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Abstract

In this paper we present a new algorithm for accurate rendering of translucent materials under Spherical Gaussian

(SG) lights. Our algorithm builds upon the quantized-diffusion BSSRDF model recently introduced in [dI11].

Our main contribution is an efficient algorithm for computing the integral of the BSSRDF with an SG light.

We incorporate both single and multiple scattering components. Our model improves upon previous work by

accounting for the incident angle of each individual SG light. This leads to more accurate rendering results,

notably elliptical profiles from oblique illumination. In contrast, most existing models only consider the total

irradiance received from all lights, hence can only generate circular profiles. Experimental results show that our

method is suitable for rendering of translucent materials under finite-area lights or environment lights that can be

approximated by a small number of SGs.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Realistic image synthesis often requires accurate simulation
of translucent materials. At the appropriate scale level, many
materials exhibit translucency effects, giving them a smooth
and soft look, blurring small geometric details. These effects
account for the natural appearance of media such marble,
jade, wax, leaves, milk, fruits, and human skin. To simulate
translucency, a common approach is to model the transfer
of light through the material interior (subsurface level) us-
ing a BSSRDF (bidirectional scattering-surface reflectance
distribution function). Generally, the BSSRDF describes the
linear relationship of the incident light at a surface point to
the outgoing light at any other point on the surface.

An accurate and efficient BSSRDF model has been a cen-
tral area of research for the past two decades. By assuming
homogeneous media, Jensen et al. [JMLH01] introduced the
first practical formula of BSSRDF as the sum of a single
scattering component and a multiple scattering component
based on a diffuse dipole approximation. The dipole approx-
imation is fast to compute but is derived from a semi-infinite
media, which compromises accuracy when the geometry is
complex. This model was then extended to multi-layer ma-
terials using a multipole approximation [DJ05]. Later the

dipole, multipole, and a new quadpole model are combined
in a photon diffusion framework in [DJ07] to further im-
prove the accuracy. In addition, Li et al. [LPT05] proposed
a hybrid Monte Carlo technique using modified diffusion
theory; and Donner et al. [DLR∗09] presented an empirical
BSSRDF model built upon extensive Monte Carlo simula-
tion.

Most recently, d’Eon et al. [dI11] introduced a quantized-
diffusion BSSRDF model. This new analytic BSSRDF ac-
counts for scattering within multilayer translucent materi-
als with arbitrary levels of absorption, very thin layers, and
under high-frequency illumination. They assume a vertical
downward incident illumination direction and analytically
integrate point sources along the incident path by approxi-
mating the diffusion function with quantized Gaussian func-
tions. Our model builds upon their method. The first con-
tribution of our work is to improve the BSSRDF model
in [dI11] by accounting for oblique incident lighting direc-
tions instead of assuming a vertical only direction. The mo-
tivation is to accurately handle oblique illumination, which
leads to shifted and asymmetric reflectance profiles [DJ07].
We demonstrate that the integration over an oblique lighting
path can also be evaluated analytically.
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The second contribution of our work is an efficient
method for quickly computing the integral of the BSSRDF
with Spherical Gaussian (SG) lights. This is motivated by
the observation that while much existing work can efficiently
render translucent materials under simple lighting (e.g. a few
point or directional lights), it remains a challenge to simulate
translucent appearance under complex environment lighting.
It is well-known that environment lighting is important for
capturing the appearance of materials in natural illumination
conditions; at the same time, it is also very expensive to sim-
ulate due to the large area of the lights. An effective solution
is to approximate the environment lighting as a set of SGs,
yielding a low-dimensional representation. Combined with
the SG representation of the BSSRDF, this approach enables
efficient run-time evaluation of the integral of complex light-
ing with BSSRDF.

To summarize, this paper presents a new algorithm for
accurate rendering of translucent materials under Spherical
Gaussian lights. Our specific contributions are: 1) we extend
the BSSRDF introduced in [dI11] to allow efficient evalu-
ation of its integral with SG lights at varying incident an-
gles; 2) our model includes both single and multiple scat-
tering, and experimental results show that it can accurately
render translucent materials under finite-area lights and en-
vironment lights approximated by a small number of SGs.

2. Related Works

The reflectance of light due to subsurface scattering is of-
ten described by the BSSRDF, which characterizes how the
incident light at a surface point of the translucent material
influences the outgoing light at other surface points. Given a
BSSRDF model, it is possible to use Monte Carlo simulation
to accurately render translucency effects [HK93, DEL∗99,
PH00, LPT05]. However, this incurs high computation cost
and the resulting images are prone to noise.

