :::; xT ; y1; ::::; yTÞ
pðy1; ::::; yT Þ

¼ max
x1 ;:::;xT

pðx1; :::; xT j y1; ::::; yT Þ

¼ max
x1 ;:::;xT

pðx1Þpðx2; :::; xT ; y1; ::::; yT j x1Þ

¼ max
x1 ;:::;xT

pðx1Þpðy1jx1Þpðx2; :::; xT ; y2; ::::; yTjx1; y1Þ

¼ max
x1 ;:::;xT

pðx1Þpðy1jx1Þpðx2; :::; xT ; y2; ::::; yTjx1Þ½��

¼ max
x1

pðx1Þpðy1jx1Þ max
x2 ;:::xT

pðx2; :::; xT ; y2; ::::; yTjx1Þ

¼ max
x1

pðx1Þpðy1jx1Þmax
x2

pðx2jx1Þpðy2jx2Þ max
x3 ;:::;xT

pðx3; :::; xT ; y3; ::::; yTjx1; x2Þ

¼ max
x1

pðx1Þpðy1jx1Þmax
x2

pðx2jx1Þpðy2jx2Þ max
x3 ;:::;xT

pðx3; :::; xT ; y3; ::::; yTjx2Þ½��

¼ max
x1

pðx1Þpðy1jx1Þmax
x2

pðx2jx1Þpðy2jx2Þmax
xT

pðxTjxT � 1ÞpðyTjxTÞ;

ð24Þ

(steps marked with a star [�] use the fact that both yt and xt� 1 are independent
from (xtþ 1, ytþ 1,y, xT, yT) conditionally to xt).

In other words, we can iteratively estimate a conditional ‘best probability’ mt(xt):

mtðxtÞ ¼ max
xtþ 1 ;:::;xT

pðxtþ 1; :::; xT ; yt ; :::yT jxT Þ; ð25Þ

for decreasing values of t, starting with t¼T. For each value of xt, the chain
xtþ 1,y,xT is the ‘best trajectory’ starting from xt, as illustrated in Fig. 1b and the
Supplementary Movie 1. In the general case where drifts are estimated, mt(xt) is a
function defined over a 2D space (the set of all possible values for (ct,Bt)), and can
thus be easily encoded into a 2D array by using appropriate sampling values for
ctand Bt. This way of encoding probabilities is the basis of histogram filters (ref. 50).

At t¼T we have mT(xT)¼ p(yT|xT), and for every 1rtrT� 1:

mtðxtÞ ¼ max
xtþ 1 ;:::;xT

pðxtþ 1; :::; xT ; yt ; :::; yT jxtÞ

¼ pðyt jxtÞ max
xtþ 1 ;:::;xT

pðxtþ 1 jxtÞpðxtþ 2; ::::; xT ; ytþ 1; ::::; yT jxtþ 1Þ:

¼ pðyt jxtÞ max
xtþ 1

pðxtþ 1 jxtÞmtþ 1ðxtþ 1Þ

ð26Þ
This iterative calculation of the conditional probabilities mt(xt) is illustrated in
Fig. 1b (top and middle) and Supplementary Movie 1, in the simplified case where
the baseline is known and constant, so xt identifies with ct. Practically, for each
value of xt, we store in memory the conditional probability mt(xt), and the best
transition xt- xtþ 1 (the arrows in the second part of the Supplementary Movie).
But the full best trajectories xt,y., xT do not need to be stored: only a single
forward ‘collecting’ sweep is performed at the end to determine x̂t for increasing
values of t, starting from x̂1 ¼ arg max

x1

pðx1Þm1ðx1Þ (Fig. 1b, bottom row).

Implementing the discretization of the state space. To store in memory the
conditional probability mt(xt), the state space needs to be discretized. However,
when recursively computing mt(xt) (with xt on the discretization grid), the xtþ 1

that realizes maxxtþ 1 pðxtþ 1 j xtÞmtþ 1ðxtþ 1Þ will typically fall outside of the dis-
cretization grid. Approximating to a value on the grid could lead to important
estimation errors, unless the discretization grid is extremely dense, implying
unreasonable calculation times and memory usage. Rather, we allow arbitrary
values for xtþ 1, and interpolate to obtain the value of mtþ 1 xtþ 1ð Þ.

