
1

Accurate Static Branch Prediction
by Value Range Propagation

Jason R. C. Patterson
(jasonp@fit.qut.edu.au)

School of Computing Science
Queensland University of Technology

Brisbane, Qld 4001, Australia
Phone: +61-75-316191

This paper appeared in the Proceedings of the
ACM SIGPLAN '95 Conference on Programming
Language Design and Implementation, June 1995,
pages 67-78. (La Jolla, San Diego)

Abstract
The ability to predict at compile time the likelihood of a particular
branch being taken provides valuable information for several
optimizations, including global instruction scheduling, code
layout, function inlining, interprocedural register allocation and
many high level optimizations. Previous attempts at static branch
prediction have either used simple heuristics, which can be quite
inaccurate, or put the burden onto the programmer by using
execution profiling data or source code hints.

This paper presents a new approach to static branch prediction
called value range propagation.  This method tracks the weighted
value ranges of variables through a program, much like constant
propagation. These value ranges may be either numeric or
symbolic in nature. Branch prediction is then performed by simply
consulting the value range of the appropriate variable. Heuristics
are used as a fallback for cases where the value range of the
variable cannot be determined statically. In the process, value
range propagation subsumes both constant propagation and copy
propagation.

Experimental results indicate that this approach produces
significantly more accurate predictions than the best existing
heuristic techniques. The  value range propagation  method can be
implemented over any “factored” dataflow representation with a
static single assignment property (such as SSA form or a
dependence flow graph where the variables have been renamed to
achieve single assignment). Experimental results indicate that the
technique maintains the linear runtime behavior of constant
propagation experienced in practice.

1 Introduction
The ability to predict at compile time the probability of a
particular branch being taken provides valuable information for
several optimizations, including global instruction scheduling,
code layout, function inlining, interprocedural register allocation
and many high level optimizations. For most of these

optimizations branch predictions are merely an extra piece of
useful information, but for global instruction scheduling and
instruction cache optimizations the accuracy of the branch
predictions can make or break the optimization.

Unfortunately, it is often difficult to predict which branches will
and won’t be taken through a particular program. This is not
because conditional branches are unpredictable in nature,
however. Indeed conditional branches show surprisingly
predictable behavior. Obviously some branches will depend on the
particular input being processed, but in most cases the branching
behavior of a program is largely independent of its input. It has
been observed that most conditional branches take one direction
most of the time, irrespective of the particular input being
processed and even the type of program [FisherFreudenberger92].

Up to now there have basically been three approaches to obtaining
branch prediction data for use in optimizations:

• heuristics based on nesting and coding styles

• real execution profiling

• source code hints supplied by the programmer

Most heuristic approaches try to identify common programming
practices. They are often based on dubious assumptions and are
sometimes no better than random guesses. A simple example is
the 90/50 rule, which predicts that backward branches are taken
90% of the time and forward branches 50%. This is obviously far
too crude to base important decisions on. It is possible to predict
loop controlling branches fairly accurately using simple nesting
heuristics and loop analysis, but simple heuristics perform very
poorly for the non-loop branches which dominate the dynamic
branch count of many programs [Smith81, Wall91].

More sophisticated heuristic approaches base their decisions on
the datatypes and type of comparison used in the branch and the
code in the target basic block [BallLarus93, Wagner+94].
Although these approaches are much better than trivial heuristics,
their accuracy is still only mediocre. These approaches can also be
somewhat hit-and-miss, since programs which use programming
styles that don’t fit the heuristics result in very poor predictions.

Execution profiling is based on instrumenting a program with
code to collect information such as basic block execution counts,
which can then be used to determine branch probabilities
[McFarlingHennessy86, BallLarus92]. The instrumented version
of the program must be run to collect the profile data, so
programmer intervention is required. The input used during these
test runs can have an effect on the resulting profile.



2

As you would expect, execution profiling is much more accurate
than heuristics, usually within a few percent of the common case
runtime behavior for most branches [FisherFreudenberger92].
However, it is not perfect. Unfortunately researchers often use the
same input for obtaining the profile and measuring the
effectiveness of optimizations based on it. This gives an
unrealistically good picture of the situation, since in practice a
program is optimized based on a small number of profile runs,
then run with many different input sets. This different input data
causes the profile to be a less-than-perfect match to the input.
Despite this, execution profiling is still easily the most accurate
method for obtaining branch prediction data.

There is, of course, a serious weakness to execution profiling - it
is too inconvenient for all but the most performance aware
programmers to “bother doing”. This is unfortunate, because
profiling can help identify higher level performance problems as
well. Sadly it is the case that many programmers don’t even
bother identifying performance critical routines, let alone tuning
their code for better performance. Another problem with
execution profiling is that it is not practical for some pieces of
code, such as parts of an operating system kernel.

The final method of obtaining branch predictions is through
source code hints. Approaches based on programmer supplied
hints are both inconvenient and potentially inaccurate. They do,
however, provide a way to handle certain difficult situations
where neither compile time prediction nor execution profiling are
adequate. Like the “ register” declarations in the C language, such
hints are indicative of a lack of suitable compiler technology more
than anything else.

Clearly, it would be nice to be able to predict branching behavior
as accurately as execution profiling does, but without requiring
any programmer intervention. This paper describes a new
approach to static branch prediction which moves towards this
objective. The technique is called value range propagation. It uses
the mechanism of constant propagation [WegmanZadeck91] and
some of the ideas from range analysis [Harrison77].

Value range propagation  extends standard constant propagation to
track the weighted value ranges of variables in a program. These
value ranges may be either numeric or symbolic in nature. Branch
predictions are then made based on these value ranges. In the
process, value range propagation subsumes both constant
propagation and copy propagation.

2 Related Work
Constant propagation is a well-understood problem whose goal is
to identify expressions that are constant for every possible
execution of a program and can therefore be evaluated at compile
time rather than runtime [Kildall73]. This is a simple forward
dataflow problem - information about the “constantness” of
expressions is simply propagated around the control flow graph
until a fixed point is reached.

There is a strong similarity between constant propagation and our
objective. Instead of finding the expressions which are constant,
we want to determine the weighted range of values an expression
can have during the execution of a program. Branches based on
this variable can then be accurately predicted simply by
examining this weighted value range.