Homogeneous Materials. For efficiency reasons, subsur-
faces scattering effects are often divided into two compo-
nents: single scattering and multiple scattering. Single scat-
tering accounts for light that has been scattered exactly once
inside the media, and is usually fast to compute. Multiple
scattering accounts for light that has gone through a large
number of scattering events, which makes it possible to
use simplifying assumptions to speed up the computation.
Stam [Sta95] approximates multiple scattering effects by a
diffusion process. Taking advantage of the diffusion process
and assuming a semi-infinite homogeneous media, Jensen
et al. [JMLH01] presented a dipole approximation model,
which speeds up the computation of multiple scattering by
orders of magnitude compared to Monte Carlo methods. The
dipole model converts the irradiance at a surface point into
two point sources, one above and one below the surface. The
contribution from each point source is then evaluated as the
gradient of a diffusion function (or fluence). Since evaluat-
ing the outgoing radiance requires integrating the contribu-

tions from all incident points, hierarchical summation tech-
niques [JB02] can be adopted to accelerate this computation.

In [DJ05], Donner et al. proposed a multi-pole model
for rendering thin and multilayered translucent materials.
In [dLE07], d’Eon et al. proposed an efficient multi-layered
model by approximating diffusion profiles using sums of
Gaussians. Recently, d’Eon et al. [dI11] proposed a quan-
tized diffusion based BSSRDF model. They place an infinite
number of point light sources alone the vertical incident light
path, which requires computing an itnegral over the path.
The integral is evaluated analytically by approximating the
diffusion function with quantized Gaussian functions. None
of the above methods considers the different incident an-
gle of lights, thus they always produce symmetric (circu-
lar) reflectance profiles. In reality, however, subtle asymmet-
ric (elliptical) profiles are usually observed under oblique
lighting directions. To address this missing effect, Donner et
al. [DJ07] place exponentially attenuated point lights along
the refracted light path instead of on the vertical line. While
this produces elliptical profiles, it requires an numerical in-
tegral over the incident light path, which is expensive and
prone to sampling noise. In contrast, we evaluate the inte-
gral analytically, thus our method is less prone to numerical
sampling artifacts.

Data-driven techniques have also been studied to model
the BSSRDF. For example, Donner et al. [DLR∗09] pro-
posed an empirical BSSRDF model for semi-indefinite ho-
mogeneous materials by fitting Monte Carlo simulated data.

Heterogeneous materials. For realistic rendering of translu-
cency, one must consider spatially-varying material proper-
ties. This is known as heterogeneous materials, which have
been the focus of much recent work. Tong et al. [TWL∗05]
combined the dipole model with bidirectional texture func-
tions to simulate quasi-homogeneous materials. Peers et
al. [PvBM∗06] proposed a compact representation for het-
erogeneous materials using matrix factorization. Wang et
al. [WZT∗08] proposed a method for modeling and render-
ing heterogeneous materials based on a volumetric represen-
tation and the diffusion equation. Song et al. [STPP09] in-
troduced a novel representation for editing measured hetero-
geneous materials by decomposing a global BSSRDF into
products of local functions. Wang et al. [WWH∗10] pre-
sented a robust method for rendering heterogenous translu-
cent objects with complex shapes and topology. Jakob et
al. [JAM∗10] proposed an anisotropic dipole model for ren-
dering anisotropic translucent materials. Li et al. [LSR∗12]
presented an interactive method for rendering translu-
cent cutouts. Moreover, many recent methods [DWd∗08,
GHP∗08, JSB∗10] have been introduced to model and ren-
der human skins or faces, which are typically modeled as
heterogeneous translucent materials.

Translucent rendering under environment lights. Envi-
ronment lighting is important for capturing the realistic ap-
pearance of materials under natural illumination conditions.
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Figure 1: Illustration of scattering paths for (a) multiple

scattering and (b) single scattering.

While a number of previous papers have studied realistic
translucent material rendering and editing under environ-
ment lighting [WTL05, XGL∗07, WCPW∗08], these meth-
ods are all based on precomputed radiance transfer, which
requires a large amount of precomputed data and are not
suitable for dynamic scenes.

Spherical Gaussian (SG), also known as spherical ra-
dial basis function, is commonly used to represent spheri-
cal functions such as environment maps [TS06, XMR∗11,
RZL∗10] and BRDFs [GKD07, WRG∗09]. It often provides
more flexibility and accuracy than other spherical basis func-
tions, such as spherical harmonics, wavelets, and spherical
piecewise constants [XJF∗08]. Due to its variable support
size, SG is particularly suitable for approximating functions
at all-frequency scales. Moreover, SG has closed-form so-
lutions for function multiplications and product integrals,
which make it a suitable choice for rendering applications.