Besides, not all possible values for xtþ 1 need to be considered but only a few.
The maximization can be performed successively over different state variables,
thanks to the independence of Bt and ct evolutions:

maxxtþ 1
pðxtþ 1 j xtÞmtþ 1ðxtþ 1Þ

¼ maxBtþ 1
maxctþ 1

pðBtþ 1; ctþ 1 jBt ; ctÞmtþ 1ðctþ 1;Btþ 1Þ
¼ maxBtþ 1p Btþ 1 jBtð Þmaxctþ 1 p ctþ 1 j ctÞmtþ 1ðctþ 1;Btþ 1ð Þ:

ð27Þ

For maximization over calcium values, only discrete values of ctþ 1 corresponding
to 0, 1, 2 or 3 spikes (we set a limit to three spikes per time bin) are allowed since
evolution noise is absent:

maxctþ 1
pðctþ 1 j ctÞmtþ 1ðctþ 1Þ ¼ maxðp ntþ 1 ¼ 0ð Þmtþ 1ðe�

Dt
t ctÞ; p ntþ 1 ¼ 1ð Þmtþ 1ðe�

Dt
t ct þ 1Þ; . . . Þ;

ð28Þ

where all the mtþ 1ðe� Dt
t ct þ kÞ are obtained by interpolation: for all values of ct on

the grid, the vector of this quantity can then be interpolated from the vector of all
mtþ 1(ctþ 1) through a single matrix multiplication, the interpolation matrix being
precomputed before the recursion. With this respect, we found that a spline
interpolation resulted on average in less error than a linear interpolation when
coarsening the grid discretization to a point leading to estimation errors. It shall be

noted also that these interpolation (of mtþ 1ðe� Dt
t ctÞ, mtþ 1ðe� Dt

t ct þ 1Þ and so on,
with ct lying on the discretization grid) can be obtained by a simple matrix

multiplication (applied to the mtþ 1(ctþ 1) vector), and that the interpolation matrix
can be precomputed.

The maximization over baseline fluctuations is performed as follows: for each (Bt,ct)
on the discretization grid we need to find the Btþ 1that maximizes a certain function
fBt,ct(Btþ 1). First, the optimal value of Btþ 1 ‘lying on the discretization grid’ is
determined (and only a subset of the grid is considered, typically the five values
centered on Bt). Then a quadratic interpolation of f is computed using three local
values as interpolating points, and minimized analytically, in order to yield an optimal
value of Btþ 1 that does not have to lie on the grid. This quadratic interpolation is also
obtained by a matrix multiplication, with the matrix being precomputed.

In our more detailed physiological model used for GECIs, we have introduced
an additional state variable, pt, the normalized concentration of indicator bound to
calcium. It shall be noted that this variable follows a deterministic evolution,
therefore its introduction in equation (17) will only involve an additional
interpolation for determining values with pt on the discretization grid from values
with ptþ 1 on the discretization grid, rather than an additional maximization. More
specifically, we write

maxxtþ 1
pðxtþ 1jxtÞmtþ 1ðxtþ 1Þ

¼ maxBtþ 1
maxctþ 1

maxptþ 1
pðBtþ 1; ctþ 1; ptþ 1jBt ; ct ; ptÞmtþ 1ðBtþ 1; ctþ 1; ptþ 1Þ

¼ maxBtþ 1 p Btþ 1jBtð Þmax
ctþ 1

p ctþ 1jctÞmtþ 1ðBtþ 1; ctþ 1; ptþ 1ðct ; ptÞð Þ;

ð29Þ

where ptþ 1ðct ; ptÞ ¼ pt þDt 1
ton
ð1þ gððc0 þ ctÞn� cn0ÞÞð

ðc0 þ ct Þn � cn0
1þ gð c0 þ ctð Þn � cn0 Þ

� pÞ, that
is, ptþ 1 is a deterministic function of ct and pt.

During the final forward sweep, the estimated xt values are not restricted to lie
on the discretization grid either. To change them from xt to the next estimate xtþ 1

then, the number of spikes in the corresponding time bin is chosen based on the
closest point on the grid, while the optimal baseline change is obtained by
interpolating from the closest points on the grid.

