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Abstract 
 

In this work we present a method for accurate 
estimation of temperature at various locations on a chip 
considering the inaccuracies in thermal sensor readings 
due to limitations mainly due to thermal sensor placement 
and sensor noise. This technique enables accurate 
estimation of temperature at different locations on the chip 
with only a limited number of sensors in an efficient way. 
We utilize Kalman filter (KF) for temperature estimation 
and for elimination of sensing inaccuracies as well. The 
computational complexity is reduced by using steady state 
Kalman filter during normal operation of the chip and 
reducing the order of the thermal model by a projection 
based model order reduction method. Our experimental 
results show that this technique typically reduces the 
standard deviation and maximum value of temperature 
estimation errors by about an order of magnitude. 
 

1. Introduction 
 

High temperatures caused by ever increasing integration 
density and power consumption of VLSI circuits have caused 
a number of issues such as slower devices, longer delays, 
complicated timing and noise analysis, increased leakage 
power and degraded reliability  [1]. According to  [2], more 
than 50% of all integrated circuit failures are related to 
thermal issues. Temperature on the chip can be controlled 
using various off-chip, on-chip, static or dynamic techniques 
 [2]. One of the most important aspects of dynamic thermal 
management is obtaining accurate temperature information 
and capturing the variations in the temperature caused by 
power consumption variations due to runtime workload 
changes. Many runtime DTM techniques require accurate real 
time temperature information  [3]. The accuracy of the thermal 
measurements directly affects the performance of the thermal 
management and the performance of the CPU  [6]. 
Temperature estimations lower than the actual temperature 
can result in late activation of DTM which may result in 
higher packaging cost or reliability degradation. Estimations 
higher than actual temperature can result in early activation of 
DTM which degrades performance.  

Dynamic thermal management techniques usually rely on 
the temperature obtained from on-chip thermal sensors or on 
techniques which estimate the temperature based on the 
power consumption of functional units. The problems 

associated with the open loop temperature estimation 
techniques and also inaccuracies in the temperature sensors 
call for efficient techniques which can provide accurate 
temperature information even in the presence of significant 
noise in thermal sensor readings.  The temperature sensing 
inaccuracies are caused by variety of factors including sensor 
placement, process variation, degradation of sensors, power 
variations, etc. Thermal sensors are often placed at locations 
other than the location of interest since hot spot areas on the 
die are usually also areas where silicon real estate is at 
premium. Thus, there can be a significant disparity between 
sensor readings and the actual temperature at the location of 
interest [4]. According to [4], there can be temperature 
differences about 10°C between the sensor and the hotspot. 
The technique proposed in this paper provides an efficient 
way for accurately estimating temperatures at different 
locations on the die using imprecise readings provided by a 
limited number of sensors available on the chip. The 
experimental results show significant reductions in 
temperature estimation errors with very minor typical 
overhead of a few hundreds of microseconds for reduced 
order models. The rest of the paper is organized as follows. 
Section 2 discusses the related work. Section 3 explains the 
details of the technique. Section 4 demonstrates the 
experimental results and Section 5 concludes the paper. 

 

