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ABSTRACT State-of-charge (SoC) estimation is indispensable for battery management systems (BMSs).

Accurate SoC estimation can improve the efficiency of battery utilization, especially for electric

vehicles (EVs). Several kinds of battery SoC estimation approaches have been developed, but a simple and

efficient method for battery SoC estimation that can adapt to a variety of lithium-ion batteries is worth

exploring. To this end, a recurrent neural network (RNN) model based on a gated recurrent unit (GRU) is

presented for battery SoC estimation. The GRU-RNN model can rapidly learn its own parameters by means

of an ensemble optimization method based on the Nadam and AdaMax optimizers. The Nadam optimizer

is used in the model pre-training phase to find the minimum optimized value as soon as possible, and then

the AdaMax optimizer is used in the model fine-tuning phase to further determine the model parameters.

To validate the effectiveness and robustness of the proposed method, the GRU-RNN model was trained and

tested with three kinds of dynamic loading profiles and compared with existing SoC estimation methods.

The experimental results show that the proposed method dramatically reduces the model training time and

increases estimation accuracy.

INDEX TERMS Lithium-ion batteries, state of charge, gated recurrent unit, ensemble optimizer.

I. INTRODUCTION

The boom in electric vehicles (EVs) has motivated the study

of battery management systems (BMSs). An efficient BMS is

able to guarantee battery safety, and extend the battery’s ser-

vice life. As a key battery parameter, the state of charge (SoC)

directly represents the remaining electrical energy of battery.

Accurate SoC estimation is essential for a BMS to predict the

remaining useful life (RUL) of a battery, and overcharging

and over-discharging of the battery can also be avoided based

on accurate SoC estimation. Thus, the role and importance

of the SoC in BMS have led to extensive research and the

emergence of various studies on battery SoC estimation [1].

A. REVIEW OF ESTIMATION APPROACHES

The traditional methods of battery SoC estimation mainly

include the Coulomb counting method, the open-circuit
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voltage (OCV) method, and the electrochemical impedance

spectroscopy (EIS) method [2]–[4]. These methods do not

require the establishment of a battery model. So they are

referred to as non-model-based or open-loop approaches.

With such methods, estimation errors on the battery SoC

caused by external disturbances such as variations in bat-

tery temperature or ambient noise, cannot be adaptively

decreased.

The equivalent circuit model (ECM) utilizes resistors and

capacitors (RCs) to simulate the electrical characteristics of a

battery. Such model-based approaches include the first-order

RC models, the second-order RC models, and the higher-

order models [5]. As the model order increases, the computa-

tional complexity also significantly increases, which hinders

the practical application of the higher-order models. The

ECM approach only considers the electronic behaviors of

a battery, it does not account for the internal characteris-

tics of the battery, meaning that it cannot yield a complete
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description of the battery. As an alternative to the ECM

approach, an electrochemical model inherently describes the

electrochemical reactions inside a battery in the form of

partial differential equations [6], however, its extreme com-

plexity prevents implementation on target microcontrollers.

Observer-based approaches provide another class of effec-

tive methods for battery SoC estimation. The well-known

sliding mode observer technique, if combined with an adap-

tive switching model, can be used to improve the accuracy

of battery SoC estimation [7]. Aiming at high accuracy,

a method of SoC estimation based on a nonlinear fractional

model has been proposed, and good performance has been

achieved with a Luenberger-type observer [8]. Based on the

linear ECM approach, a SoC estimation method using an

H∞ switched observer has been presented that guarantees

robustness against inaccuracies in the initial state and dis-

turbances [9]. Thus, observer-based methods offer enhanced

robustness and accuracy in the face of model uncertainty and

disturbances. However, parameter tuning and the Lyapunov

stability proof are obstacles that need to be overcome in

observer design.

Because of their high accuracy and fast convergence, fil-

tering techniques, such as extended Kalman filter (EKF),

unscented Kalman filter (UKF), Particle filter (PF), are

widely used for battery SoC estimation [10]–[12]. However,

a filter-based approach requires accurate knowledge of the

battery model parameters and the covariance matrix of the

measurement noise. It is difficult to obtain accurate model

parameters in practical applications, because of the time-

varying characteristics of lithium-ion batteries, and also

because the errors do not correspond to white noise.