Taken together, these techniques allow minimizing computation time by
keeping the discretization grid relatively coarse (typically, we use 100 calcium
values and 100 baseline values, but these number can in most cases be reduced to
30 without generating estimation errors), and by limiting the maximization search
to a small number of tested values.

Returning spike probabilities or samples instead of a unique MAP spike train.
The algorithm can be modified to return spike probabilities in each time bin
instead of a unique spike train, or a set of spike trains sampled according to the
posterior probability.

To return ‘spike probabilities’, we compute p(xt|y1,y.,yt) and p(yt,yyT|xt)
instead of mtðxtÞ ¼ max

xtþ 1 ;::::;xT
pðxtþ 1; ::::; xT ; yT ; :::; yT jxT Þ, iteratively as

p xt j y1; . . . ; ytð Þ a p xt ; yt j y1; . . . ; yt� 1ð Þ
¼ p yt j xtð Þ

Z

dxt� 1p xt j xt� 1ð Þp xt� 1 j y1; . . . ; yt� 1ð Þ

ð30Þ
and

p yt ; . . . ; yT jxtð Þ ¼ p yt jxtð Þ
Z

dxtþ 1p xtþ 1 jxtð Þp ytþ 1; . . . ; yT jxtþ 1ð Þ ð31Þ

The expected number of spikes at time t is then obtained as

E ntð Þ ¼
ZZ

dxt� 1dxtntp xt� 1jy1; . . . ; yt� 1ð Þp xt jxt� 1ð Þp xt jyt ; . . . ; yTð Þ

¼
RR

dxt� 1dxtntp xt� 1jy1; . . . ; yt� 1ð Þp xt jxt� 1ð Þp yt ; . . . ; yT jxtð Þ
RR

dxt� 1dxtp xt� 1jy1; . . . ; yt� 1ð Þp xt jxt� 1ð Þp yt ; . . . ; yT jxtð Þ

ð32Þ

To return ‘sample spike trains’ (and in fact, samples of the full calcium and
baseline fluorescence dynamics) sampled according to the posterior distribution
p(x|y), we first compute p(yt,y,yT|xt) iteratively as above.

Then arbitrary number of spike trains can be generated: they are initiated by
drawing x1 according to

p x1jy1; . . . ; yTð Þ a p x1; y1; . . . ; yTð Þ ¼ p x1ð Þp y1; . . . ; yT jx1ð Þ; ð33Þ
and iteratively drawing xt according to

p xt j xt� 1; y1; . . . ; yTð Þ a p xt ; y1; . . . ; yT j xt� 1ð Þ
¼ p xt jxt� 1ð Þpðyt ; . . . ; yT jxtÞ:

ð34Þ

As for earlier MAP estimations, it is noteworthy that the abovementioned probability
updates for one step in time can be decomposed into two sub-computations.
For example, we have

pðytþ 1; . . . ; yT jBt ; ctÞ ¼
Z

dBtþ 1pðBtþ 1jBtÞpðytþ 1; . . . ; yT jBtþ 1; ctÞ

¼
Z

dBtþ 1pðBtþ 1 jBtÞ
Z

dctþ 1p ctþ 1 j ctð Þpðytþ 1; . . . ; yT jBtþ 1; ctþ 1Þ
ð35Þ

Two successive computations appear indeed. The first of them is actually a discrete

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12190 ARTICLE

NATURE COMMUNICATIONS | 7:12190 | DOI: 10.1038/ncomms12190 | www.nature.com/naturecommunications 13

http://www.nature.com/naturecommunications


sum:

p ytþ 1; . . . ; yT jBtþ 1; ctð Þ ¼
Z

dctþ 1p ctþ 1 j ctð Þp ytþ 1; . . . ; yT jBtþ 1; ctþ 1ð Þ

¼
X

ntþ 1�0
pðntþ 1Þp ytþ 1; . . . ; yT jBtþ 1; e

� Dt
t ct þ ntþ 1

� �

ð36Þ
As earlier, this sum, which itself involves interpolations of
p ytþ 1; . . . ; yT jBtþ 1; ctþ 1ð Þ, can all be obtained by a single matrix multiplication
(the inner variable being ctþ 1), and the matrix can be precomputed.