3. Backgrounds

In this section, we review the necessary background knowl-
edge for modeling and approximating BSSRDFs. The list of
symbols and notations are summarized in Table 1. Assuming
an incident SG light at point xi, we compute the outgoing ra-
diance at an exit point xo in outgoing direction o as the sum
of a multiple scattering component LD and a single scatter-
ing component L(1):

Lo(xo,o) = LD(xo,o)+L(1)(xo,o) (1)

Multiple Scattering. Under an SG light, the multiple scat-
tering component is defined as [dI11]:

LD(xo,o) =
∫

Ω
G(i; i j,λ j)

(

F

∫ ∞

0
Q(s)R(d) ds

)

di (2)

As shown in Figure 1(a), i is an incident direction,
G(i; i j,λ j) = exp

(

λ j

(

i · i j −1
))

is the incident SG light
where i j is the center direction and λ j is the bandwidth;
F = Ft(xi, i)Ft(xo,o) is the product of two Fresnel transmit-
tance terms; s is the distance from the (virtual) point light
source xp to the incident point xi; d is the distance from xp

to the exit point xo; in addition, Q(s) is the extended point

Ft ,Fr Fresnel transmittance and reflectance
η Index of refraction
σs,σa Scattering and absorption coefficients
g Mean cosine of scattering angle
Cφ ,CE Constants only dependent on η

xi,xo, i,o Incident/outgoing points and directions
i′,o′ Refracted incident/outgoing directions
i2 Direction from xi to xo

ij,λ j Center and bandwidth of an incident SG light
i′j,λ

′
j Center and bandwidth of a refracted SG light

σt = σa +σs, σ ′
s = (1−g)σs, σ ′

t = σa +σ ′
s

F = Ft(xi, i)Ft(xo,o)
D = (2σa +σ ′

s)/(3(σa +σ ′
s)

2)
G(i; i1,λ ) = exp [λ (i · i1 −1)] SG definition
g(x;u,λ ) = exp

[

−λ (x−u)2
]

1D Gaussian definition

Table 1: List of symbols and notations.

source function which describes the intensity of the point
light source xp; and R(d) is the exitance function which de-
scribes the exitance value at point xo from xp. The Q(s) and
R(d) functions will be explained in more details below.

Note that the inner integral in Equation 2 integrates along
the refracted incident path, and the outer integral integrates
over the incident direction i on the upper hemisphere. For
simplicity, we rewrite the integral in terms of refracted inci-
dent direction i′ instead of incident direction i, and approx-
imate refracted incident radiance inside the medium again
using an SG (see detailed derivations in Appendix E):

LD(xo,o) =
∫

Ω

∫ ∞

0
FG(i′; i′j,λ

′
j)Q(s)R(d) dsdi′ (3)

where i′ j,λ
′
j are the center and bandwidth of the approxi-

mate refracted SG light respectively. Strictly speaking, the
refracted light caused by an incident SG light is not neces-
sarily an SG, but we find this approximation to work well in
practice, especially if the support size of the incident SG is
small.

Extended Point Source Function Q(s). In previous work,
the dipole model [JMLH01] or multi-pole model [DJ05] has
been commonly adopted for translucent material rendering.
However, these models typically only consider the total ir-
radiance received at an incident point, ignoring the incident
angle of each individual light. As a result, they lead to incor-
rect renderings for oblique illumination. To consider oblique
illumination, we follow [DJ07] to define an extended source
function Q(s) along the refracted incident path:

Q(s) = Qe−σ ′
t s (4)

where Q is the irradiance at incident point xi, and σ ′
t is the

reduced extinction coefficient (see Table 1).

Exitance Function R(d). Recall that the exitance function

© 2012 The Author(s)
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R(d) describes the contribution of a point source xp under-
neath the surface to an exit point xo on the surface. Follow-
ing [dI11], we define R(d) as a linear combination of fluence
and flux:

R(d) = Cφ φ(d)+CE(−D(n ·∇φ)(d)) (5)

where d is the distance from xp to xo; the Cφ ,CE terms are
two constants which are only dependent on the refractive in-
dex [dI11]; n is the surface normal at xo; and φ(d) is the
diffusion function. Specifically, the diffusion function de-
scribes the fluence of an isotropic point light source in an
infinite medium, and is usually computed as:

φ(d) =
1

4πD
· e−

√
σa
D

d

d
(6)

where D is the diffusion constant, and σa is the absorption
coefficient. This function can be accurately approximated by
a sum of Gaussians [dLE07]:

φ(d) ≈ ∑k
ak g(d;0,λk) (7)

where g(d;0,λk) = exp(−λk(d−0)2) is a 1D Gaussian with
bandwidth λk, and ak is the corresponding coefficient. These
parameters (i.e. bandwidth and coefficients) can be obtained
by using the quantized diffusion method [dI11] or by offline
fitting [dLE07]. In our implementation, we follow [dLE07]
to obtain these parameters by function fitting. To do so we
require a precomputation stage to optimally fit these param-
eters. Empirically we found that a small number of Gaussian
(e.g. 4 ∼ 8) terms suffice. While this number is smaller than
reported in [dI11], our results (in terms of both function plots
and rendering quality) match the ground truth very well.