The technique outlined in this paper uses the mechanism of
constant propagation with conditional branches developed by
Mark Wegman and Ken Zadeck [WegmanZadeck91]. Their
approach uses the static single assignment (SSA) representation,
which was originally developed as a dataflow representation
geared towards propagating values through a program. It therefore
provides an ideal platform for this kind of analysis. Using SSA
form, constant propagation can be performed in essentially linear
time.

In SSA form every variable has only one assignment, and
therefore each use has a single definition. In essence, the def-use
chains (called SSA edges) become a one-to-many rather than a
many-to-many relationship. For a detailed description of the SSA
representation see [Cytron+91]. The transformation into SSA form
involves two steps. In the first step special assignment operations
called ø-functions  are inserted at joins in the program where
alternative versions of a variable meet.  These ø-functions occur at
the entrance to basic blocks, and have the form:

a = ø(b, c, ...)

The meaning of this is that if control reaches this block via the
first in-edge, a is assigned the value of b, if via the second in-
edge, a  is assigned the value of c , and so on. In the second step the
variables are renamed so that each assignment to a particular
variable has a unique name. This achieves the “static single
assignment” property - each variable now has a single definition
point (either in a real assignment or in a ø-function).

Although this paper describes the value range propagation
method using the SSA form and it’s associated terminology, it can
be implemented using any “factored” dataflow representation with
a static single assignment property. In fact, my actual
implementation uses a dependence flow graph [JohnsonPingali93]
where the variables have been renamed to achieve single
assignment.

3 Algorithm Overview

3.1 Objective

The objective of any branch prediction algorithm is to determine
the likelihood of taking each conditional branch in a program.
Most heuristic methods simply mark each branch as either “taken”
or “not-taken”. This is useful but not ideal. What we would really
like to know is the probability  of a branch being taken. This is
what value range propagation produces - the out-edges of each
conditional branch are marked with probabilities ranging from 0
(never taken) to 1 (always taken). Using probabilities rather than a
simple yes or no answer lets us accurately assess a series of
branches to determine the degree of speculation involved in
moving a particular instruction (in global instruction scheduling),
or the likelihood of executing a particular basic block (for cache
optimizations).

3.2 Propagation Terminology

The heart of the value range propagation method is the
propagation of the weighted range of values each expression can
have around the control flow graph until a fixed point is reached.
In formal terms, the objective of any propagation algorithm is to



3

determine an output assignment for each variable in a program.
These output assignments represent some knowledge about the
value of each variable, and are normally described in terms of a
multi-level lattice of possible values. The highest level in this
lattice is top (T), which represents an as yet undetermined value.
Below this are the levels which represent some known property of
the variable. Finally, the lowest level is bottom  ( ⊥ ), which
indicates that the variable contains a value that cannot be
predicted at compile time.

Propagation algorithms start with the optimistic assignment of T
for each variable, and proceed by lowering the assignments (in
terms of the lattice) as more information is gathered about the
program. Eventually a fixed point is reached and the process
terminates. At this point no T assignments will remain, so each
variable will either have some information assigned to it, or will
be undefined ( ⊥ ). Information is gathered about particular
variables by symbolically executing program statements and
applying the meet operator (∩) at joins in the program (ø-
functions). The meet operation must be defined such that the
result is never higher than the operands, otherwise the algorithm
might never terminate.

3.3 Value Range Propagation

In standard constant propagation there is only one middle level
(constant), and the rules for expression evaluation and meet
operations are very simple (Figure 1). If a variable has a constant
as its output assignment after propagation, the variable will hold
this constant value for all possible executions of the program.
Although this is useful for constant folding and determining
reachable code, this information is of no use for branch prediction.

T

⊥

CjCi Ck Cl Cm

any ∩  T = any

any ∩  ⊥  = ⊥

Ci ∩  Cj  = Ci ( if i = j)

Ci ∩  Cj  = ⊥ (if i ≠ j)

Figure 1.  The standard constant propagation lattice.

In order to predict what proportion of the time a branch will be
taken, we really need to know what is in the variable that the
branch is based on. Not only do we need to know the values that
might be in the variable, but also how often each value actually
occurs at runtime. Take a moment to consider the code segment
below (Figure 2). For fun, work out how often block A is
executed.

for (x = 0; x < 10; x++) {
     

if (x > 7) { y = 1; }
else { y = x; }
 

if (y == 1) { ... Block A ... } 
}

Figure 2.  A simple example.

To the human reader it is obvious that block A is executed 30% of
the time. Subconsciously you probably used the following logic in
coming to this decision:

• x is evenly distributed across the values 0-9

• the test x >7  will succeed 20% of the time

• if the test succeeds y will have the value 1

• if the test fails y  has a 1-in-8 (12.5%) chance of having the
value 1

• after the test y has a (0.2* 1 + 0.8*0.125) = 30% chance of
having the value 1

The value range propagation  method uses exactly this kind of
logic to determine branch probabilities. As with standard constant
propagation, a simple worklist algorithm is used as the mechanism
for forward dataflow analysis. Two working lists are maintained:
the FlowWorkList, which is a worklist of control flow graph
edges, and the SSAWorkList, which is a worklist of SSA edges
(def-use chains).

The major differences between value range propagation and
standard constant propagation are:

• value ranges are propagated rather than constants

• the rules for expression and ø-function evaluation are
somewhat more complicated

• loop carried expressions are detected and handled specially
(so that we don’t actually execute the loops!)

• each control flow graph edge has a probability associated
with it rather than an is-executed  flag

The algorithm proceeds as follows:

1 Initialize the FlowWorkList to contain the out-edges from the
start node, the SSAWorkList to be empty, all probabilities to
be 0, and all ranges to be T. Mark the out-edges of the start
node with a probability of 1 (ie: 100%).

2 If both working lists are empty, terminate. Otherwise extract
the next item from one of the lists. Execution can proceed by
processing items from either list, but experience has shown
that preferring to select from the FlowWorkList tends to
cause information to be gathered more quickly and therefore
reduces the running time of the algorithm.