The second computations is a continuous sum:

pðytþ 1; . . . ; yT jBt ; ctÞ ¼
Z

dBtþ 1pðBtþ 1jBtÞpðytþ 1; . . . ; yTjBtþ 1; ctÞ: ð37Þ

This sum can also be obtained by a single matrix multiplication applied to
pðytþ 1; . . . ; yT jBtþ 1; ctÞ (the inner variable being this time Btþ 1).

Autocalibration algorithm. Accurate estimations require accurately setting the six
model parameters (for details on how each of them influences estimation quality,
see Supplementary Methods). It would be tempting to estimate both the spike train
and the parameters altogether by maximizing the likelihood. However, proceeding
in this way not only proved to be computationally expensive but—more
important—also led to less accurate spike train estimates than a more heuristic
approach to estimate parameters A, t and s (see the dedicated paragraph in
Discussion).

Autocalibration of s. Parameter s was estimated by computing the RMS of the
fluorescence signals filtered between 3 and 20Hz, and multiplying this quantity by
a corrective factor. Indeed, our model considers fluorescence signals as the sum of
calcium-related signals (possibly modulated by the baseline drifts) and of a white
noise with s.d. s.

It is possible to consider that the calcium-related part of the signals contributes
significantly less to the high-frequency content of the signals (for example, above
3Hz, see Fig. 3d) than the noise, so it appears justified to calculate the s.d. over
high-pass filtered signals, and afterwards multiply it by a corrective term. The
highest frequencies were also eliminated in this calculation, because the noise
present in our data is actually not purely white (see the spectra in Fig. 5a), implying
that it might not be accurate to use signal power calculated in the highest
frequencies to estimate the noise level expected in the crucial band B1Hz.

The corrective factor was determined such that when the method is applied to a
white noise signal, the estimated s value corresponds to its true standard deviation.
However, at low SNR, estimating s to this ‘correct’ value can lead to an excessive
number of misses, the algorithm ‘not trusting the data enough to assign spikes’.
Therefore for the OGB and GCaMP6f data set, we slightly biased this factor
(multiplying it by 0.7), to force s to be underestimated. This resulted in a more
equilibrated number of misses and false detections.

Autocalibration of A and t. As shown in Fig. 4a (see also Supplementary Fig. 5),
the autocalibration of A takes advantage of the discrete nature of spikes, namely
that calcium transient amplitudes can take only a fix set of values depending on
whether they are caused by 1, 2, 3 and so on spikes. Noise obviously increases the
variability, but it is possible to obtain histograms of transient amplitudes that show
several peaks corresponding to different numbers of spikes.

Parameters A and t are estimated together according to the steps detailed below
(see also Supplementary Fig. 5a).

First, the spike estimation algorithm is modified such that the estimated input
s(t) is not any more a spike train with unitary events, but a set of ‘calcium events’ of
arbitrary amplitudes (although a minimal amplitude of Amin is imposed, for
example, ¼ 4% for OGB).

This is achieved by modifying equation (19) as follows:

pðct j ct� 1Þ /
1

lDt
0

2

4

if ct ¼ e�
Dt
t ct� 1

if ct � e
Dt
t ct� 1 þAmin=A

otherwise

: ð38Þ

For this estimation, we use A¼ 10%, t¼ 0.8s. s is autocalibrated as explained in
the previous section. Standard, experience-inspired default values are used for the
nonlinearity parameters, drift parameter and ‘calcium event rate’ l.

Next, the amplitude of single spike transients is best estimated from isolated
calcium transients of moderate amplitude. Therefore calcium events that are either
too close (o1 s) to another event, or of amplitude F/F 425% are excluded. The
predicted calcium signals for those excluded events are then subtracted from the
original signal, yielding modified calcium signals containing only the ‘good’ events.
Individual event amplitudes and the value of t are then re-estimated so as to
maximize the fit to these new signals.

At this point, a histogram of all event amplitudes is constructed (Supplementary
Fig. 5a). It is first smoothed, yielding x1. Thereafter, peaks are enhanced by dividing
x1 by a low-passed version of itself, x2. A cost function x3 is then defined as
x3(A)¼ x2(A)þ x2(2A)/2 over a bounded range [Amin¼ 4%, Amax¼ 10%]
(note that ‘x2(2A)’ is a simplified view: in general 2A is replaced by the actual
amplitude of a two-spikes transient taking into account nonlinearities). A first
estimate of A is chosen as the value that maximizes x3 (the green star in

Supplementary Fig. 5a). This estimate is used to assign a number of spikes to each
individual event (black separation lines and printed spikes numbers): the
separations between k and kþ 1 spikes are set at (kþ 0.3)*A.