Single Scattering. The single scattering component
L(1)(xo,o) in Equation 2 is defined as [JMLH01]:

L(1)(xo,o) = σs

∫ ∞

0
FtE(s′)

∫

Ω
pG(i′; i′j,λ

′
j)E(s)V (i′)di′ ds′

(8)
where σs is the scattering coefficient, and Ft = Ft(xo,o) is
the Fresnel transmittance term. As shown in Figure 1(b), s′

is the distance from the point source xp to the exit point xo,
and E(s′) = exp(−σts

′) is the attenuation factor.

In the inner integral, p = p(i′,o′) is the phase function,
G(i′; i′j,λ

′
j) is the refracted incident SG light, s is the distance

from xp to the surface along the refracted incident direction
i′, and V (i′) is the binary visibility function towards i′, which
accounts for the occlusion of the incident light before reach-
ing the surface. Note that in contrast to multiple scattering,
here the outer integral integrates along the refracted outgo-
ing path o′.

Summary. Assuming incident light is an SG light
G(i; i j,λ j), we approximate the (warped) refracted incident
light also by an SG function G(i′; i′j,λ

′
j). In the follow-

ing sections, we describe in details how to approximate the
multiple scattering integral (Equation 3) in Section 4, and
the single scattering integral (Equation 8) in Section 5. We

show that after several validated mathematical approxima-
tions, both integrals can be efficiently evaluated, resulting
in a practical algorithm for rendering BSSRDF under SG
lights.

4. Approximating Multiple Scattering

In this section, we explain how to approximate the multiple
scattering integral in Equation 3. Since the exitance function
R(d) is a linear combination of the diffusion function φ and
its gradient( Equation 5), we can substitute Equation 5 into
Equation 3. Furthermore, since the Fresnel term F is rather
smooth compared to spherical Gaussian or exponential func-
tions, we can safely pull it out of the integral:

LD(xo,o) ≈ F Cφ Lφ +F DCE LE (9)

where the fluence integral Lφ and the flux integral LE are
defined as:

Lφ =
∫

Ω

∫ ∞

0
G(i′; i′j,λ

′
j)Q(s)φ(d)dsdi′

LE =
∫

Ω

∫ ∞

0
G(i′; i′j,λ

′
j)Q(s)(−n ·∇φ)(d)dsdi′ (10)

where n is the surface normal. Below we describe how to
evaluate the fluence integral Lφ and the flux integral LE re-
spectively.

4.1. Approximating the Fluence Integral

From Figure 1(a), we see that the distance d from xp to xo

can be written as (using the law of cosine):

d =
√

s2 + r2 −2sr (i′ · i2)
where r is the distance from xi to xo, and i2 is the unit vector
from xi to xo. Given the approximation of the diffusion func-
tion by sum of Gaussians φ(d) ≈ ∑k ak g(d;0,λk) (Equa-
tion 7), we can express the fluence integral Lφ in Equation 10
as (for simplicity we omit the summation ∑k (·) and the co-
efficients ak over index k below):

Lφ ≈
∫

Ω

∫ ∞

0
G(i′; i′j,λ

′
j)Q(s)g(d;0,λk)dsdi′

=
∫

Ω

∫ ∞

0
G(i′; i′j,λ

′
j)Q(s)eλk(−(s2+r2−2sr(i′·i2))) dsdi′

=
∫ ∞

0
Q(s)e−λk(s

2+r2−2sr)

(

∫

Ω
G(i′; i′j,λ

′
j)e

2srλk(i
′·i2−1) di′

)

ds

=
∫ ∞

0
Q(s)e−λk(s

2+r2−2sr)Nds (11)

where N is the inner integral over i′, computed as:

N =
∫

Ω
G(i′; i′ j,λ

′
j)e

2srλk(i
′·i2−1) di′

=
∫

Ω
G(i′; i′j,λ

′
j)G(i′; i2,λ

′
k)di′

where the effective bandwidth λ ′
k = 2sr λk. This equation

is integrated over the refracted incident direction i′ on the

© 2012 The Author(s)
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lower hemisphere. In general, since the support of an SG
is typically small compared to the size of a hemisphere, the
value of the SG on the other hemisphere is usually very close
to zero. Therefore, we can express the integral over the entire
sphere (instead of only the lower hemisphere). The reason to
do so is to take advantage of the properties of SG to simplify
the computations later. Specifically, it is well known that the
product of two SGs is still an SG, and the integral of an SG
over the whole sphere has analytic expression (refer to Ap-
pendix A, B, C). Therefore, given these properties, we have:

N = 2π
eλ3−λ ′

j−λ ′
k

λ3

(

1− e−2λ3

)

where λ3 =
√

λ ′2
j +λ ′2

k
+2λ ′

jλ
′
k
(i′

j
· i2). Note that N de-

pends on three parameters: the bandwidth of the SG light
λ ′

j, the effective bandwidth λ ′
k, and the dot product (i′j · i2).