Data-driven andmachine learningmethods are also applied

for SoC estimation. Using a moving window method with

limited initial training samples, a battery SoC estimation

approach based on the least-squares support vector machine

(LS-SVM) has been proposed [13]. Methods based on neu-

ral networks (NNs) can be used to accurately estimate the

SoC, but they require considerable time for model training

[14]–[15]. In particular, for a deep feedforward NN

(DF-NN) [14], the training time can reach 40 h when

implemented on a graphics processing unit (GPU). A novel

machine learning method using an RNN model with long

short-term memory (LSTM) can perform accurate SoC esti-

mation, but model training takes up 9 h to complete when

using the Adam optimizer [21] implemented on a GPU [16].

For these methods, the demand for large number of data

samples and the time-consuming model training are the main

difficulties.

The approaches mentioned above can be roughly clas-

sified into three categories: traditional estimation methods

[2]–[7], control-theory-based methods [8]–[12], and data-

driven methods [13]–[16]. Methods in the first class are the

simplest and easiest to implement in embedded devices, but

they suffer from the effects of ambient temperature varia-

tions, inaccuracies in the initial value of the battery SoC, and

long-duration of terminal voltage measurements. Methods in

the second class can achieve highly precise and adaptive SoC

estimation. However, whether EKF or PF is chosen for SoC

estimation, inevitable difficulties arise in regard to parameter

identification, battery modeling, and the complex proof of

stability. This third class ofmethods represents a new research

direction for battery SoC estimation, which requires many

data samples and time-consuming model training. Although

the estimation performance is gradually improving with the

recent explosive developments in machine learning, more

progress can still be made. However, the particular charac-

teristics of the battery SoC estimation task present certain

challenges.

The SoC of a battery cannot be measured directly, it can

only be obtained through estimation methods, and the com-

plex electrochemical reactions occurring in the battery and

its strongly nonlinear characteristics increase the difficulty

of SoC estimation. Moreover, the battery performance is

also affected by variations in the ambient temperature, which

result in changes to the battery’s internal resistance, in turn

making it difficult to estimate the battery SoC. These internal

characteristics and external influencing factors pose major

challenges in SoC estimation. Furthermore, the rapid devel-

opment of EVs has motivated new developments in power

batteries. If the battery SoC is still to be estimated based

on battery models, then battery modeling work will continue

to be necessary for various new batteries, and a significant

amount of time will be required to calibrate the model param-

eters. Therefore, developing a simple and efficient SoC esti-

mationmethod that can adapt to a variety of different batteries

is a very meaningful and challenging task.

B. CONTRIBUTIONS AND ORGANIZATION

To conquer such challenges, a GRU-RNN model optimized

via an ensemble optimization method is proposed for the

SoC estimation of lithium-ion batteries. The specific research

contributions made in this paper are as follows.

1) A new predictionmethod is proposed, in which the prob-

lem of SoC estimation is converted into a sequence prediction

problem based on GRU-RNN model. After being trained on

dynamic driving cycle data, the GRU-RNN model can work

efficiently without any dependence on a battery model, com-

plex mathematical calculations, or Lyapunov stability proof.

Experimental results show that this approach is quite robust

and highly precise.

2) A new optimization method called ensemble optimiza-

tion algorithm is proposed, which uses the Nadam [24]

and AdaMax [21] algorithm as backpropagation optimiza-

tion algorithms to achieve parameter self-learning for the

GRU-RNN model. Not only can the model training be com-

pleted rapidly and stably with this ensemble optimizer, but

the training time can also be reduced.

The remainder of this paper is organized as follows.

Section 2 introduces the modeling approach. The ensemble

optimizer is introduced in Section 3. The SoC estimation

results and analysis are presented in Section 4. Section 5

serves as a conclusion.
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II. MODELING AND METHODS

A. PROBLEM FORMULATION

Normally, the SoC of a battery is defined as the ratio of

the battery’s remaining capacity to its nominal capacity. The

formula is as follows:

SoC(t) = SoC(t0)−
1

Cn

∫ t

t0

ηcI (τ )dτ (1)

where SoC(t) is the value at time t , SoC(t0) is the initial

value at time t0, Cn is the battery’s nominal capacity, ηc is

the Columbic efficiency, and I is the battery current.

Based on the above formula, the SoC varies continuously

with time. Thus, the SoC estimation of the battery can be

treated as a time-series prediction problem. Then, the focus is

placed on providing input series to the appropriate model to

ensure accurate output series. Generally, current, voltage, and

temperature are considered to be the most influential factors

related to battery SoC estimation. Therefore, the data set used

to train the model can be represented as shown below:

9 = {X ,Y } (2)

where X = (x1, x2, .., xn) and Y = (y1, y2, .., yn) are

the input and output sequences, respectively. Here, xk =
[I (k),V (k),T (k)] and yk = [SoC(k)], where I (k), V (k), T (k)

and SoC(k) are the current, voltage, temperature and SoC of

the battery as measured at time step k .