Finally, a standard calibration routine is used to estimate final values of A and t
by maximizing the fit to the modified calcium signals.

Spike estimation results based on autocalibration values of s, A and t are shown
for the same data set in Supplementary Fig. 5b.

Naturally, some of the parameter values given above for OGB (for example,
Amin and Amax) had other values for GCaMP6s and for GCaMP6f due to different
dynamic ranges for A and t. As a final note, several parts of the autocalibration
algorithm being based on somewhat intuitive heuristics, large room for
ameliorations is expected, notably through a more rigorous formulation.

Other parameters (currently not autocalibrated). Rise time ton should be easy to
autocalibrate in many different situations, since spikes can be reliably detected first
without a rise time, and then be used to autocalibrate ton.

We did not need to autoestimate the baseline drift parameter Z, as our
optimized estimations (Fig. 5b) showed that the optimal value for Z varied only
little between different sessions and cells. We thus assigned Z a fixed value. A priori
expected spike rate l and noise level s are linked in their effect on the estimations,
as illustrated at the beginning of this section. Because of their redundancy, we could
fix l to 0.1 (and autocalibrate s).

Nonlinear parameters (that is, saturation g, Hill exponent n or polynomial
coefficient p2 and p3) appear more difficult to estimate from calcium signals alone,
as they mostly modulate calcium during periods of high spiking rates, where it is
more difficult to distinguish the responses to individual spikes. We thus expect
autoestimation to be successful only at very high SNR. Otherwise, using a fixed
value is preferable: we used the average over all neurons that were calibrated with
simultaneous patch recordings (g¼ 0.1 for OGB, [p2,p3]¼ [0.73, � 0.05] and [0.55,
0.03] respectively for GCaMP6s and GCaMP6f).

Details on simulations and real data estimations. A summary of details on
simulations and estimations shown in this study, such as parameter values, settings
and so on, is provided in our Supplementary Table 1.

Simulations. Simulated spike trains generally consisted in Poissonian trains
(Figs 2a,b and 3a–c, and Supplementary Figs 1–4). However, in the ‘autocalibra-
tion’ simulations (Fig. 4b,c), more realistic trains were generated, which could
include spike bursts: bursty events were generated at a fixed rate, then a number of
spikes was randomly assigned to each event according to an exponential dis-
tribution (average 1 spike per event, some events had 0 spikes), finally inter-spike
intervals within these events were drawn from a Gaussian distribution with 10ms
mean.

For all simulations except for those used to test the autocalibration, the true
parameter values for A, t and g were given to the algorithm, while other parameters
were optimized separately for each different condition so as to minimize ER: s and
Z in the case of MLspike, and parameters playing equivalent roles for the Peeling
(see the dedicated section below). Also, in the case of ‘no drift’ simulations, the
constant baseline value was either provided to the algorithm (Supplementary
Fig. 2), or not (Fig. 2 and Supplementary Fig. 1). In the latter case, this constant
value had to be estimated, which is one of MLspike’s capabilities, but not of Peeling.

Real data. When running ‘optimized’ MLspike’s estimations, physiological para-
meters (A, t and if applicable g, n, p2, p3, ton) were calibrated using the simulta-
neous electrical recordings (that is, were optimized such as to best predict the
calcium signals from the recorded spikes). Other parameters (s and Z) were
optimized such as to best estimate spikes from the recorded calcium signals (for
some OGB neurons recorded with the AOD system, different recording settings
had been used in different acquisitions: in such cases these other parameters—but
not the physiological ones—were optimized separately for each setting).

In ‘autocalibration’ MLspike estimations, parameters A, t and s were
estimated from the data themselves (for the multi-session neurons mentioned
previously, all trials were pooled together for the estimation of A and t, while s
was estimated for each session independently). Other parameters were assigned
some fixed values: the physiological parameter(s) (if applicable g, n, p2, p3, ton)
were assigned average calibrated values (see table in Supplementary Fig. 6a), and
the value of drift parameter Z was found heuristically (autocalibration was not
performed for GCaMP5k and the two awake GCaMP6f cells because of lacking
single-spike resolution).