3 If the item is a control flow graph edge, visit the target node.
If this node has never been visited before, evaluate every
expression in the node, otherwise evaluate only the ø-
functions. For each expression, if the new result (value
range) differs from the old result for that expression (SSA
variable), add the SSA edges starting at that expression to the
SSAWorkList.

4 If the item is a ø-function, and one or more of the node’s in-
edges are back edges (as identified by a depth first traversal
from the start node), then there is a loop in the SSA edge
chain starting at this ø-function. In other words, this is a loop
carried variable. Attempt to derive its value range. Loop
carried variable derivation is described later in this paper. If
derivation succeeds, mark the expression as derived (derived
expressions are not to be re-evaluated). If derivation fails,



4

mark it as impossible to derive, so that derivation will not be
re-invoked for it.

5 If the item is a ø-function which has not been marked as
derived, and the probability of executing any of the in-edges
to this node is non-zero, evaluate that ø-function. The
evaluation of a ø-function is simply the merging of the
appropriate ranges according to the current branch
probabilities for each in-edge1. If the new result differs from
the old result for that ø-function, add the SSA edges starting
at that ø-function to the SSAWorkList.

6 If the item is an expression which has not been marked as
derived, and the probability of executing any of the in-edges
to this node is non-zero, evaluate the expression. If the new
result differs from the old result for that expression, add the
SSA edges starting at that expression to the SSAWorkList.

7 If the item is a conditional branch instruction which has not
been marked as derived, then determine the probability of
taking the branch by examining the relevant variable’s value
range. If the new probability differs from the old probability
for this branch, mark the out-edges with the new probabilities
and add any changed out-edges to the FlowWorkList.

8 Goto 2.

3.4 Range Representation

Choosing a flexible but efficient representation for the value range
of a variable is a difficult but critical part of implementing the
value range propagation algorithm. An ideal representation would
provide a space efficient encoding for common cases such as
single values, evenly distributed ranges and arithmetic sequences,
whilst simultaneously allowing the flexibility to represent less
common ranges such as geometric sequences and unusual
sequences such as prime numbers. To make things even more
complex, many ranges can only be specified relative to others, eg:
“x  is greater than y+2” . Such symbolic ranges must also be
handled efficiently.

At one extreme, it is possible to use a completely general
symbolic representation for range information. This may be
appropriate for formal program verification systems, but it would
be far too inefficient for practical use in a compiler. Using too
simplistic a representation, on the other hand, yields results not
much better than constant propagation. Obviously a tradeoff
between accuracy and efficiency is necessary.

From a practical point of view, value range analysis is probably of
most use in tracking the arithmetic sequences of loop control
variables, dense ranges, and constants of various types. In the
method described by this paper, the value contained by a
particular variable is represented by a set of weighted ranges
where the total range is the union of all the individual ranges.
Each individual range is defined by:

• a probability • a lower bound

• an upper bound • a stride (arithmetic step size)

1 The probability of an in-edge from an unconditional branch (or fall through) is
the sum of the probabilities of the in-edges of the first node with equivalent
control dependencies to the node which ends with the unconditional branch (ie:
the earliest node which dominates it and which it postdominates). In other
words, the sum of the probabilities of the edges which lead to the node being
executed.

An even distribution is assumed within each range, so uneven
distributions must be represented by multiple ranges. The notation
used in this paper to describe a set of ranges is as follows:

{ P[L:U:S], ... }

In this notation P  represents the probability of the particular range
applying at runtime, L and U give the lower and upper bounds of
the range, and S is the stride.

In addition to ranges between numeric lower and upper bounds
with numeric strides, it is also necessary to handle common cases
of symbolic ranges to achieve high levels of accuracy in branch
predictions. This can be achieved by simply allowing each
“number” in a range definition to be defined as:

SSA Variable   operator   Constant

For numeric values the variable component is NULL2 , and for
purely symbolic values the constant component is +0. This
representation allows the simple case of values defined relative to
a single variable to be handled (eg: x+2 ), but not values which
represent potentially complex operations between multiple
variables (eg: x+y). As a result, range operations and comparisons
are kept simple. Although this only allows meaningful operations
and comparisons between variables which share a single common
“ancestor”, it achieves most of the practical benefits of symbolic
analysis without having to implement a full-blown theorem tester
to determine relationships between ranges.

As mentioned above, each variable is represented by a set  of
ranges. In order to eliminate the possibility of a single variable’s
set of ranges growing indefinitely, it is necessary to place an upper
limit on the number of ranges used. In other words, a “give-up”
point needs to be identified. In practice a relatively small number
of ranges is adequate, normally no more than four for programs
with “normal” control flow. Using four ranges per variable allows
us to handle merges from up to two levels of conditional
branching without losing accuracy.

3.5 Range Operations

The method described in this paper propagates information about
the value ranges of variables through a program in the same way
that constants are propagated in traditional constant propagation.
As a result, it is necessary to extend the expression evaluation
mechanism of constant propagation to handle value ranges. For
example, the optimizer must be able to evaluate expressions such
as:

{ 0.7[32:256:1], 0.3[3:21:3] }
+ { 0.6[16:100:4], 0.4[8:8:0] }
= { 0.42[48:356:1], 0.28[40:264:1]

  0.18[19:121:1], 0.12[11:29:3] }

Implementing these range operations is relatively straightforward.
Efficiency is important here because unlike constant propagation,
expressions may need to be re-evaluated many times before a
fixed point is reached. If expressions become very large, applying
a technique such as Reif and Lewis’s tree representations

2 By NULL I mean whatever the null concept for the representation being used
is. In my implementation, for example, it is virtual register 0.



5

[ReifLewis77] may be useful to avoid redundant re-computations.
Unfortunately this technique implies a significant memory
overhead, so practical uses are limited to very high-cost
expressions.

The observant reader might have noticed that the above example
actually loses  information. Consider the calculation of 0.3[3:21:3]
+ 0.6[16:100:4] . The result shown above is 0.18[19:121:1],
which represents any number from 19 to 121. In reality, however,
there is no combination of a number from the range 0.3[3:21:3]
and a number from the range 0.6[16:100:4] that will total 20.
This indicates a limitation of our range representation - achieving
more accuracy in this example would require either a more
sophisticated range representation or a very large number of very
small ranges. Although this loss of accuracy leads to less accurate
branch predictions, providing additional accuracy would greatly
increase the running time of the algorithm.