FIGURE 1. GRU structure.

B. GRU-RNN MODELING

The RNN architecture has been one of the most popular

technologies for machine learning in recent years. It canmake

full use of time-series data samples to ensure the accuracy of

its predictions, but it is susceptible to the problem of explod-

ing or vanishing gradients [17]. Although LSTM-based RNN

models have achieved state-of-the-art performance on multi-

ple machine learning tasks, the gating mechanism leads to

considerable complexity [18]. As an alternative, the GRU

architecture [19] is a variant of the LSTM architecture with

one fewer gate. Compared with an LSTM-based RNNmodel,

a GRU-based RNN model has a simpler structure and fewer

parameters, thus making model training easier. The GRU

structure is shown in Fig. 1.

A GRU can be represented by the following block

functions:



















zk = σ (W x
z xk +W h

z hk−1 + bz)
rk = σ (W x

r xk +W h
r hk−1 + br )

h̃k = tanh(W x
h xk +W h

h (hk−1 ⊙ rk )+ bh)
hk = zk ⊙ h̃k + (1− zk )⊙ hk−1

(3)

where zk and rk are the vectors for gate updating and resetting,

respectively; hk and h̃k are the state vector and the candidate

state, respectively, at time step k; σ is the sigmoid function,

as defined in Eq. (4); ⊙ is the element-wise multiplication

operator; xk is the input vector; W x
z , W

h
z , and bz are the

parameters of the gate updating operation, W x
r , W

h
r , and br

are the parameters of the gate resetting operation; W x
h , W

h
h ,

and bh are the parameters of the candidate state.

σ (x) = 1/(1+ e−x) (4)

The architecture of the proposed GRU-RNN model con-

sists of an input layer, a hidden layer, a fully-connected

dense layer and an output layer, which are denoted by l1, l2,

l3, and l4, respectively, as shown in Fig. 2. The first layer is the

input layer, followed by the GRU hidden layer; its unfolded

structure is shown on the right side of Fig. 2. GRUnu is the

nu-th unit, where nu is the number of GRUs in the hidden

layer.

FIGURE 2. GRU-RNN model architecture.

To prevent overfitting, the dropout technique is applied in

the hidden layer [20]. The third layer is a fully connected

dense layer that applies a linear transformation to obtain the

SoC estimation result by means of the sigmoid activation

function, which is done as follows:

SoC∗k = σ (W s
khk + bs) (5)

where W s
k and bs are the weight vector and biases, respec-

tively, of the fully-connected layer at time step k . The mean

square error (MSE) is chosen as the loss function; it is defined

as shown in (6):

L = (
∑l

k=1
(SoCk − SoC∗k )2)/l (6)

where SoCk is the measured value, SoC∗k is the estimated

value, and l is the length of the time series.
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III. AN ENSEMBLE OPTIMIZATION METHOD

In addition to the model design and feature selection, the opti-

mization method is another crucial factor influencing the

performance of the machine learning method. At present,

the most commonly used optimization method is the Adam

optimizer, which can achieve excellent performance by

means of a weight updating rule based on adaptive learning

rates derived from the first and second-order moment esti-

mates [21]. However, it has two shortcomings that cannot

be ignored. One is that the training process may not con-

verge [22], and the other is that the globally optimal solution

may be missed [23].

To combine the advantages of multiple optimization algo-

rithms, a novel ensemble optimization method has been pro-

posed based on the Adam and stochastic gradient descent

(SGD) optimizers [24]. Although this optimization method

achieves good performance, model training still takes a long

time due to the slow optimization speed of the SGD algo-

rithm. Consequently, a new ensemble optimization method

based on the Nadam optimizer [25] and the AdaMax opti-

mizer [21] is presented here.

A. NADAM OPTIMIZER

Incorporating the Nesterov momentum into the Adam opti-

mizer yields a new algorithm, called the Nadam algo-

rithm [25]. With the Nesterov momentum trick, the learning

process during model training is accelerated by means of

an exponential decay based on the moving average of the

gradients. Compared with the Adam optimizer, the Nadam

optimizer converges more rapidly and is more suitable for the

pre-training phase. The details of the Nadam algorithm are as

follows.