Through experimental results, we find that N falls off ex-
ponentially when λ ′

k increases, so we can naturally approxi-
mate N as a sum of exponential functions of λ ′

k:

N ≈ ∑
m

p
φ
m

(

λ ′
j, i

′
j · i2

)

exp
(

−q
φ
m

(

λ ′
j, i

′
j · i2

)

λ ′
k

)

(12)

where p
φ
m, q

φ
m are parameters to be fitted during precomputa-

tion step, and they are stored as a 2D table of λ ′
j and (i′j · i2).

In Figure 2 we validate this approximation. As shown in the
figure, usually 4 terms are sufficiently accurate to capture N

over a large range.

Now substitute Equation 12 into Equation 11, and replace
the effective bandwidth λ ′

k by 2sr λk (by definition), we have

(for simplicity the summation ∑m (·) and the coefficients p
φ
m

of index m are omitted below):

Lφ ≈
∫ ∞

0
e−σ ′

t se−λk(s
2+r2−2sr)e−2q

φ
mrλks ds

=
∫ ∞

0
e−(λks2+(2λk(q

φ
m−1)r+σ ′

t )s+λkr2) ds (13)

Since the integrand is a 1D Gaussian of s, this half-infinite
integral has an analytic solution as shown in Appendix D.

4.2. Approximating the Flux Integral

Now we explain how to evaluate the flux integral in Equa-
tion 9. To begin, we note that the directional derivative of a
1D Gaussian is evaluated as:

n ·∇g(d;0,λk) = 2λk s(i′ ·n)g(d;0,λk)

Given that the diffusion function is approximated as a sum
of Gaussians φ(d) ≈ ∑k ak g(d;0,λk) (Equation 7), the di-
rectional derivative of the diffusion function (−n ·∇φ)(d) in
Equation 9 can now be written as:

(−n ·∇φ)(d) ≈ ∑
k

2ak λk s(i′ ·n)g(d;0,λk) (14)

Substituting Equation 14 into Equation 9 yields (again, omit-
ting the summation ∑k (·) over index k and coefficients ak):

LE ≈ 2λk

∫

Ω

∫ ∞

0
G(i′; i′j,λ

′
j)Q(s)(i′ ·n)eλk(−(s2+r2−2sr(i′·i2))) dsdi′

Similar to how we handled the fluence integral Lφ in Equa-
tion 11, the flux integral LE can be re-written as (by changing
the order of the integrals):

LE ≈ 2λk

∫ ∞

0
Q(s)e−λk(s

2+r2−2sr)Mds (15)

where M is the inner integral over i′ defined as:

M =
∫

Ω
G(i′; i′j,λ

′
j)G(i′; i2,λ

′
k)(i

′ ·n)di′ (16)

where the effective bandwidth λ ′
k = 2sr λk. Different from

the fluence inner integral N in Equation 12, the flux inner
integral M has an additional cosine factor (i′ ·n). It also has
an approximate analytic solution (see detailed derivations in
Appendix C):

M ≈ (λ ′
j(i

′
j ·n)+λ ′

k(i2 ·n))Mi (17)

where

Mi = 2π
eλ3−λ ′

j−λ ′
k

λ 2
3

(

1− e−2λ3

)

,

λ3 =
√

λ ′2
j +λ ′2

k
+2λ ′

jλ
′
k
(i′

j
· i2)

Mi, being a function that falls off almost exponentially to λ ′
k,

can again be approximated as a sum of exponentials of λ ′
k:

Mi ≈ ∑
m

pE
m(λ ′

j, i
′
j · i2)exp(−qE

m(λ ′
j, i

′
j · i2)λ ′

k) (18)

where pE
m, qE

m are fitted parameters estimated in precompu-
tation and stored as a 2D table of λ ′

j and (i′j · i2). Similar to
before, our experimental results show that using 4 terms is
sufficiently accurate for this approximation.