Some range operations are problematic for other reasons. Load
operations, for example, typically result in a range of ⊥  unless
detailed alias analysis information is available. As a result,
conditional branches based on a value loaded from memory often
cannot be predicted using value range propagation. Instead,
heuristics similar to those in [BallLarus93] must be used.
Depending on the quality of the alias analysis being performed
and the type of program being optimized, this might occur
anywhere from 10% to 90% of the time. To determine
probabilities rather than simple “taken” or “not taken” predictions
the heuristics must be weighted and combined using a technique
such as [WuLarus94].

3.6 Loop Carried Expressions

The standard constant propagation algorithm propagates values
without explicitly handling loops in the program. For constant
propagation this is acceptable because an expression can only be
evaluated twice. For example, a loop control variable is first
assigned the constant of its initial value, then when the
incremented version of this value is propagated around from the
bottom of the loop the values are different so the variable is
assigned ⊥ .

If we used this approach for value range propagation, each loop
would “execute” as many times during propagation as it would at
runtime, because the value range of the loop control variable
would gradually be expanded until the loop termination test
succeeded. Although this would work correctly, it would make
value range propagation far too slow for practical use. To avoid
this, it is necessary to explicitly identify loop carried expressions
and determine their value ranges using a different approach.

Loop carried SSA variables are those with loops in their SSA edge
chain. That is, one or more of the in-edges to a ø-function is a
back edge (as identified by a depth first traversal from the start
node). This is easily identified during value range propagation (it
was step 4 in the algorithm description). Having identified a loop
carried expression, it is desirable to determine its value range
without having to “execute” the loop. This can be done by
examining the expression’s derivation  [Harrison77].

A variable’s derivation  is the set of operations performed on that
variable during the loop. In its most general form, a derivation
would be a set of symbolic equations which specify how the
variable may be computed from its previous value and the values
of other variables. For practical purposes, however, this would be

too complicated and would gain little over a simpler approach. In
practice, it is only necessary to identify simple inductive
derivations such as loop counters. This can be done by simply
processing the operations in the derivation and matching them to a
template such as:

new value = old value  + set of possible increments
assert (new value between specific bounds)

The first part of the template matches the loop increment
operation(s), and the second part matches the termination test(s).
This template can then be combined with the initial value of the
variable to produce a final value range.

If the set of operations in a derivation cannot be matched to such a
template, then we can simply allow the propagation algorithm to
determine the value range by “executing” the loop. Thus one
should view derivation matching as an efficiency optimization.
Only the simple derivation processing mentioned above is actually
essential for reasonable performance, but adding more templates
and more powerful derivation processing reduces the need for
brute force propagation to do the work.

3.7 Interprocedural Analysis

Standard constant propagation is often considered difficult to
extend to interprocedural cases because solving the fully general
case where constants may be propagated through intermediate
procedures requires symbolic information to be manipulated
rather than simple constants. In contrast, since we are already
performing relatively sophisticated symbolic analysis for intra-
procedural value range propagation , it is straightforward to
extend our analysis to handle interprocedural cases as well. In fact
a significant amount of branch prediction accuracy would be lost
if we did not handle interprocedural cases, because the branching
behavior of many procedures depends greatly on the values of
their parameters.

Interprocedural constant propagation is usually described in terms
of a set of jump functions associated with each call site
[Callahan+86, GroveTorczon93]. These jump functions give the
values of the actual parameters used in each call of a function, and
the value of each formal parameter is simply found by merging
the values of the jump functions at the various call sites3 . In our
case, the jump functions map directly to the range representations
for the parameters in the call, and the propagation algorithm
remains the same. In essence, the entire program is treated almost
as if it were one huge control flow graph.

One particularly important extension of interprocedural value
range propagation  is the judicious use of procedure cloning  for
critical procedures [CooperHallKennedy92]. Procedure cloning
involves duplicating a critical procedure which is not inlined but
which is called in two (or more) significantly different contexts so
that each copy may be optimized in a different way. Thus the
distinct copies can take advantage of their specific calling
contexts. Since the calling context has a large impact on the
branching behavior, this leads to substantially more accurate
predictions. Many other optimizations may also benefit from
procedure cloning [MetzgerStroud93].

3 Procedure return values are handled similarly, using return jump functions.



6

3.8 Putting It All Together

As a summary, consider our earlier example program (Figure 2).
The control flow graph in SSA form is shown below complete
with SSA edges (Figure 3).

True
False

True False

True False

control flow edge

SSA edge

x3 = assert(x2 <= 7)

y1 = x3

x0 = 0

x1 = ø(x0, x5)

x1 < 10

y2 = ø(y0, y1)

x4 = ø(x2, x3)

y2 == 1

Block A

x5 = x4 + 1

x2 = assert(x1 < 10)

x2 > 7

y0 = 1

Figure 3.  Our simple example in SSA form.

Notice the assertion along the true edge of the x1 < 10 branch.
Valuable information can often be derived from the equality tests
controlling branches, so assertions such as this one are placed in
the graph after conditional branches to assert specific properties of
a variable4.

Now consider the application of the value range propagation
algorithm. Initially, all branches are marked with probabilities of
0 and all variables are assigned T. The starting edge is marked
with 100% and selected for processing. This causes the evaluation
of all the expressions in the first block, which includes both the
assignment to x0 and the unconditional branch (or fall through).
The assignment to x0 yields a range of 1[0:0:0]. Since this is not

                                                                   

4 Variables created by assertion are a special case when merged in ø-functions.
The merging of an assertion-derived variable with it’s “parent” variable, or of
all the assertion-derived variables of a common parent, results in the value
range of the parent variable.

the same as T, the SSA edge starting at this expression is added to
the SSAWorkList. The unconditional branch (or fall through) is
marked with a 100% probability, and is added to the
FlowWorkList.