Algorithm 1 Nadam

Input: data samples

Output: weights and biases of the GRU-RNN model

1: Initialization k ← 0, m0← 0, n0← 0, τ ≈ 10−8

2: β1, β2 ∈ [0, 1), η1 = 0.001

3: while (L(wsk )not converged) do

4: k ← k + 1

5: gk ← ∇wL(wsk ) //obtain gradients at time step k

6: ĝ← gk/(1−
∏

k
i=1β

i
1) //correct gk

7: mk ← β1mk−1 + (1− β1)gk //the first moment

estimate

8: m̂k ← mk/(1−
∏ k+1

i=1 β i1) //correct mk
9: nk ← β2nk−1 + (1− β2)g

2
k //the second moment

estimate

10: n̂k ← nk/(1− βk2 ) //correct nk
11: wsk ← wsk−1 −

η1√
n̂k+τ

(βk+11 m̂k + (1− βk1 )ĝk )

12: end while

The weights are updated in accordance with the recur-

sive law presented above in Algorithm 1. The parame-

ters that need to be initialized are the time step k , the

first-order moment estimation mk , the second-order moment

estimation nk , the fuzz factor τ , the exponential decay rates

β1 and β2, and the learning rate η1. The momentum schedule

is given by

βk1 = β1(1− 0.5× 0.96k/250) (7)

where β1 = 0.99, as the recommendation in [26]. Then,

the main part of the algorithm is the iterative process. The

first step is to calculate the gradient of the loss function

L(wsk−1), where w
s
k−1 is the weight parameter, as shown in

Eq. (6). The second step is to calculate the first-order moment

estimatemk and the second-order moment estimate nk at time

step k . After correction, the unbiased estimates m̂k and n̂k can

be obtained. The last step is to update the weight parameters.

This iterative process then continues until the optimal value

is obtained.

Remark 1: The purpose of the pre-training phase is to

endow theGRU_RNNmodel with the appropriate parameters

to capture the inherent features of the training samples. The

Nadam algorithm uses adaptive learning rates and approx-

imates the gradient by means of the Nesterov momentum,

thereby ensuring fast convergence of the pre-training process.

B. ADAMAX OPTIMIZER

An extension of the Adam optimizer, called AdaMax has

been introduced in the literature [21]. In AdaMax, the infinity

norm of the moment is used in place of the second-order

moment estimate to update the weight parameters. Therefore,

the magnitude of the parameter update has a simpler bound in

AdaMax than in theAdam algorithm, and theweight updating

rules are more stable. The details of the AdaMax optimizer

are shown in Algorithm 2.

Algorithm 2 AdaMax

Input: data samples

Output: weights and biases of the GRU-RNN model

1: Initialization k ← 0, m0← 0, u0← 0, τ ≈ 10−8

2: β1, β2 ∈ [0, 1), η2 = 0.0005

3: while (L(wsk )not converged) do

4: k ← k + 1

5: gk ← ∇wL(wsk−1) //obtain gradients at time step k

6: mk ← β1mk−1 + (1− β1)gk //the first moment

estimate

7: uk ← max(β2uk−1, |gk |) //the weighted infinity norm

8: wsk ← wsk−1 − (η2/(1− βk1 )) · (mk/uk ) //update
parameters

9: end while

The weight updating process in Algorithm 2 is similar to

that in Algorithm 1, except for the following differences: the

term (η2/(1 − βk1 )) represents the learning rate with bias-

correction for the first-order moment estimate, and uk is the

infinity norm of the moment.

Now, the pth-order moment estimate vk is defined as

follows:

vk = β
p
2vk−1 + (1− β

p
2 )|gk |

p (8)
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The iteration formula in (8) can be rewritten in the follow-

ing form:

vk = (1− β
p
2 )

k
∑

i=1
β
p(k−i)
2 ·|gi|p (9)

Let p→∞, and adopt the definition uk = limp→∞(vk )1/p;
then,

uk = lim
p→∞

((1− β
p
2 )

k
∑

i=1
β
p(k−i)
2 · |gi|p)1/p

= lim
p→∞

(1− β
p
2 )

1/p(

k
∑

i=1
β
p(k−i)
2 · |gi|p)1/p

= lim
p→∞

(

k
∑

i=1
(β

(k−i)
2 · |gi|)p)1/p

= max(βk−12 |g1|, βk−22 |g2|, . . . , β2|gk−1|, |gk |) (10)

Because β2 ∈ [0, 1), (1− β
p
2 )

1/p goes to 1 when p→∞.

Formula (10) can be derived from the definition of the infinity

norm and then converted into the following recursive formula:

uk = max(β2 · uk−1, |gk |).
Remark 2: The purpose of the fine-tuning phase is to

further adjust the parameters to achieve greater accuracy by

means of the AdaMax algorithm, which converges to a more

stable value.