We also compared MLspike ‘autocalibration’ estimations with estimations with
all parameters fixed to the average calibration values obtained from our data
(Fig. 5d): physiological parameter(s) were assigned the average calibrated value (see
table in Supplementary Fig. 6a), and parameters s and Z were found heuristically.

Finally, in the case of OGB, we also performed the estimations using fixed
parameter values from ref. 10 (Fig. 5d, left). This study reports calcium transients
best being fitted by the sum of two exponentials, one with a fast, the second with a
slower decay constant (A1¼ 7.7%, t1¼ 56ms, A2¼ 3.1%, t2¼ 777ms). Peeling has
the ability to model transients with two such exponentials but does not model dye
saturation effect (see also next section). MLspike, which currently assumes a single-
exponential model, was used with the parameters for a single exponential that best
fitted the sum of the two abovementioned ones (A¼ 6.27%, t¼ 366ms) and no
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saturation, for a fair comparison with Peeling. Despite these approximations
MLspike performed better than Peeling (average ER of 29.2% (Fig. 5d, left, ‘fixed
(liter.)’) compared with 35.8% (Fig. 6b, two leftmost graphs, ‘Peeling’). When
Peeling was run using the same approximation with a single exponential rather
than two it performed even worse (38.2%—not shown).

Other algorithms tested. Peeling algorithm. The Peeling algorithm10, similarly to
MLspike, returns a unique estimated spike trains that accounts for the recorded
fluorescence signal. It requires a certain number of physiological and algorithmic
parameters to be set.

Regarding algorithmic parameters, preliminary testing of the algorithm on
simulated and real data allowed us to determine which parameters could be kept
fixed to their default value, and which are needed to be tuned depending on the
quality of the data. We found three such parameters: the first one, noiseSD controls
the expected level of noise, by scaling the values of two other parameters:
schmittlow¼ 1.75*noiseSD and schmitthigh¼ � noiseSD; note that in the
simulations for Supplementary Fig. 2 these two parameters were optimized
independently. Two other parameters, slidwinsiz and maxbaseslope, had to be
tuned according to the level of baseline drifts in the signals. In all simulations these
parameters were optimized independently for each conditions (Supplementary
Figs 2 and 4), while on real data they were assigned fixed values found heuristically.

Regarding physiological parameters, all comparisons on simulated data
involving Peeling were performed with known values of parameters A and t, and
assumed linearity of the indicator. Peeling has an option for performing nonlinear
estimations that account for dye saturation; however, this option resulted in poor
baseline drift estimations, even after we edited and improved the code, therefore all
Peeling estimations even on real data were rather performed using the linear
model. On our OGB data set, we used the ability of Peeling to model calcium
transients with two exponentials; values from ref. 10 were used (A1¼ 7.7%,
t1¼ 56ms, A2¼ 3.1%, t2¼ 777ms), and this resulted in slightly better estimation
accuracies than with only one exponentials (average ER 35.8% compared with
38.2%, see the section above). In the case of GECIs estimations, using Peeling with
our average calibrated values for parameters A and t led to underestimating the
amplitude of calcium responses to bursts of spikes, since Peeling does not model
the dye supralinearity (by doing so we obtained an average ER of 36.7%, not
shown). Rather, we increased A by replacing it by half of the response to two spikes:
in that way, responses to one spike were slightly overestimated while responses to
bursts of more than two spikes were still underestimated (this led to
oER4¼ 32.1%, as shown in Fig. 6b).

Finally, to take into account the finite risetime in the case of GEGIs, for the
precise temporal quantifications in Fig. 6, we applied the same correction to Peeling
as to MLspike (see Methods section ‘Model’) and SMC (see below). That is, we
assumed a fixed delay (20ms for GCaMP6s and 10ms for GCaMP6f) between a
spike and the (immediate) rise of its single exponential fluorescence transient (that
is, estimated spike times were moved backward by this delay).