2. Related Work 
 

DTM techniques need accurate and efficient temperature 
measurements at runtime. Different thermal modeling and 
simulation methods have been proposed for various levels of 
abstraction  [2]. One of the most widely used models for 
temperature estimation at micro-architectural level is HotSpot 
 [6], which is based on building a multi-layer thermal RC 
network of the given chip. Conventional integration-based 
transient simulation is performed in  [7] to calculate the 
temperature at each execution interval. Accurate temperature 
estimation techniques like HotSpot  [6] usually suffer from the 
high computation cost which typically cannot be afforded at 
runtime. In  [8], the authors exploit periodic behavior of 
programs and the resulting periodicity in temperature of 
micro-architectural modules to speed up transient thermal 
simulation using spectrum analysis. Another technique 
proposed in  [8] performs runtime thermal simulation based 
on the observation that the average power consumption of 
architecture level modules in microprocessors is the major 
contributor to the variations in the temperature. Therefore 
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piecewise constant average power inputs can be used to speed 
up the thermal analysis. Techniques such as those introduced 
in  [8] need to continually perform temperature estimation, 
thus cause significant overhead.  In addition, since these on-
chip temperature estimation techniques are not complemented 
by thermal sensor measurements, the estimates can easily 
deviate from the actual temperature values. Due to the 
shortcomings of temperature estimation techniques, many 
DTM techniques utilize real time temperature measurements 
obtained by thermal sensors  [3]. One of the major problems 
in direct use of on-chip temperature sensors is the sensor 
imprecision and noise  [4]. There are several factors that cause 
inaccuracy in temperature measurement. Placement of 
thermal sensors is limited by a number of factors such as 
routing and I/O considerations. Sensor placement methods 
like  [17] try to assign optimal locations to the sensors such 
that different hotspots are covered by thermal sensors, they 
can not resolve the problem of temperature difference 
between the hotspot and sensor completely, especially when 
the number of sensors is limited, which is usually the case.  In 
addition, hotspots tend to move around the chip as a function 
of the workload. Thermal diodes are usually used as 
temperature sensors and the voltage reading over the diode 
must be calibrated to get the actual temperature. This 
calibration is usually done at test time [4]. Even a small 
variation in the offset can lead to large errors in temperature 
measurement. Variations in process parameters introduced 
during manufacturing result in sensor reading inaccuracies as 
well (e.g. threshold voltage variation on the die) [4].  Errors 
are introduced in the process of analog to digital conversion 
due to quantization, and limitations of design and technology. 
Changes in power supply voltage can also affect sensor 
readings. Finally, sensor accuracy is affected by its reliability 
degradation. While the average sensor error may be low, the 
sensor might deliver single readings with high deviations 
from the actual temperature. If the readings from the sensors 
are directly used with complete trust, such variations may 
cause several serious problems. 

The technique presented in this paper estimates at run time 
the temperature at inaccessible locations of the die with very 
minimal overhead in the presence of sensor noises. Thus, it 
can be used at runtime for temperature aware scheduling and 
other online thermal management techniques.  It can be 
activated as needed rather than continuously; for example 
when the temperature at a unit on the chip is approaching a 
threshold.  This way it provides an easy trade off between 
accuracy and overhead. Finally, it can adapt to the changes in 
the measurement noise characteristics, which is very 
important since mean time to failure of thermal sensors is 
shorter than that of assets they are supposed to protect, 
therefore the characteristics of sensor inaccuracies may 
change during the lifetime of the chip  [5].  To the best of our 
knowledge, it is the first proposed technique for estimation of 
temperature at inaccessible points of the chip based on the 
temperature readings at available sensors. We next outline our 
temperature estimation technique, followed by results and 
conclusions. 

3. Accurate Temperature Estimation 
 

Our technique accurately estimates the temperature at 
various locations on the die by using temperature 
measurements obtained from a few on-chip sensors. Issues 
related to sensor placement and dynamic change of hotspots 
can be addressed by our method.  To use our method, we first 
need to complete a sequence of off-line setup steps shown in 
Figure 1.a, followed by run-time implementation showed in 
Figure 1.b.  The setup phase (Figure 1.a.) starts by creation 
of chip’s equivalent thermal RC network using models 
described in  [6]  [7]. The linear dynamic system generated in 
this way is usually too large and complex for an on chip 
software implementation. Therefore, model order reduction is 
used to reduce the size of the model and generate a much 
smaller yet accurate linear system. Kalman filtering estimates 
the temperature at different locations on the chip based on the 
inaccurate temperature readings at sensor locations and 
inaccurate power consumption estimates.  Thus, in the next 
step, the calibration is performed where KF is applied to the 
reduced order model of the system. The calibration ends 
when the KF reaches its steady state.  

 

Model Order Reduction

Thermal Model

Reduced Order 
Thermal Model

Kalman Filter Generation

Kalman Filter

Calibration

Steady State Kalman Filter

Kalman Filter

Time UpdateMeasurement 
Update

Accurate 
Temperature Estimates
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Information
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Power 

Estimates

(a) (b)  
Figure 1. The proposed technique  

(a) Sequence of steps in off-line setup   
(b) Temperature estimation by Kalman filter 

 

After this, the resulting steady state KF is used during the 
normal operation to actually perform the temperature 
estimation (Figure 1.b). The KF estimates the temperature in a 
predict-correct manner based on inaccurate information of 
temperature and power consumption. Time update equations 
project forward in time the current temperatures and the error 
covariance estimates to obtain a priori estimates for the 
measurement step. The measurement update equations 
incorporate the new measurements into the a priori estimate 
to obtain an improved a posteriori estimate of the 
temperature.  