C. ENSEMBLE OPTIMIZER

The proposed ensemble optimization method combines the

Nadam and AdaMax optimizers. The Nadam optimizer, with

its fast convergence speed, is used in the model pre-training

phase to find the minimum optimized value as soon as possi-

ble. Then, the AdaMax optimizer is used in the model fine-

tuning phase to further determine the model parameters. With

the AdaMax optimizer, the phenomenon of gradient fluctua-

tion during the model fine-tuning process can be reduced.

Algorithm 3 Ensemble Optimization Method

Input: data samples

Output: weights and biases of the GRU-RNN model

1: Initialize parameters

2: while epoch< p1
3: if epoch< p2 then

4: train model with Nadam //pre-training phase

5: else

6: train model with AdaMax //fine-tuning phase

7: end if

8: end while

The implementation of the ensemble optimization method

includes the algorithm input and output, the initialization of

the parameters, and the iterative process. During the iter-

ative process, the ensemble optimization method switches

the training mode from the pre-training phase to the fine-

tuning phase based on the number of training epochs that

have elapsed. The values of p1 and p2 are the numbers of

epochs specified for the entire model training process and the

pre-training phase, respectively.

Remark 3:Although the learning rate is adaptively adjusted

in the Adam algorithm, during the later stage of model

training, the learning rate changes very little, causing the

gradient update to be too slow. By contrast, in the ensemble

optimization method, the model training process is divided

into two stages, one based on the Nadam optimizer and the

other based on the AdaMax optimizer. In this way, not only

can the model training be completed rapidly and stably, but

the training time can also be reduced.

IV. ANALYSIS OF SOC ESTIMATION

This section presents the experimental analysis, including the

data description, the model training, the model validation on

dynamic driving cycles, and the performance comparison and

results.

A. DATA DESCRIPTION

The data used for the experiment were collected from the Bat-

tery Research Group of the Center for Advanced Life Cycle

Engineering (CALCE) [27]. The battery test bench adopted

by the CALCE group consists of a 26650 LiFePO4/graphite

cell, an Arbin BT2000 battery test system, and a computer

serving as a user-machine interface. The method of charging

used for battery testing is the constant current-constant volt-

age (CCCV) method; the standard charging and discharging

current is 0.2C (A), and the range of cycle life lies between

1000 and 2000. Other parameters of the battery are shown

in Table 1.

TABLE 1. Cell parameters.

Multiple factors affect SoC estimation because the loading

conditions of EVs are complex and uncertain. The EV speed,

road conditions, and energy feedback result in complicated

power outputs. Hence, the training data set should cover the

loading conditions of EVs as much as possible in terms of

SoC range, current, voltage and temperature.

Therefore, to fully validate the model, three dynamic driv-

ing cycles were chosen to simulate the load characteristics

of lithium-ion power batteries: the Federal Urban Driving

Schedule (FUDS) is a driving cycle with a sophisticated

dynamic current profile, the Dynamic Stress Test (DST)

emulates a variable power discharge mode, and the US06

Highway Drive Schedule (US06) is an aggressive driving

cycle for highway driving [28]–[30]. The durations of one

cycle for FUDS, DST and US06 are 1372 s, 360 s, and 596 s,

respectively.
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FIGURE 3. DST driving cycle: current and voltage profiles for one cycle.

The data set was acquired by simulating the FUDS, DST,

and US06 driving cycles at 0-50◦C (in intervals of 10◦C),
yielding a total of 18 data subsets and 126356 samples. The

collected data include battery current, voltage and tempera-

ture data with a sampling interval of 1 s. In accordance with

the cross-validation principle, 80% data set was selected as

training set, and 20% data set was selected as test set. The

current and voltage profiles for one DST cycle are shown

in Fig. 3.

B. MODEL TRAINING

The experiment was implemented on a platforms running

Windows 8.0 with an Intel i7 CPU, PyCharm 2018 [31], and

Keras 2.2 [32]. PyCharm 2018 is a Python integrated devel-

opment environment (IDE). Keras is a high-level NN API

written in Python. Based on previous experience, the model

hyperparameters were configured, as shown in Table 2. The

order in which the data samples were fed into the GRU-RNN

model was revised based on a random shuffling function. The

model training process consisted of two main phases: the pre-

training and the fine-tuning phase.

TABLE 2. Hyperparameters of the GRU-RNN model.