The out-edge of the first block, or perhaps the SSA edge starting
at x0, is selected next, causing the ø-function assignment to x1 to
be evaluated. One of the in-edges to this ø-function is a back edge,
so we attempt to derive the ø-function’s value range. In this case
derivation will succeed and result in a range of 1[0:10:1]. Again
this is different from T, so the two SSA edges starting at this
expression are added to the SSAWorkList.

The branch on the expression x1 < 10 is evaluated next. Since x1
has the range 1[0:10:1], the branch is predicted as 91% taken. As
a result, the true out-edge is marked with a 91% probability and
the false edge a 9% probability. Since the probabilities of both
edges have changed, both edges are added to the FlowWorkList.

This process continues until the FlowWorkList becomes empty.
At this stage the SSAWorkList still has many entries however,
and the analysis is far from complete. In fact this typically
represents the point at which each expression has only been
evaluated once. One by one, each SSA edge is now removed from
the SSAWorkList, and each in turn causes further information to
be propagated around the graph. Although our simple example
terminates rather quickly, in general new edges may be added to
either or both worklists, and the value ranges and branch
probabilities may be further refined.

Eventually these re-evaluations begin to produce the same results
as the results previously calculated. In these cases no edges are
added to the working lists, so the lists gradually become shorter.
The process slowly winds down and the FlowWorkList and
SSAWorkList become empty. At this stage a fixed point has
finally been reached. The final value ranges and branch
probabilities for our simple example are shown in Figure 4.

Value Ranges

x0 { 1[0:0:0] }
x1 { 1[0:10:1] }
x2 { 1[0:9:1] }
x3 { 1[0:7:1] }
x4 { 1[0:9:1] }
x5 { 1[1:10:1] }
y0 { 1[1:1:0] }
y1 { 1[0:7:1] }
y2 { 0.8[0:7:1], 0.2[1:1:0] }

Branch Probabilities

x1 < 10 91%
x2 > 7 20%
y2 == 1 30%

Figure 4.  Results for our simple example.

4 Algorithm Efficiency
Standard constant propagation can only lower (in the lattice sense)
a variable twice, first to a constant and then to ⊥ . The asymptotic
time complexity of standard constant propagation is therefore
O(E.V). This is a worst case result, suggesting that every variable
is defined in every basic block. Both intuition and empirical



7

evidence suggest that in practice it is closer to O(E) (ie: linear in
the size of the program).

The method proposed in this paper adds a significant amount of
processing to that of standard constant propagation. Unlike
constant propagation, the lattice for value range propagation has a
conceptually infinite number of middle levels, and expressions
inside loops may need to be re-evaluated many times before a
fixed point is reached. The expression evaluation itself is also
more complex than in constant propagation - up to R2 operations
are performed per expression evaluation, where R is the maximum
number of ranges used to represent a variable (normally four).

In order to guarantee termination, it is necessary to show that each
variable can only be lowered a finite number of times. Placing an
upper bound on the number of value ranges constituting a
variable’s representation has exactly this effect, but using this as a
proof of termination is somewhat unsettling since it merely
guarantees that any particular loop might only iterate several
million times!

A more realistic estimate of the algorithm’s efficiency can be
provided by noting three observations:

• Non-loop dependent ranges are only evaluated once.

• Almost all loop dependent ranges are either derived or are
completely narrowed after a single evaluation because the
variables they depend on are derived.

• Many problematic ranges cannot be represented and quickly
become ⊥ . For example, using the restricted representation
described in this paper even a geometric sequence cannot be
represented. In these cases the propagation algorithm will
attempt to enumerate all the values in the range. Due to the
finite nature of the range representation, this leads to either
an overly broad representation (as was the case in our earlier
range operation example), or ⊥ . In either case no further
refinement is possible.

Noting the above observations, it is reasonable to expect value
range propagation  to exhibit similar runtime behavior to that of
constant propagation. This is indeed the case - value range
propagation  is slower than constant propagation, but still linear in
the size of the program. Figures 5 and 6 show the runtime
behavior for a collection of 50 programs including the SPEC92
suite, various other benchmarks and numerous UNIX utilities
(evaluation sub-operations take essentially constant time).

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 4 0 0 0 0 1 6 0 0 0 0 1 8 0 0 0 0 2 0 0 0 0 0

Figure 5.  Number of expression evaluations
versus number of instructions.

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

5 0 0 0 0 0

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 4 0 0 0 0 1 6 0 0 0 0 1 8 0 0 0 0 2 0 0 0 0 0

Figure 6.  Number of expression evaluation sub-operations
versus number of instructions.

5 Results
To determine the accuracy of the value range propagation
approach for real programs, branch predictions determined using
value range propagation were compared to the results of
execution profiling and also to the results achieved using simple
and complex heuristics (the 90/50 rule and the [BallLarus93]
heuristics combined as in [WuLarus94] to produce probabilities).
Different inputs were used to collect the execution profiles and the
“actual observed behavior”, reflecting the normal use of execution
profiles found in practice. Heuristics similar to those of
[BallLarus93] were used in cases where the value range
propagation  algorithm encountered a branch with a variable
whose value range was ⊥ . The SPEC92 benchmarks were used for
the analysis.

The resulting branch predictions were analyzed in terms of how
far each branch’s predicted probability deviated from its actual
behavior. This involved determining the difference between the
predicted probability for each branch and the actual probability
observed for that branch when the program was given the SPEC
reference inputs. The analysis was done in both an unweighted
context, where each branch contributed equally, and in a context
where each branch was weighted according to its execution count.

This analysis is somewhat more detailed than that of other branch
prediction studies, which normally consider only taken or not-
taken results. That is, a branch is predicted as taken or not-taken,
and if at runtime it is taken (or not-taken) more than half the time,
the prediction is considered correct. In our case we are interested
in determining how accurate our predictions are at the finer level
of branch probabilities, not simply branch directions. Since we
will be speculating on the usefulness of scheduling instructions
based on these predictions, it is important to know exactly how
close to the real behavior our predictions are. Consider, for
example, the decision of whether to speculatively move an
instruction up through two conditional branches. If each branch is
taken 60% of the time, our instruction will only be useful 36% of
the time. If the branches are simply predicted as taken, however,
you could be led to believe that the instruction would be useful
most of the time.