Substitute Equations 17, 18 into Equation 15, and replace
λ ′

k by 2sr λk (by definition), we have (for simplicity we omit
the summation ∑m (·) and the coefficients pE

m of index m):

LE ≈ λ ′
j(i

′
j ·n)

∫ ∞

0
e−(λks2+(2λk(q

E
m−1)r+σ ′

t )s+λkr2)ds

+2rλk(i2 ·n)
∫ ∞

0
se−(λks2+(2λk(q

E
m−1)r+σ ′

t )s+λkr2)ds (19)

The above equation involves a half-infinite integral of a 1D
Gaussian as well as the product of a 1D Gaussian with a lin-
ear function, both of which have analytic solutions as shown
in Appendix D.

Summary. By approximating the diffusion function φ(d)
using sums of 1D Gaussians, and precomputing four 2D ta-
bles p

φ
m, q

φ
m, pE

m, qE
m, the fluence integral Lφ and the flux inte-

gral LE can both be approximated analytically, using Equa-
tion 13 and Equation 19 respectively. Note that all four 2D
tables only need to precomputed once, and remain the same
for different scenes and materials.
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Figure 2: (a): approximating the diffusion function φ us-

ing sums of Gaussians (Equation 7); (b): approximating the

inner integrals N and M using sums of exponentials (Equa-

tions 12 and 18). Curve 1 plots the fluence inner integral

N with parameters λ ′
j = 1000 and (i′j · i2) = 0.5; Curve 2

plots the flux inner integral M with parameters λ ′
j = 100

and (i′j · i2) = 0; Curve 3 plots the fluence inner integral N

with parameters λ ′
j = 10 and (i′j · i2) = −0.5. Note that for

all above approximations, the ground truth curves (the green

ones) match our approximations (the red ones) very well. We

note that the three sets of curves in (b) are normalized in or-

der to display in the same figure.

We would like to note that our method differs from
the quantized diffusion model [dI11] in two aspects. First,
we consider oblique incident lights, while the quantized
model assumes incident lights comes vertically. Second, our
method considers SG light, which is suitable for representing
environment lights or finite-area lights. From a high level,
the quantized model gives an analytic solution for approxi-
mating the inner integral over the scattering path, while our
proposed method is for approximating the double integral,
over both the light direction and the scattering path.

5. Approximating Single Scattering

Let us denote the inner integral of the single scattering
L(1)(xo,o) in Equation 8 using symbol J, defined as:

J(s′) =
∫

Ω
p(i′,o′)G(i′; i′j,λ

′
j)E(s)V (i′) di′

where p(i′,o′) is the phase function. G(i′; i′j,λ
′
j) is the re-

fracted SG light, E(s) = exp(−σts) is the exponential atten-
uation term, and V (i′) is the binary visibility function. By
pulling the exponential attenuation term and the visibility
term out of the integral, we have:

J(s′) ≈ E ·V
∫

Ω
p(i′,o′)G(i′; i′j,λ

′
j)di′

where E and V are the average attenuation value and aver-
age visibility value, respectively. We approximate the aver-
age attenuation value directly using the value at the SG cen-
ter E ≈ E(s(i′j)). The average visibility V value is approx-
imated using a soft shadow technique. In our implementa-

tion, we use convolution shadow map [ADM∗08] with light

radius
√

1/(2λ ′
j) to query the average visibility. We use the

Eddington phase function p(i′,o′) = (1 + 3g(i′ · o′))/(4π)
(where g is the mean cosine of the scattering angle), so J(s′)
can be re-written as:

J(s′)≈ E ·V
4π

(

∫

Ω
G(i′; i′j,λ

′
j)di′ +3g

∫

Ω
(i′ ·o′)G(i′; i′j,λ

′
j)di′

)

(20)
Fortunately, both integrals have analytic solutions. Refer to
Appendix A for details.

To evaluate the single scattering integral L(1)(xo,o), we
approximate the outer integral in Equation 8 through an im-
portance sampling approach. We use 32 samples along the
outgoing path, with distribution function e−σt s′ . To han-
dle more complicated phase function such as the Henyey-
Greenstein phase function, we can approximate it using sum
of Gaussians similar to approximating diffusion functions
(Equation 7).

6. Implementation

Precomputation. Before rendering, we need to first obtain
the Gaussian coefficients ak and bandwidths λk for approx-
imating the diffusion function φ (Equation 7), as well as
the 2D tables p

φ
m,pE

m,qφ
m,qE

m of parameters λ ′
j and i′j · i2)

(0 ≤ m < 4) for approximating inner integrals (Equations 12
and 18). All values are obtained through non-linear fitting
using Matlab’s fminsearch routine. For the four 2D ta-
bles, we use a resolution of 256× 256, in which λ ′

j is sam-
pled logarithmically from the range [1,10000], and i′j · i2 is
sampled uniformly from the range [−1,1]. Note that all ta-
bles are pre-computed only once, and can be used for any
scene. For environment map lighting, SG lights are obtained
through nonlinear fitting following [TS06].