Sequential Monte-Carlo, Constrained Deconvolution and Markov Chain Monte
Carlo. We compared our real data estimations also to three algorithms published
by the Paninsky group24,26,27. These algorithms have in common that they estimate
model parameters directly from the data, either in a direct or iterative fashion, thus
requiring no or little parameter tuning. They all return an estimated spiking rate
(or spiking probability; up to a scaling factor in the case of CD) at each time point
of the original fluorescence signal, but the MCMC algorithm does this by
generating a number of spike trains theoretically sampled from the posterior
distribution that can be directly used, for example, for error quantification. Their
underlying dynamic models are simpler than the one used for MLspike, as they do
not include dye saturation for CD and MCMC (SMC does include it), and, more
importantly, do not include baseline fluorescence fluctuations (SMC includes noise
in the calcium evolution that can account for part but unfortunately not all of
spike-unrelated fluctuations in the signals). The CD algorithm thus relies on the
same model as MCMC, but it also entails simplifications that greatly increase
computation speed at the expenses of accuracy27; in fact MCMC estimations are
initialized with the result of CD estimations similarly, SMC estimations are
initialized with the result of the ‘fast_oopsi’ algorithm25.

On our data sets, we observed that the lack of baseline fluctuations in the
models could lead to important errors, for example with large inaccurate spiking
activity being estimated where the baseline was higher. We therefore improved the
estimations by detrending the signals before applying the algorithms: this increased
estimation accuracies of the three algorithm; we also tried high-pass filtering the
signals (having noticed that signals are high-pass filtered in ref. 24), but this proved
less efficient than detrending. We further improved the accuracy of MCMC by
imposing minimal values for parameter A (the same as for our own autocalibration
algorithm, that is, OGB and GCaMP6s: 4% DF/F; GCaMP6f: 2.5%), as this
prevented the algorithm to fit baseline drifts with transients of small amplitudes.
Similarly to MLspike and Peeling, in the case of GECIs, we corrected SMC
estimations with a fixed delay of 20 and 10ms (for GCaMP6s and GCaMP6f,
respectively). MCMC did not require such a correction because its estimations were
run with an autoregressive model of order 2, which takes into account the finite
rise time.

A specific advantage of our MLspike implementation is that autocalibration can
be performed globally on many trials recorded from the same neuron. Although
there is no conceptual that would prevent doing the same for SMC, CD and

MCMC, the publicly available code does not do it. We therefore improved the code
of CD and MCMC so as to estimate, for example, for MCMC, spikes from n41
trials from the same neurons, a single value for transient amplitude and time
constant(s) parameters, and n (one per trial) values for the baseline fluorescence
and initial calcium concentration. This in fact improved overall estimation
accuracy only very slightly, with improvements for some neurons but
deteriorations for others: probably in the latter case neurons mismatcheing with the
model (for example, baseline fluctuations) in some trials were misleading the global
parameter estimation, therefore decreasing estimation accuracy in other trials.

If, as opposed to Peeling, we did not need to set parameters for the estimations,
we did change a few default algorithmic parameters to increase the robustness of
estimations (at the expense of speed). Namely, the number of EM iterations for
SMC was increased to 6; numbers of burn-in and used samples for MCMC were
both increased to 400 (for example, 800 sample spike trains were generated, and
only the last 400 were kept). Finally, because of their probabilistic nature the SMC
and MCMC algorithms yield slightly different results when being repeated on the
same data; to ensure repeatability; we thus reinitialized the random number
generator previously to each estimation.

Quantification of estimation accuracy. Error rate. Once spike trains have been
estimated, they need to be compared with the real simulated or electrically recorded
spikes. We used the F1-score to define an ER, defined as the harmonic mean
between sensitivity and precision51:

sensitivity ¼ detected spikes

total spikes
¼ 1

misses

total spikes

precision ¼ detected spikes

total detections
¼ 1

falsed etections

total detections

ER ¼ 1� F1score ¼ 1� 2
sensitivity�precision
sensitivityþ precision

:

ð39Þ

We consider a given spike detection correct when it matches a real spike with a
temporal precision better than 0.5 s (smaller upper bounds for the acceptable
temporal precision were also tested, see Fig. 6b–d). The estimated and real spikes
were matched by computing distances using a simple metric over spike trains52

that assigns costs to spike insertions, deletions and shifts, and is calculated using a
dynamic programming algorithm.

When quantifying the error for estimations in several trials from the same
neurons, we counted together all the true/detected/missed/falsely detected spikes
from different trials, in order to yield one single sensitivity, precision and ER value
for this neuron (the alternative of computing one ER value per trial and averaging
over trials yielded very similar results).