Figures 7 and 8 show the weighted and unweighted results for the
SPECint92 and SPECfp92 benchmark suites. Each benchmark is
weighted equally within its suite. The graphs plot the percentage
of branches predicted to within a given error margin.



8

SPECint92 Unweighted

Error in Percentage Points (±)

B
ra

nc
he

s 
P

re
di

ct
ed

 t
o 

w
it

hi
n 

th
e 

G
iv

en
 E

rr
or

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

<1 <3 <5 <7 <9 <11 <13 <15 <17 <19 <21 <23 <25 <27 <29 <31 <33 <35 <37 <39

SPECint92 Weighted

Error in Percentage Points (±)

B
ra

nc
he

s 
P

re
di

ct
ed

 t
o 

w
it

hi
n 

th
e 

G
iv

en
 E

rr
or

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

<1 <3 <5 <7 <9 <11 <13 <15 <17 <19 <21 <23 <25 <27 <29 <31 <33 <35 <37 <39

Figure 7. Results for SPECint92 (unweighted & weighted by execution count).

Legend

Execution Profiling
Value Range Propagation

Value Range Propagation
(numeric ranges only)

Ball & Larus's Heuristics
90/50 Rule

Random Predictions



9

SPECfp92 Unweighted

Error in Percentage Points (±)

B
ra

nc
he

s 
P

re
di

ct
ed

 t
o 

w
it

hi
n 

th
e 

G
iv

en
 E

rr
or

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

<1 <3 <5 <7 <9 <11 <13 <15 <17 <19 <21 <23 <25 <27 <29 <31 <33 <35 <37 <39

SPECfp92 Weighted

Error in Percentage Points (±)

B
ra

nc
he

s 
P

re
di

ct
ed

 t
o 

w
it

hi
n 

th
e 

G
iv

en
 E

rr
or

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

<1 <3 <5 <7 <9 <11 <13 <15 <17 <19 <21 <23 <25 <27 <29 <31 <33 <35 <37 <39

Figure 8. Results for SPECfp92 (unweighted & weighted by execution count).

Legend

Execution Profiling
Value Range Propagation

Value Range Propagation
(numeric ranges only)

Ball & Larus's Heuristics
90/50 Rule

Random Predictions



10

The error margin plotted is between 0 and 40 percentage points.
This range was chosen to accentuate the important part of the
graph (the low error margins). Techniques which cannot predict a
substantial percentage of branches to within ±40% are doing very
poorly indeed, so displaying the remaining 40 - 100 error range
would add little meaning to the graphs.

Since the graphs plot the percentage of branches predicted to
within a given error margin, better predictions result in lines
which move more quickly towards the top of the graph. For
reference, the perfect static predictor would mark each branch
with the same probability as was observed in the trial runs, and
would have a graph with a horizontal line across the top,
indicating that 100% of the branches were predicted to within
±0% of the observed behavior.

As you would expect, execution profiling does extremely well in
all cases. It does almost as well as the perfect static predictor for
numeric code (SPECfp92), with an astonishing 92% of branches
predicted to within ±1% of their actual behavior! For integer and
pointer intensive code the results are slightly worse but still very
impressive (SPECint92). Interestingly, the weighted integer
results for execution profiling are significantly worse than the
unweighted results. This may be because many of the branches
which get heavily weighted in SPECint92 are controlled by the
size of the input, and the SPEC feedback collection inputs
(input.short) are much shorter than the reference inputs (input.ref).

As the figures show, the predictions based on value range
propagation  are quite accurate. Results are shown for the value
range propagation algorithm both with and without symbolic
ranges. In both cases they are better than the heuristic methods.
Adding symbolic ranges substantially increases the overall
accuracy of the method because many more branches can be
predicted without resorting to heuristics. Whether adding even
more sophisticated symbolic analysis would result in a significant
increase in accuracy or not is an open question. Unfortunately,
even a small increase in the scope of the symbolic range
representation would require a large amount of implementation
effort. Interestingly, the value range propagation  method is
significantly more accurate for numeric code than for integer and
pointer code. This is largely because numeric code often has a
very simple branching structure, with most branches depending on
loop control variables. This reduces the number of cases where
branches are based on variables whose value range is ⊥ , which in
turn reduces the amount of time when heuristics are used.

As expected, the 90/50 rule does most poorly, particularly in the
unweighted case. This is largely due to the inaccuracy of the “50”
part of the 90/50 rule. Backward branches are  usually taken, so
90% is often quite close to the actual behavior of these branches,
but forward branches depend greatly on the particular test being
performed. Most branches take one direction with high
probability, and very few forward branches are a 50/50 split. As a
result, the graph for the 90/50 rule has a sudden increase at about
the 50% error mark (not shown in the figures), since all the
branches which the 90/50 rule predicts as 50% taken are suddenly
accounted for (50% ± 50% covers the entire range of
possibilities!).

6 Applications
One of the most pleasing features of the approach outlined in this
paper is that for those who already compute the SSA form or a
similar representation, this approach can be added to an optimizer
as an extension of constant propagation. So with relatively little
effort, quite accurate branch predictions are suddenly available.
These can then be used in a host of optimizations. The three main
optimizations which benefit from branch predictions are:

Global Instruction Scheduling

Superscalar and VLIW processors issue several instructions
every cycle. To fully utilize such processors, compilers must
find several independent instructions to issue for each cycle, or
otherwise let the processor sit partially idle. Due to the
relatively small size of most basic blocks, it is usually
necessary to look beyond basic block boundaries and perform
some form of global scheduling with speculative execution
[BernsteinRodeh91] or trace scheduling [Fisher81, Ellis85].
Good branch predictions are of great benefit here since the
degree of speculation involved in moving a particular
instruction can be accurately assessed.

Code Layout, Cache Optimizations & Inlining

On many modern processors, an instruction cache miss or
pipeline flush due to an unexpected change of direction in the
instruction stream will cost several cycles. Even a correctly
predicted branch may cost more than straight line code. As a
result, compilers must pay careful attention to the way they lay
out their generated code. This usually means placing related
pieces of code close to each other, inlining simple function
calls and coding likely paths as straight-line code with
branches to less likely code which is placed out-of-line
[McFarling89, PettisHansen90]. The objective here is to reduce
the number of branches encountered at runtime and to improve
the I-cache hit rate so that fewer misses occur. This approach
can consistently make an I-cache appear 2 or 3 times as large
as it does under current practice.