Multiple scattering. For multiple scattering effects, we use
Equations 13 and 19 to evaluate the contribution of an inci-
dent point xi under SG light to an outgoing point xo. Since
the derivations are based on a planar geometry assumption,
when rendering real 3D models, we use the unit vector from
incident point xi to outgoing point xo as surface direction i2.
Normals of xi and xo are used for calculating refracted in-
coming/outgoing light directions, respectively. An average
visibility from each SG light is approximated using the con-
volution shadow map algorithm [ADM∗08], in which the
support of each SG light is used as area light size to query
visibility. An alternative algorithm for handling SG light vis-
ibility is to use the visibility distance map [WRG∗09], but
that would require an additional precomputation step for
each scene. Note that contributions from both the positive
and negative sources must be taken into account for correct
calculation.

Single scattering. For single scattering effects, the inner
integral J(s′) is evaluated analytically using Equation 20,
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[dI11] ours ground truth

Figure 3: Comparison of oblique illumination. The incident

angles for the first and second rows are 45o and 80o, respec-

tively.

(a) (b)

Figure 4: Comparison of single scattering effects under a

single SG light with bandwidth λ j = 1000. (a) our result;

(b) ground truth. Note that the difference between our result

and the ground truth is almost indistinguishable.

while the final radiance L(1)(xo,o) (in Equation 8) is ob-
tained through a numerical integration along the refracted
outgoing path. We use 32 samples along the outgoing path,
with distribution function exp(−σts

′). We also incorporate
an octree structure [JB02] to accelerate the summation over
all incident points. Note that at each octree node, instead of
storing an irradiance value, we store the SG light represen-
tation, area size, and an average normal direction.

7. Comparisons and Results

In this section, we verify the approximations of our method,
and compare previous methods with results generated by our
method. All results are produced on a PC with Intel Core 2
Duo 3.00 GHz CPU, 6G RAM and an NVIDIA GTX 480
graphics card.

Comparisons. We first mathematically evaluate the accu-
racy of the approximations used in our method. In Figure 2
(a), we compare our approximated diffusion function using
4 Gaussians to the ground truth; in Figure 2 (b), we compare
our approximated inner integrals N and M using 4 exponen-
tials (Equations 12 and 16) to the ground truth at 3 differ-

(a) (b) (c) (d)

Figure 5: A thin plate illuminated from behind. (a) ground

truth; (b) result by our method; (c) result by the multipole

model [DJ05]; (d) result by the dipole model. Note that the

difference between our result and the ground truth is subtle.

Scene #Samples #SGs Render Time

Tweety 139k 10 8.5 min
Bunny 35k 10 5 min
Dragon 159k 20 23 min
Statue 242k 1 3.5 min
Kitten 137k 10 11 min

Table 2: Performances.

ent parameters. Note that in all comparisons, our approxima-
tions match the ground truth very well. In our experiments,
all results are generated by approximating the diffusion func-
tion as 4 terms of Gaussians and by approximating the inner
integrals as 4 terms of exponentials.

In Figure 3, we compare oblique illumination effects of
our method to [dI11]. An SG light with bandwidth λ = 1000
is used to illuminate a semi-indefinite translucent plane. The
incident angles are 45o and 80o for the first and second
rows, respectively. An oblique incident angle will result in
a shifted and asymmetric reflectance lobe. As shown in the
figure, our method accurately captures this phenomenon,
while [dI11] does not since it ignores the incident angle.

In Figure 4, we compare the rendering results with only
single scattering component under a single SG light. Fig-
ure 4 (a) shows our result while Figure 4 (b) shows the cor-
responding ground truth. Our result is visually almost the
same with the ground truth.

Results. In Figure 6, we show examples of rendering results
using our method under various lightings conditions repre-
sented by SG lights, including both multiple and single scat-
tering effects. The performance is reported in Table 2. Note
that instead of using only irradiance values at incoming sam-
ple points for computing multiple scattering, we use radi-
ance values approximated by SGs, hence supporting oblique
incoming direction. This leads to a more accurate approxi-
mation as demonstrated in Figure 3.

Extension to a Multi-pole model. Besides handling homo-
geneous translucent materials, our method can also incorpo-
rate the multipole model to handle thin materials or multi-

© 2012 The Author(s)
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Figure 6: Various rendering results using our method under SG lights.

layers materials similar to [dI11]. The only change is to
replace the integration range in Equations 13 and 19 from
[0,+∞] to a finite range, which is determined by the thick-
ness of the material. In Figure 5 (b), we render a thin plate
illuminated from behind using our method. To compare, we
also show the ground truth image in Figure 5 (a), the ren-
dered results generated using the multipole model [DJ05] in
Figure 5 (c) and using the dipole model in Figure 5 (d), re-
spectively. Note that our result and that of [DJ05] both match
the ground truth very well, while the result of the dipole
model [JMLH01] appears darker.