 

3.1 Temperature Estimation 
Temperature values at different locations on the chip 

depend on factors such as power consumptions of functional 
units, layout of the chip and the package characteristics. 
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Analysis and estimation of temperature requires a thermal 
model which represents the relation between these factors and 
the resulting temperature. The differential equations 
describing the heat flow have a form dual to that of electrical 
current. This duality is the basis for the microarchitectural 
thermal model proposed in [6] and is further explained in  [7] 
and  [1]. The lumped values of thermal R and Cs represent the 
heat flow among units and from each unit to the thermal 
package.  

We model the temperature at grid cell level  [8] which 
enables more accurate and fine grained temperature estimates. 
An analytical method is proposed in  [1] to determine the 
proper size of a grid cell. The thermal network is represented 
in state space form with the grid cell temperatures as states 
and the power consumption as inputs to this system. The 
outputs of this state space model are the temperatures at the 
sensor locations which can be observed by sensor readings. 
We define Ct and Gt as thermal capacitance and thermal 
conductance matrices, D as the input selection matrix which 
identifies the effect of power consumptions at current time 
steps on the temperature at next time step and F as the output 
matrix which identifies the sensor grid cells at which 
temperatures are observable. u is the vector of power 
consumption values at power consuming components on the 
die and T is the vector of temperature values at different grid 
cells. The units for temperature and power are centigrade 
degree and Watt. The system can be represented as:  

 
1 1( ) ( ) ( )

( ) ( )

t t t

dT
t C G T t C Du t

dt
S t FT t

− −= − +

=  

(1) 

Since sensor measurements can be inaccurate and exact 
power consumptions of the functional units at run time are 
not available, we use Kalman filter (KF) for temperature 
estimation. KF uses a form of feedback control to estimate a 
process in a predict-correct manner with time and 
measurement update phases. Time update equations project 
forward in time the current state of the system and the error 
covariance estimates to obtain a priori estimates for the 
measurement step. The measurement update equations 
incorporate the new measurements into the a priori estimate 
to obtain an improved a posteriori estimate.  

We use Kalman filtering to both estimate the temperature 
and to filter out any thermal sensor noise. In order to apply 
the KF to our model, we convert the continuous time 
differential equations in (1) to corresponding discrete time 
equations in (2). Here H, J and F are the state matrix, input 
matrix and output matrix of the system respectively. 
Furthermore, at time n, T[n], u[n] and S[n] are the state 
vector representing temperatures at different grid cells, input 
vector of functional block power consumption and output 
vector of temperatures at sensor locations respectively.  

 
[ 1] [ ] [ ]

[ ] [ ]

T n H T n J u n

S n F T n

+ = +
=  

(2) 

 Applying KF requires knowledge of the power 
consumption at different functional units. Accurate 
estimation of power consumptions of each component at each 

time step is not practical in runtime. On the other hand,  [8] 
shows that most of the energy in the power traces is 
concentrated in the DC component. In other words, the trend 
of temperature variations is determined by the average power 
in a certain amount of time. This is especially true for power 
traces with very large DC components and smaller high 
frequency harmonics  [8]. Based on this fact, we use the 
average power consumption of each component as an 
estimation of the actual power consumption at that time. 

Introduction of noise due to inaccuracies of the modeling 
the process, w[n], and the measurement noise, v[n], enables 
us to rewrite the system formulation as:  

 
[ 1] [ ] [ ] [ ]

[ ] [ ] [ ]v

T n H T n J u n Gw n

S n F T n v n

+ = + +
= +  

(3) 

Let Ť[n|n-1] represent the estimate of T[n] given the past 
measurements up to Sv[n-1]. Also let Ť[n|n] represent the 
updated estimate based on the last measurement Sv[n]. Where 
P is the error covariance matrix, the time-update equations for 
our system would be:  

 
[ 1| ] [ | ] [ ]

[ 1| ] [ | ] [ ]T T

T n n H T n n J u n

P n n HP n n H GQ n G

+ = +
+ = +

( (

 
(4) 

Given the current estimate Ť[n|n], the time update predicts 
the state value at the next sample n+1 (one step ahead). Then 
the measurement update adjusts this prediction based on the 
new measurement Sv[n+1]. The measurement update 
equations for this system are:  