Data preprocessing was necessary to prevent the different

dimensions of the raw data from affecting the model training

process. Data normalization was applied to eliminate this

effect, and improve the convergence speed during model

training. Min-max normalization was applied to scale the

feature data to the range between 0 and 1 using Eq. (11):

x ′ = (x −minx)/(maxx −minx) (11)

where x is a raw data value, x
′
is the scaled value, and

maxx and minx are the maximum and minimum data value,

respectively.

FIGURE 4. Convergence curves during model pre-training.

Fig. 4 presents the characteristic curves of the convergence

process during pre-training. During the first 10 epochs, the

training MSE quickly dropped from 7.58% to 0.32%. After

approximately 20 epochs, the training MSE had converged

almost to zero. In the final epoch of pre-training, the training

and validation MSE values approached 3.68 × 10−4 and

3.77× 10−4, respectively; this required approximately 1.5 h.

The Nadam optimizer successfully found the minimum

optimized value during pre-training. Throughout the 20th

to 100th epochs, the value of the MSE showed almost no

change, and the convergence curves were very stable. If we

had continued training for more epochs, it is possible that the

optimization process could have become trapped in a local

minimum and required additional time; this can be easily

verified through simulations. In fact, the Nadam optimizer is

still, in essence, the Adam optimizer; it uses the Newtonian

momentum to accelerate the convergence speed.

FIGURE 5. Convergence curves during model fine-tuning.

Fig. 5 shows the convergence curves during model fine-

tuning. Even when the training error is small, fine-tuning

can achieve further optimization. During the first 5 epochs,

the MSE again showed a rapid decline. After 100 epochs of

fine-tuning, the training and validation MSE values reached

3.94 × 10−5 and 3.13 × 10−4, respectively; this required

approximately 1.6 h.

As shown in Fig. 5, both the training and validation MSEs

steadily converged to very small values. These results illus-

trate that the globally optimal value was ultimately found, and

that on over-fitting or under-fitting occurred during model

training. As a result, faster convergence and more efficient

optimization were achieved for the model training process as

a whole.
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FIGURE 6. SoC estimation results for FUDS cycle. (a) 0◦C, (b) 30◦C, and
(c) 50◦C.

C. MODEL VALIDATION

To verify its robustness and accuracy, the trained GRU-RNN

model for battery SoC estimation was separately tested on

the FUDS, DST, and US06 cycle at 0◦C, 30◦C, and 50◦C.
All the data prepared for testing were distinct from the train-

ing sets. The battery SoC computed with the ampere-hour

method [2] was taken as the actual SoC for use as a reference.

The reference SoC and the SoC estimated with the proposed

method were standardized to the range from 100% to 0%.

The root mean square error (RMSE), mean absolute error

(MAE), mean absolute percentage error (MAPE), coefficient

of determination (R2), and SoC error, as defined in the fol-

lowing formulas, were employed as the performance metrics

used to evaluate the SoC estimation model.

RMSE =
√

1

N

∑N

k=1
(SoCk − SoC∗k )2 (12)

MAE = 1

N

∑N

k=1
|SoCk − SoC∗k | (13)

MAPE = 1

N

∑N

k=1
|
SoCk − SoC∗k

SoCk
| (14)

R2 = 1−
∑N

k=1 (SoCk − SoC∗k )2
∑N

k=1 (SoCk −Msoc)2
(15)

Error =
SoCk − SoC∗k

SoCk
(16)

where SoCk is the actual value, SoC
∗
k is the estimated value,

Msoc is the mean SoC, and N is the number of test samples.

FIGURE 7. SoC estimation results for DST cycle. (a) 0◦C, (b) 30◦C, and
(c) 50◦C.

FIGURE 8. SoC estimation results for US06 cycle. (a) 0◦C, (b) 30◦C, and
(c) 50◦C.

Fig. 6-8 show the SoC estimation results. Obviously, the

SoC values estimated by the GRU-RNNmodel on the FUDS,

DST and US06 data sets at 30◦C and 50◦C are in nearly
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FIGURE 9. SoC estimation error for FUDS cycle. (a) 0◦C, (b) 30◦C, and
(c) 50◦C.

FIGURE 10. SoC estimation error for DST cycle (a) 0◦C, (b) 30◦C, and
(c) 50◦C.

aligned with the actual SoC, but those for the data sets at 0◦C
are not. Moreover, in Fig. 9-11, the SoC estimation errors are

almost all close to zero, with the minimum and maximum

values being−2.04% and 9.96%, respectively, while the SoC

error range in Fig. 9(a) is [−9.93% 9.96%]. The values of the

RMSE, MAE, MAPE, R2 and Error performance metrics are

shown in Table 3; they are close to the desired optimal values

of 0, 0, 0, 1, 0, respectively.