Interprocedural Register Allocation

Modern processors typically have large register sets which, if
used well, can dramatically reduce the memory reference
overhead. Unfortunately, the frequent occurrence of function
calls in most programs significantly reduces the effectiveness
of the register set. Register windows are a hardware solution to
this problem, but interprocedural register allocation which
takes into account the probabilities of function calls can make
much better use of a given register set [Wall86, Wall88,
Wall91, SteenkisteHennessy89].

In addition to the three optimizations mentioned above, several
traditional high level optimizations can also benefit from
knowledge of frequently executed paths by using tail duplication
to create what are effectively larger basic block structures
[ChangMahlkeHwu91]. A similar mechanism can also be used to
improve the accuracy of branch prediction itself [Krall94].

Branch probabilities can also be used to control the order of
applying other optimization phases, as is done in coagulation
[Karr84, Morris91]. In this case what we want to know is the
execution frequencies of functions and basic blocks, not the



11

probabilities of branches. This information can be obtained by
using a Markov state transition model [Wagner+94], or by
propagating frequencies around the control flow graph until a
fixed point is reached [WuLarus94]. Optimizations can then be
applied in descending order of execution frequency. This is
particularly effective for optimizations which allocate a limited
resource, such as register allocation, since the most frequently
executed code is processed first and is therefore more likely to get
the resources it needs.

In addition to using the branch probabilities calculated from value
range propagation, the value ranges themselves can also be used
in some simple array access optimizations. Of particular note are:

Alias Analysis for Array Accesses

Using value range propagation  it is sometimes possible to
show that the ranges of the indices of two array accesses
cannot overlap. As a result, these two accesses cannot alias
each other. This analysis is much more limited than
sophisticated data dependency analysis techniques such as
Banerjee’s Inequalities [Banerjee88]. However it does offer a
simple false-dependency breaking mechanism for compilers
which don’t implement the more sophisticated methods.

Elimination of Array Bounds Checks

For languages which require (or compilers which implement)
dynamic array bounds checking, many array bounds checks
can be shown to be redundant by value range propagation. The
elimination of these tests in combination with existing test
minimization techniques such as [Gupta93] can greatly reduce
the overhead of array bounds checking.

Finally, value range propagation itself can be viewed as an
optimization. Viewed in this context, value range propagation
subsumes both constant propagation and copy propagation. If a
variable’s final value range is a single constant such as 1[7:7:0],
then the variable’s value is constant for all possible executions of
the program and can therefore be evaluated at compile time.
Similarly, a variable x whose value range is the single symbolic
range of another variable such as 1[y :y:0] is simply a copy of y. As
such, all references to x can be replaced by references to y, and x
can be eliminated. Just as constant and copy propagation identify
unreachable code, so does value range propagation  - branches to
unreachable code have a probability of 0.

7 Conclusion
This paper presented a new approach to accurate static branch
prediction called value range propagation. The technique tracks
the weighted value ranges of variables through a program, much
like constant propagation. These value ranges may be either
numeric or symbolic in nature. Branch prediction is then
performed by simply consulting the value range of the appropriate
variable. In the process, value range propagation subsumes both
constant propagation and copy propagation.

Both numeric and symbolic ranges must be handled to achieve
high levels of accuracy in branch predictions, and a tradeoff
between accuracy and efficiency is required. For practical
purposes a simple range representation capable of handling
arithmetic sequences is sufficient, and a set of four ranges per
variable is adequate for most programs with typical control flow.
A representation which handles symbolic ranges defined relative

to a single variable achieves most of the benefits of symbolic
analysis at a reasonable cost in implementation effort. Whether
more sophisticated symbolic analysis would result in more
accurate predictions or not is an open question.

To avoid “executing” loops in the program, loop carried
expressions must be detected and handled specially. This can be
done by matching a loop carried variable’s derivation  to a set of
templates which identify common looping scenarios. Variables
whose derivations don’t match a template can still be handled by
allowing the propagation algorithm to “execute” the loop.

Experimental results indicate that the value range propagation
approach gives predictions which are substantially more accurate
than the best current heuristic approaches. Heuristics must still be
used in the value range propagation  method for branches with
variables whose ranges are impossible to determine statically,
such as loads from memory.

The  value range propagation method can be implemented over
any “factored” dataflow representation with a static single
assignment property (such as SSA form or a dependence flow
graph where the variables have been renamed to achieve single
assignment). The method can be implemented as an extension of
standard constant propagation for those who already compute the
SSA form or a similar representation. It maintains the linear
runtime behavior of standard constant propagation experienced in
practice.

Acknowledgments
I would like to thank my PhD supervisor, Dr. John Gough, for
providing many helpful comments during this work and for
reviewing various drafts of this paper.

References
[BallLarus92]

Thomas Ball and James R. Larus. Optimally Profiling and Tracing
Programs. Proceedings of the 19th Annual Symposium on Principles
of Programming Languages, January 1992, pages 59-70.

[BallLarus93]
Thomas Ball and James R. Larus. Branch Prediction For Free.
Proceedings of the SIGPLAN ‘93 Conference on Programming
Language Design and Implementation, June 1993, pages 300-313.

[Banerjee88]
Utpal Banerjee. Dependence Analysis for Supercomputing . Kluwer
Academic Publishers, 1988.

[BernsteinRodeh91]
David Bernstein and Michael Rodeh. Global Instruction Scheduling
for Superscalar Machines.  Proceedings of the SIGPLAN ‘91
Conference on Programming Language Design and Implementation,
June 1991, pages 241-255.

[Callahan+86]
David Callahan, Keith D. Cooper, Ken Kennedy and Linda Torczon.
Interprocedural Constant Propagation. Proceedings of the SIGPLAN
‘86 Conference on Compiler Construction, June 1986, pages 152-161.