1

[ | ] [ | 1] [ ]( [ ] [ | 1])

[ ] [ | 1] ( [ ] [ | 1] )

[ | ] ( [ ] ) [ | 1]

v

T T

T n n T n n M n S n FT n n

M n P n n F R n FP n n F

P n n I M n F P n n

−

= − + − −

= − + −
= − −

( ( (

 

(5) 

M is called Kalman gain or innovation gain. It is chosen to 
minimize the steady state covariance of the estimation error 
given the noise covariance Q=E(w[n]w[n]T) and 
R=E(v[n]v[n]T). 
 

3.2 Reducing Computational Complexity 
 

Considering k as the size of the dynamic model, 
computational complexity of the KF is O(k3) due to the matrix 
inversion in calculating Kalman gain M[n]. This causes high 
computational overhead when the size of the model gets 
larger. We introduce two techniques that significantly reduce 
the computational complexity of the model.  One of these 
techniques reduces the size of the model used in KF, while 
the other reduces the number of computations required for 
KF.  
 

3.2.1 Steady State Kalman Filtering  
The time scales at which the sensor noise characteristics 

change are much larger than the time scale at which we study 
the system (months or years compared to seconds). Thus we 
assume the system and noise covariances are time-invariant. 
As a result, we can use steady state KF in which it is not 
necessary to compute the estimation error covariance or 
Kalman gain in real time  [9]. The steady state KF reduces the 
computational overhead from O(k3) to O(k2) while still 
providing good estimation performance  [9]. A calibration 
step is needed prior to run-time operation in order to get the 
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KF to steady state. In our experiments, we show that use of 
steady state KF reduces the computational complexity to 
several orders of magnitude without significant effect on 
accuracy (Figure 4). 

 

3.2.2 Model Order Reduction  
The model order reduction enables us to find a low-

dimensional but accurate approximation of the thermal 
network which preserves the input-output behavior to a 
desired extent. We use a projection based implicit moment 
matching method (PRIMA)  [11] which is used to find a 
mapping from the high-dimensional space of the given state-
space model to a lower dimensional space. Krylov subspace 
vectors are used instead of moments. For a square matrix of 
dimension N and a vector b, the subspace spanned by the 
vectors [b, Ab, …, Aq-1b] is called a Krylov subspace of 
dimension m generated by {A, b} and is denoted by Kr(A, b, 
q). With thermal capacitance and conductance matrices 
represented by Ct and Gt respectively, the circuit formulation 
shown in equation (1) can be represented in this form:  

 t tsC T G T Du= − +  (6) 
The reduced order model is generated using congruence 

transformation, where Cr=Vq
TCtVq, Gr=Vq

TGtVq, Dr=Vq
TD, 

Xr=Vq
TX:  

 r r rsC T G T D u= − +  
(7) 

The projection matrix Vq={V1, V2, …, Vq}  is obtained by 
Arnoldi process such that 

 
1

1 2

1 1 1
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−

− − −
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and  
0

1

T
i j

T
i i

v v for all i j

v v for all i

= ≠

=  
(9) 

This approach matches moments up to order q. The larger 
the number of matched moments, the closer is the behavior of 
the reduced order model to the original system, but at the cost 
of higher processing time.   

Because of the moment-matching properties of Krylov-
subspaces, the reduced transfer function will agree with the 
original up to the first q derivatives on an expansion around 
some chosen point in the complex plane (usually s=0). In 
addition, due to the congruence transformation, the reduced 
model inherits the structure of the original model (7), which 
means the passivity is preserved.  

There are some other model order reduction techniques 
which are designed for linear circuits with multiple sources. 
For example, EKS  [12] can match higher moments compared 
with PRIMA in MIMO system, but its limitations on the 
inputs makes it inappropriate for our case. In our case, as 
experimental results show, PRIMA works well. The reason is 
that our network consists of only R and Cs. Moreover, the 
topology of the network is such that it operates as a low pass 
filter which eliminates the high frequencies in the inputs. 
Therefore PRIMA with a few number of moments around 
frequency s=0 provides us with enough accuracy and 
acceptable overhead compared to RHS-model order reduction 

methods like EKS  [12]. Although methods like EKS can be 
more accurate, they impose some limitations on the inputs 
and more importantly incur more computational overhead. 
The effectiveness of PRIMA is shown in Table II, where 
matching a small number of moments provide enough 
accuracy for our application. 