As shown in Table 3, the best test results are obtained for

the US06 cycle at 50◦C. The R2 metric in this case is the

best among the three tests, indicating that the SoC estimation

curve for this data set shows the best fit. Therefore, the

metrics for this data set are naturally the best. By contrast,

the worst test results are obtained for the FUDS cycle at 0◦C.
Normally, a decrease in temperature causes an increase in the

FIGURE 11. SoC estimation error for US06 cycle. (a) 0◦C, (b) 30◦C, and
(c) 50◦C.

TABLE 3. Statistical results of SoC estimation in FUDS, DST, and US06.

internal resistance of the battery. As the temperature rises, the

electrolyte becomes active, promoting lithium-ion diffusion

andmigration [33]. Therefore, the battery SoC is unavoidably

affected by temperature.

The battery SoC varies at different charging and discharg-

ing current rates. A high discharge current rate causes a

rapid decrease in the SoC, and this decrease shows a strong

relationship with the voltage since an increase in the SoC

causes the voltage to rise. The SoC estimation results for

the DST cycle are more stable than those for the FUDS

cycle because the DST current profile is more stable and

exhibits less fluctuation than that the FUDS profile [28], [30].

Therefore, due to the corresponding temperature and load

characteristics, the test results for the FUDS cycle at 0◦C are

the worst.

These test results confirm the dynamic tracking perfor-

mance of theGRU-RNNmodel. Although thismethod suffers

a slight loss in accuracy on the data set at 0◦C, the estimation

errors are still satisfactory. As shown in table 3, accurate

estimation has been achieved on FUDS, DST, andUS06 cycle

at 0◦C, 30◦C, and 50◦C, indicating that the trained model has

good robustness and generalization.
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TABLE 4. Model performance comparison in FUDS cycle.

TABLE 5. Model performance comparison in DST cycle.

D. PERFORMANCE COMPARISON AND RESULTS

To verify the performance of the GRU-RNN model and the

ensemble optimization method, four methods were designed

and tested in a comparative experiment, including an

LSTM-based RNNmodel optimized by Adam (LSTM-RNN-

Adam, LRA) [16], an LSTM-based RNN model optimized

by the ensemble optimizer (LSTM-RNN-Ensemble, LRE),

a GRU-based RNN model optimized by Adam (GRU-RNN-

Adam, GRA), and a GRU-based RNN model optimized

by the ensemble optimizer (GRU-RNN-Ensemble, GRE,

the proposed method). The test results obtained under the

same conditions with these four methods after 200 epochs

are shown in Table 4-6. The times required for model training

with the Intel i7 CPU were 3.62 h, 3.65 h, 2.95 h, and 2.97 h,

respectively.

Model design is a crucial factor influencing the perfor-

mance of machine learning methods. In the following, com-

parative analyses of the LRA and GRA methods, the LRE

and GRE methods are presented. The RMSE, MAE, and

MAPE values for the GRA method tested on the FUDS cycle

at 50◦C are 1.01%, 0.78%, and 3.0%, respectively, which

TABLE 6. Model performance comparison in US06 cycle.

are −4.12%, 0, and 11.24% lower than the corresponding

values for the LRA method. Similarly, the RMSE, MAE,

and MAPE values for the GRE method tested on the FUDS

cycle at 50◦C are 0.83%, 0.66%, and 2.46%, respectively,

which are 0, 1.49%, and 8.89% lower than the correspond-

ing values for the LRE method. The LRA and GRA meth-

ods were implemented with LSTM-RNN and GRU-RNN

model, respectively; although both models were optimized

by the Adam optimizer, the GRA method performed better.

Similarly, the LRE and GREmethods were also implemented

with LSTM-RNN and GRU-RNN model, respectively, and

althouth both were optimized by the ensemble optimizer,

the GRE method performed better. Thus, for the same opti-

mizer, the GRU-RNN model is superior to the LSTM-RNN

model for battery SoC estimation.

The optimization algorithm is another crucial factor influ-

encing the performance of machine learning methods. In the

following, comparative analyses of the LRA and LRE meth-

ods, the GRA and GRE methods are presented. The RMSE,

MAE, and MAPE values for the LRE method tested on the

FUDS cycle at 50◦C are 0.83%, 0.67%, and 2.7%, respec-

tively; compared to those for the LRA method, these values

are reduced by 14.43%, 14.10%, and 20.12%, respectively.