8. Conclusion and Future Work

To summarize, we have presented a new method for accurate
rendering of translucent materials under SG light, includ-
ing both multiple and single scattering components. Com-
pared to existing models [JMLH01, dI11] which only con-
sider the total irradiance received from all incident lights,
our method accounts for oblique lighting angles, so it is more
accurate and can generate elliptical reflectance profiles. Our
main contribution is an efficient method for evaluating the
integral of BSSRDF with SG lights. This makes our method
suitable for rendering translucent materials under finite-area
lights or environment lights that can be approximated by a
small number of SGs. Besides, our method can also easily
integrate the multipole model to handle thin or multi-layer
translucent materials.

Our method is currently limited to homogeneous or multi-
layer materials. In the future, we would like to investigate
ways to extend our method to more complex, heteroge-
neous translucent materials [PvBM∗06] or participating me-
dia [SZLG10, BGP∗10]. Another limitation is that approxi-
mating the refracted incident lighting as an SG (as explained
in Appendix E) may become inaccurate when the bandwidth
parameter is very small (i.e. the SG light is very wide). This
can be addressed by constraining the bandwidth of an SG
light when fitting the environment map.
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Appendix

A. Integral of an SG. The integral of an SG over the entire
unit sphere is given by:

∫

Ω
G(i; i1,λ ) di =

2π

λ
(1− e−2λ )

The integral of an SG multiplied by a cosine term over the
entire unit sphere is given by:
∫

Ω
G(i; i1,λ )(i · i2) di =

2π(i1 · i2)
λ 2

(

λ −1+(λ +1)e−2λ
)

B. Product of two SGs. The product of two SGs is still an
SG, given by G(i; i1,λ1)G(i; i2,λ2) = c3G(i; i3,λ3), where:

c3 = eλ3−(λ1+λ2), i3 =
λ1i1 +λ2i2

λ3
,

λ3 =
√

λ 2
1 +λ 2

2 +2λ1λ2(i1 · i2)

C. Product integral of two SGs. The product integral of
two SGs is given by:
∫

Ω
G(i; i1,λ1) ·G(i; i2,λ2) di =

∫

Ω
c3G(i, i3,λ3)di =

2πc3

λ3
(1− e−2λ3)

where c3 and λ3 are the same as in B above. The product
integral of two SGs weighted by a cosine term can be ap-
proximated by:
∫

Ω
G(i; i1,λ1) ·G(i; i2,λ2) · (i · i4) di =

∫

Ω
c3G(i; i3,λ3) · (i · i4)di

≈ (i3 · i4)
∫

Ω c3G(i; i3,λ3)di ≈ 2πc3(i3·i4)
λ3

(1− e−2λ3)

≈ 2π(λ1(i1 · i4)+λ2(i2 · i4)) · eλ3−(λ1+λ2)

λ 2
3

(

1− e−2λ3

)
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In this equation, the cosine function i · i4 is usually much
smoother than the SG, so we can directly approximate it us-
ing a constant value at the SG center (e.g. i3 · i4), and then it
can be pulled out of the integral.

D. Integral of 1D Gaussian. The indefinite integral of a 1D
Gaussian g(x;u,λ ) = exp(−λ (x−u)2) is:

∫

g(x;u,λ )dx =
1
2

√

π

λ
erf

(√
λ (x−u)

)

where erf is the error function defined as: erf(x) =
2√
π

∫ x
0 e−t2

dt. The indefinite product integral of a 1D Gaus-

sian with a linear function is defined as:
∫

x ·g(x;u,λ )dx =− 1
2λ

g(x;u,λ )+
1
2

√

π

λ
erf

(√
λ (x−u)

)

E. Refracted SG. According to Snell’s law, the refracted
direction i′ can be written as a function of the incident direc-
tion i:

i′ = ψ(i) = η i+(cosθ2 −η cosθ1)n

where η is the relative index of refraction; θ1 and θ2 are the
incident and refracted angles respectively. They are defined
as:

cosθ1 = i ·n, cosθ2 =
√

1−η2(1− cos2 θ1)

When expressing the incident lighting function as an SG:
G(i; ij,λ j) , the refracted lighting function can be modeled
as a warped lobe of the incident SG and approximated by an
SG itself:

G(ψ−1(i′); ij,λ j) ≈ G(i′; i′j,λ
′
j)

In this approximation, we preserve both the center and am-
plitude of the warped lobe. The bandwidth parameter is de-
termined by preserving local curvature, which is:

i′j = ψ(ij), λ ′
j = λ j ·

(

di′

di
|i=ij

)

=
λ jη

2 cosθ1

cosθ2
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