The next section shows how temperature estimation 
accuracy can be traded off with computational complexity.  

 

4. Experimental Results 
 

We use a multi-processor SoC comprised of 6 XScale 
cores  [13] to evaluate with MiBench Ver 1.0  [14] 
benchmarks for the evaluation of our technique.  MiBench 
has software from the automotive/industrial, network and 
telecommunications segments  [15]. Idle times between task 
arrivals are modeled using Pareto distribution  [16] with a 
timeout-based dynamic power management policy. XScale 
power values are used to estimate each core’s power 
consumption  [13]. Parameters used for package are: 
convection capacitance 140.4 J/K, convection resistance 0.1 
K/W, spreader thickness 10-3m, and initial temperature of 
333°K.   

Our method consists of both off and on line parts. The off-
line implementation is done in Matlab, while the run-time 
part is implemented in C++ which runs on XScales. In our 
experiments, the temperature values are obtained from grid 
mode HotSpot  [10]. The chip is divided into a grid, as shown 
in Figure 2. The temperature values of the grid cell 
containing the sensors are observable, while the temperature 
at other grid cells are assumed to not be observable and must 
be estimated using our technique. We used a 18x12 grid for 
our experiments, but one of the advantages of using PRIMA 
model order reduction technique is that the size of reduced 
model only depends on the number of power sources and the 
number of matched moments, not the number of grid cells. 
Therefore, increasing the granularity of the grid in order to 
increase the accuracy does not result in higher computational 
overhead. An analytical method is presented in  [1] to find the 
appropriate number and size of the grid cells. No specific 
sensor technology is assumed in this work. The readings from 
the temperature sensors are used as starting temperature 
values. Figure 3 shows an example of temperature estimation 
by our method.  

 

X  Locations of Interest
1, 2  Sensor Locations   

 

Figure 2. Grid cells, locations of interest 
 and sensor locations 
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Table 1 Error statistics for limited number of sensors 

 
Sensor Measurement 

Errors (°C) 
Temperature Estimation 

Error (°C) 
Number of 

Sensors 
Mean 

Absolute Error 
Std. Dev. 

Mean 
Absolute Error 

Std. Dev. 

2 3.74 4.72 0.77 1.28 
3 3.72 4.60 0.76 1.27 
4 4.41 5.50 0.75 1.27 
5 3.29 3.94 0.76 1.27  

 

Actual temperatures at the sensor locations and locations 
of interest are the obtained from the grid mode HotSpot. 
Temperature readings at the sensor locations are generated by 
superimposing the noise on the actual temperature values at 
the sensor locations. To model the inaccuracies observed at 
thermal sensors, different Gaussian noise and bias values are 
superimposed on the actual temperature values. Processes 
generating these noises are assumed to be stationary between 
different calibrations. As Figure 3 shows, the estimated 
temperature closely follows the actual temperature at the 
location of interest. Accurate estimates of the temperature 
prevent early or late activation of DTM techniques due to 
significant sensor error and noise. In order to evaluate the 
ability of our estimation technique, we examine the mean 
absolute error and the standard deviation of the error as the 
location of interest. These values are averaged over all the 
locations of interest in the MPSoC. First we evaluate the 
ability of the proposed technique to estimate the temperature 
at different locations on the chip using a few number of 
sensors. We estimate the temperature at 6 locations of interest 
using only 2, 3, 4 and 5 sensors. The configuration for 2 
sensors is shown in Figure 2. Each sensor is placed such that 
it is at about the same distance from the hotspots it must 
cover. The step size is 100ms and 3 moments are matched. As 
can be seen in this table, the technique is able to estimate the 
temperature at the locations far away from the limited number 
of sensors. In order to evaluate the other effective parameters, 
we assume that we have as many sensors as locations of 
interest, but not near the location of interest. 

 

Noisy Temperature 
Readings of Sensor

Actual Temperature at 
the Location of Interest

Estimated Temperature at 
the Location of Interest

Actual Temperature 
at Sensor Location

 
Figure 3 Comparison of temperature read by sensors, 

actual temperatures and estimated temperature  
 

 

Table 2 Error statistics for different time steps 

 
Sensor Measurement 

Errors (°C) 
Temperature Estimation 

Error (°C) 

Step Size 
(10-4s) 

Mean 
Absolute 

Error 
Std. Dev. 