Similarly, the RMSE, MAE, and MAPE values for the GRE

method tested on the FUDS cycle at 50◦C are 0.83%, 0.66%,

and 2.46%, respectively, and compared to those for the GRA

method, these values are reduced by 17.82%, 15.38%, and

18.0%, respectively. The LRA and LRE methods were both

implemented with the LSTM-RNN model, which was opti-

mized by the Adam and ensemble optimizer, respectively;

between the two, the LRE method performed better. Simi-

larly, the GRA and GRE methods were both implemented

with the GRU-RNN model, which was optimized by the

Adam and ensemble optimizer, respectively, and the GRE

method performed better. Obviously, both LSTM-RNN and

GRU-RNNmodels optimized by the ensemble optimizer per-

formed better than the same models optimized by the Adam

optimizer.
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Furthermore, the RMSE, MAE, and MAPE values

obtained on the FUDS cycle at 0◦C and 30◦C show reductions

similar to those observed on the FUDS cycle at 50◦C. Let
us further evaluate the performance of each method based

on the SoC errors. Compared to the other three methods,

the proposed GREmethod achieves themost satisfactory SoC

error range. The model performance comparison in DST and

US06 cycle are shown in Table 5 and 6.

TABLE 7. Average of metrics for SoC estimation in FUDS, DST, and US06.

FIGURE 12. RMSE, MAE, MAPE, and Error for the LRA, LRE, GRA, and GRE
methods.

Finally, to better understand the estimation results,

we present statistical results of average value for performance

metrics in Table 7 and error distribution charts for each of

the four methods tested on all test data sets (FUDS, DST,

and US06) in Fig. 12. Obviously, the results of the LRA

method are the worst, while the results of the GRE method

are the best. However, the results of the LRE and GRE

methods are not much different, indicating that the perfor-

mances that can be achieved with the LSTM and GRU can

be similarly improved through appropriate optimization [34].

In addition, hundreds of outliers appear in the SoC error graph

in Fig. 12(d). Because the test sets consisted of dynamic

driving cycle data that were not filtered before being fed into

the model and the total number of test sets was approximately

60,000, it was difficult to avoid a small number of outliers.

In a word, the comprehensive performance of the GRE

method is obviously better than that of the LRA method.

Because LSTM in the LRA method has three gates, while

GRU in the GRE method has two gates. The input gate

and forget gate of LSTM are fused into the update gate,

and the reset gate is applied directly to the previous hidden

state. The update gate determines how much the previously

stored information should be kept. The reset gate is concerned

with the way for the new input and the previously stored

information should be integrated [18]–[19]. Thus, GRU has

simpler structure, and can be trained easier or require less

sample data. The SoC estimation approaches in the review

are roughly classified into three categories: the traditional

estimation methods, the control-theory-based methods, and

the data-driven methods. The GRE belongs to the data-driven

methods. Compared with the traditional estimation methods,

the GRE method can achieve high estimation accuracy and

adapt to different ambient temperatures; Compared with the

control-theory-based methods, the GRE method only needs

sample data for model training, does not require battery

modeling, parameter identification, and the complex proof of

Lyapunov stability.

V. CONCLUSIONS

In this paper, we improved the LRA method in two respects.

On the one hand, the GRU component was chosen instead of

the LSTM component for the hidden layer units of the RNN

model. Compared with an LSTM-RNN model, a GRU-RNN

model has a simpler structure and fewer parameters, thus

reducing the difficulty of model training. On the other hand,

an ensemble optimization algorithm combining the Nadam

and AdaMax optimizers was proposed to obtain the globally

optimal values efficiently and rapidly, improving the opti-

mization efficiency and shortening the training time for the

battery model.

Based on this study, the following conclusions can be

drawn. First, the GRU component is more suitable than the

LSTM component for use in an RNN model for battery SoC

estimate. Second, for a GRU-RNN battery model, it is better

to use the proposed ensemble optimization method combin-

ing the Nadam and AdaMax optimizers than to use the Adam

optimizer. Finally, a new method of battery SoC estimation

called the GREmethod is presented, which requires only data

samples for model training and can accurately and efficiently

estimate the battery SoC. From Table 7, it is easy to find that

the mean values of the RMSE, MAE and MAPE metrics for

the GRE method tested on all test data sets (FUDS, DST and

US06) are 1.13%, 0.84% and 3.28%, respectively, which are

46.7%, 46.84% and 29.76% lower than the corresponding

values for the LRA method. Moreover, the time needed for

model training with an Intel i7 CPU is 2.97 h for the GRE

method, meaning that its time consumption is 17.96% lower

than that of the LRA method. Thus, it is obvious the GRE

method proposed in this paper demonstrates superior com-

prehensive performance.
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