[ChangMahlkeHwu91]
Pohua P. Chang, Scott A. Mahlke and Wen-Mei W. Hwu. Using
Profile Information to Assist Classic Code Optimizations. Software
Practice and Experience 21(12), December 1991, pages 1301-1321.

[CooperHallKennedy92]
Keith D. Cooper, Mary W. Hall and Ken Kennedy. Procedure
Cloning. IEEE 1992 International Conference on Computer
Languages, April 1992, pages 96-105.



12

[Cytron+91]
Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman and
F. Kenneth Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph.  ACM Transactions on
Programming Languages and Systems 13(4), October 1991, pages
451-490.

[Ellis85]
John R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD
Thesis, Yale University, February 1985. Also available from MIT
Press, 1986.

[Fisher81]
Joseph A. Fisher. Trace Scheduling: A Technique for Global
Microcode Compaction. IEEE Transactions on Computers 30(7), July
1981, pages 478-490.

[FisherFreudenberger92]
Joseph A. Fisher and Stefan M. Freudenberger. Predicting
Conditional Branch Directions From Previous Runs of a Program.
Proceedings of the 5th International Conference on Architectural
Support for Programming Languages and Operating Systems, October
1992, pages 85-95.

[GroveTorczon93]
Dan Grove and Linda Torczon. Interprocedural Constant
Propagation: A Study of Jump Function Implementations.
Proceedings of the SIGPLAN ‘93 Conference on Programming
Language Design and Implementation, June 1993, pages 90-99.

[Gupta93]
Rajiv Gupta. Optimizing Array Bound Checks Using Flow Analysis.
ACM Letters on Programming Languages and Systems 2(1-4),
March-December 1993, pages 135-150.

[Harrison77]
William H. Harrison. Compiler Analysis of the Value Ranges for
Variables. IEEE Transactions on Software Engineering 3(3), May
1977, pages 243-250.

[JohnsonPingali93]
Richard Johnson and Kershav Pingali. Dependence-Based Program
Analysis. Proceedings of the SIGPLAN ‘93 Conference on
Programming Language Design and Implementation, June 1993,
pages 78-89.

[Karr84]
Michael Karr. Code Generation by Coagulation.  Proceedings of the
SIGPLAN ‘84 Symposium on Compiler Construction, June 1984,
pages 1-12.

[Kildall73]
G. A. Kildall. A Unified Approach to Global Program Optimization.
Proceedings of the First Annual Symposium on Principles of
Programming Languages, October 1973, pages 194-206.

[Krall94]
Andreas Krall. Improving Semi-Static Branch Prediction by Code
Replication. Proceedings of the SIGPLAN ‘94 Conference on
Programming Language Design and Implementation, June 1994,
pages 97-106.

[McFarling89]
Scott McFarling. Program Optimization for Instruction Caches.
Proceedings of the 3rd International Symposium on Architectural
Support for Programming Languages and Operating Systems, April
1989, pages 183-191.

[McFarlingHennessy86]
Scott McFarling and John L. Hennessy. Reducing the Cost of
Branches. Proceedings of the 13th Annual Symposium on Computer
Architecture, June 1986, pages 396-403.

[MetzgerStroud93]
Robert Metzger and Sean Stroud. Interprocedural Constant
Propagation: An Empirical Study. ACM Letters on Programming
Languages and Systems 2(1-4), March-December 1993, pages 213 -
232.

[Morris91]
W. G. Morris. CCG: A Prototype Coagulating Code Generator.
Proceedings of the SIGPLAN ‘91 Conference on Programming
Language Design and Implementation, June 1991, pages 45-58.

[PettisHansen90]
Karl Pettis and Robert C. Hansen. Profile Guided Code Positioning.
Proceedings of the SIGPLAN ‘90 Conference on Programming
Language Design and Implementation, June 1990, pages 16-27.

[ReifLewis77]
John H. Reif and Harry R. Lewis. Symbolic Evaluation and the Global
Value Graph.  Proceedings of the 4th Annual Symposium on
Principles of Programming Languages, January 1977, pages 104-118.

[Smith81]
James E. Smith. A Study of Branch Prediction Strategies. Proceedings
of the 8th Annual Symposium on Computer Architecture, May 1981,
pages 135-148.

[SteenkisteHennessy89]
Peter A. Steenkiste and John L. Hennessy. A Simple Interprocedural
Register Allocation Algorithm and Its Effectiveness for LISP. ACM
Transactions on Programming Languages and Systems 11(1), January
1989, pages 1-32.

[Wagner+94]
Tim A. Wagner, Vance Maverick, Susan L. Graham and Michael A.
Harrison. Accurate Static Estimators for Program Optimization.
Proceedings of the SIGPLAN ‘94 Conference on Programming
Language Design and Implementation, June 1994, pages 85-96.

[Wall86]
David W. Wall. Global Register Allocation at Link Time. Proceedings
of the SIGPLAN ‘86 Symposium on Compiler Construction, June
1986, pages 264-275.

[Wall88]
David W. Wall. Register Windows vs Register Allocation.  Proceedings
of the SIGPLAN ‘88 Conference on Programming Language Design
and Implementation, June 1988, pages 67-78.

[Wall91]
David W. Wall. Predicting Program Behavior Using Real or
Estimated Profiles . Proceedings of the SIGPLAN ‘91 Conference on
Programming Language Design and Implementation, June 1991,
pages 59-70.

[WegmanZadeck91]
Mark N. Wegman and F. Kenneth Zadeck. Constant Propagation with
Conditional Branches. ACM Transactions on Programming
Languages and Systems 13(2), April 1991, pages 181-210.

[WuLarus94]
Youfeng Wu and James R. Larus. Static Branch Frequency and
Program Profile Analysis. Proceedings of the 27th International
Symposium on Microarchitecture, November 1994, pages 1-11.


	Abstract
	Introduction
	Related Work
	Algorithm Overview
	Objective
	Propagation Terminology
	Value Range Propagation
	Range Representation
	Range Operations
	Loop Carried Expressions
	Interprocedural Analysis
	Putting It All Together

	Algorithm Efficiency
	Results
	SPECint92
	SPECfp92

	Applications
	Conclusion
	Acknowledgments
	References