Mean 
Absolute 

Error 
Std. Dev. 

32 3.00 4.16 0.06 0.08 
128 2.91 4.04 0.13 0.25 
512 3.09 4.33 0.49 0.89 

1028 4.29 4.27 0.97 1.24 
2056 3.89 5.08 1.74 1.39  

 

To show that the method can work for estimating the 
temperature at not only the hotspots, but at any location on 
the chip, we chose arbitrary locations for the sensors.  

An important parameter which affects both the accuracy 
and the computational requirements of our technique is the 
time step at which temperature sensors are read and KF is 
applied. Table 2 shows the mean absolute error and standard 
deviation for measurement and estimation errors for different 
sizes of time steps. The basic time step is chosen at 10-4s and 
multiplied by some powers of 2.  

Table 3 shows how matching different number of 
moments affects the accuracy of our technique. For this table, 
the step size is selected 50ms. Size of the model for matching 
1, 2, 3 and 4 moments are 6, 12, 18 and 24 respectively. The 
associated overhead can be found in Table 3. As it is shown 
in the table, after matching the second moment, addition of 
more moments does not significantly improve accuracy. 
Therefore, the model can be reduced by matching 2 moments 
with minimum performance loss. Figure 4 presents the 
runtime overhead associated with KF. This figure allows 
comparison between the overhead of general KF and steady 
state KF. In the calibration process, i.e. before the KF reaches 
its steady state, the general KF is used. But since the 
calibration can be performed offline, its overhead does not 
affect the performance. The number of calibration steps 
depends on the thermal network and noise characteristics, 
which in our case is less than 100. As can be seen in this 
figure, the performance overhead of the steady state KF is 
significantly lower, and this difference gets larger for bigger 
models. An important point is that due to the lack of the 
floating point hardware on XScale, floating point instructions 
are emulated by the software which takes significant time. In 
the processors with floating point units, the overheads would 
be much lower.  

Table 3 also accentuates the importance of model order 
reduction in reducing the overhead of this technique. 

 

Table 3. Effect of number of matched moments 
Temperature Estimation Error (°C)  No. of 

Matched 
Moments  Mean Absolute Error  Std. Dev. 

Sensor Measurement  
Errors (°C) 

- 3.38 4.82 

1 0.88 1.24 
2 0.75 1.05 
3 0.48 0.90 

Estimation Error  

4 0.68 0.88  
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Figure 4. Runtime overheads for KF (milliseconds) 
 

One of the advantages of the model order reduction 
technique used here is that the size of the generated model 
does not depend on the granularity of the grid, but is a 
product of the number of power consuming units and the 
number of matched moments. In our example, since there are 
6 power consuming functional units, matching 4, 3, 2 and 1 
moments reduces the model size to 24, 18, 12 and 6 
respectively. Our simulations show that even matching 2 or 3 
moments provides enough accuracy for most applications. As 
shown in the results, this method can be used in order to 
accurately estimate the temperature when higher accuracy is 
desired, but the number of sensors and the locations they 
could be placed are limited.  

 

5. Conclusion 
 

This paper proposes a method for accurate software 
estimation of temperature at different locations on the chip 
based on the inaccurate values obtained from a few on-chip 
temperature sensors.  One important advantage of our method 
is that it can be activated only when the temperature is 
approaching a limit to provide more accurate estimates. KF is 
used for state estimation and to eliminate the noise of on-chip 
temperature sensors. In order to reduce the complexity, a 
model order reduction technique is applied. In order to further 
improve the efficiency, steady state KF is used that is 
calibrated off-line. The experimental results show that the 
mean absolute error and the standard deviation of the error 
are minimized significantly as compared to information 
obtained from direct reading of sensors. Lower standard 
deviation translates to more reliability for the temperatures 
obtained by this technique. Our experimental results also 
show significant reductions in the maximum error value 
which prevents false negative and positive alarms. Most 
importantly, this technique can be used efficiently in order to 
estimate the temperatures at the locations of interest where no 
sensor is available. Our temperature estimation technique has 
very low run-time overhead in orders of hundreds of 
microseconds which is needed in OS level schedulers that run 
in millisecond time scales.   
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