ER could be computed not only on the estimates returned by MLspike and
Peeling, which both output a single spike train, but also of MCMC. This was done
by counting together all the true/detected/missed/falsely detected spikes from all
the sampled spike trains generated by the algorithm. This resulted in an average
ER, noted oER4, that reflected the average accuracy over this distribution of
spike trains.

Correlation. To compare estimation accuracies to algorithms estimating spiking
probabilities, we used correlation between the vectors of real spike counts after
binning to 40ms (or other if specified), and the estimated instantaneous spiking
rates. These instantaneous spiking rates were either directly provided by the
algorithm (MCMC, CD and SMC) or obtained by low-pass filtering estimated spike
counts (MLspike and Peeling) with a kernel of 100ms.

Quantification of the noise level. Noise level. We quantified the noise level in the
real data by taking the RMS of the difference between the measured fluorescence
signals and those predicted by the electrically recorded spikes (using the calibrated
parameter values). Before computing this RMS however, the signals were filtered
between 0.1 and 3Hz (in Supplementary Fig. 8d,e, we also show the result of other
filterings, more optimal for specific probes). Then, this RMS was normalized by a
quantification of the signal amplitude. In the case of the simulations or of the OGB
data, using parameter A for this quantification led to satisfying properties of the
noise level. However in the case of GECIs, noise levels calculated that way could
become very high due to weak responses to single spikes (while, at the same time,
leading to underestimating the strong responses to bursts). We therefore preferred
normalizing by ‘A’, the ‘average response to one spike’, defined as half of the
response to two spikes in the case of OGB, GCaMP6s and GCaMP6f, and 1/15 of
the response to 15 spikes in the case of GCaMP5k. Note that A’rA in the case of
OGB due to saturation, and A’ZA in the case of GECIs due to supralinearity.

Calibration of the PMTs in order to estimate the photonic contribution to the
noise. In addition to the ‘noise level’, we also display full spectra of the noise
(normalized by A’) next to example signals and estimations. It was even possible to
determine which part of this noise corresponded to photonic noise by an
independent calibration of the PMTs, where we measured photonic noise
corresponding to different signal levels and at different PMT voltages.

Indeed, the variance of the photonic noise is proportional to the number of
photons collected by the PMT: if s is a signal whose noise is purely photonic, we
note as N the corresponding average number of photons collected per time bin and
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a the gain of the PMT:

os4 ¼ aN;

oðs�os4Þ24 ¼ a2N:
ð40Þ

Therefore the gain can be estimated as a ¼oðs�os4Þ24=os4.
However, this is true only when the variance in the signal is only due to

photonic noise. Even when imaging steady signals from fluorescent beads, we
cannot estimate a in this manner because their signals will always contain system
noise as well, which is non-negligible compared with photonic noise.

Fortunately, system noise becomes negligible compared with photonic noise at
high frequencies, for example, above 200Hz. Thus, we imaged beads at high frame
rate (for example, fs¼ 1 kHz; we note sb the obtained signals). Then we high-pass

filtered these signals above fc¼ 200Hz (we note the result s
fc
b ). The variance of s

fc
b is

now due purely to photonic noise, which we note: RMS2ðsfcb Þ ¼ RMS2pðs
fc
b Þ. To

relate this variance to the total photonic noise of original signal sb, we use the fact
that the photonic noise is a white noise, and therefore has a flat spectrum
homogeneously distributed between 0 and fs/2. Therefore, we have

RMS2pðsbÞ ¼
fs=2

fs=2� fc
RMS2pðs

fc
b Þ; ð41Þ

and the PMT gain could then be estimated as

a ¼
RMS2pðsbÞ
osb4

: ð42Þ

Then for any new signal s acquired at the same PMT voltage at a given frame rate f,
the contribution of photonic noise to the total noise RMS is RMS2p ¼ aos4, and

using the same argument as above of the flat spectrum of the photonic noise, its
contribution inside a specific frequency band [f1 f2] is

RMSpð½f1 f2�Þ2ðsÞ ¼ f2 � f1
f =2 aos4:

Data availability. The GCaMP5 and GCaMP6 data used in this work are available
at http://crcns.org/. All other data are available from the authors upon request.
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