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Accurate Transmission Loss Allocation Algorithm 
Based on the Virtual Transaction Strategy: 

Comparison of Path-integral with Discrete Integral Methods 
 
 

Kyung-Il Min* and Young-Hyun Moon† 
 

Abstract - This paper presents a new algorithm to determine accurate bus-wise transmission loss allo-
cation utilizing path-integrals dictated by the transaction strategy. For any transaction strategy, the total 
sum of the allocated transmission losses of all buses is equal to the actual loss given by the AC power-
flow calculation considering the distributed slack. In this paper, the bus-wise allocation of the trans-
mission loss is calculated by integrating the differential loss along a path determined by the transaction 
strategy. The proposed algorithm is also compared with Galiana’s method, which is the well-known 
transmission loss allocation algorithm based on integration. The performance of the proposed algo-
rithm is evaluated by case studies carried out on the WSCC 9-bus, IEEE 14-bus, New England 39-bus, 
and IEEE 118-bus systems. The simulation results show that the proposed algorithm is fast and accu-
rate with a large step size. 
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1. Introduction 
 
Since the 1990s, competitive market systems of power 

transactions have been introduced to improve the effi-
ciency of power industries over the world. The efficiency 
of the power market system is based on reasonable pricing 
that guarantees fair competition between the suppliers and 
the consumers in power transactions. As most power trans-
actions are conducted by spot trading, that there should be 
reasonable spot pricing to encourage market participants to 
react based on real-time situations is very important. Loca-
tional marginal pricing (LMP) is one of the relevant issues 
related to this topic in power market systems [1]-[3]. About 
3%-5% of the total power generated is lost in transmission, 
making transmission loss one of the major factors in LMP. 
A factor of LMP is assigned in proportion to each allocated 
loss, which may considerably affect the competitive posi-
tion of the Gencos. Nevertheless, the spot price hardly ever 
reflects transmission loss because the allocation of trans-
mission loss is a nonlinear and path-dependent problem 
with non-unique solutions. Most of the proposed conven-
tional theories based on sensitivity analysis cannot deal 
with the nonlinear aspect of the problem, and the sum of 
the allocated losses results in twice the loss [4]-[10]. Re-
cently, many studies have been conducted based on various 
approaches such as circuit theory [11]-[13], game theory 
[14], integration method [15]-[17], etc [18], [19]. 

This paper shows that the total transmission loss can be 
represented by the sum of the bus-wise partial integration 
calculated by real power injections. Each of these partial 
integrations is equal to the integration of the incremental 
loss with respect to the sensitivity coefficient, considering 
the nonlinearity.  

The idea of determining loss allocation by integration 
can be found in the literature [15], [20]-[21]. Galiana [20], 
[21] introduced power transactions to calculate loss alloca-
tion by integration and discussed why path dependency 
should be considered. However, his method seems to fail to 
reduce sufficiently the discrepancy between the sum of the 
allocated losses and the system loss without any normaliza-
tion. This paper details the differences between the pro-
posed method and that of Galiana. Cheung [15] attempted 
to reduce the difference between the total allocated loss 
and the system loss by integrating Newton’s penalty factor. 
However, the integration equations in his paper did not 
consider path dependency. 

This paper proposes a line integral method that considers 
the path dependency of transmission loss allocation. The 
path dependency dictates that allocated losses vary with 
integral paths. These variations in the allocated losses may 
cause a problem in power market systems, making it more 
difficult to establish the relevant theory. The main factor in 
determining the integral paths is the bilateral power trans-
action strategy. This paper also reveals that the execution 
time for the proposed method can be reduced by curtailing 
the integral step size. 

In this paper, the slack-bus-independent loss sensitivity 
factor [22], [23] is adopted to minimize the variation of the 
sensitivity with the selection of the slack bus. Instead of a 
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transaction matrix, this paper employs a transaction ratio 
matrix that provides information on the ratio of the genera-
tion (the load) supplying for (receiving from) each load 
(generator). Note that previously settled transactions can-
not be applied to the transaction variation in practical sys-
tems because loss is allocated after the transaction [14]. 
Thus, the use of a “ratio” can provide more flexibility 
when considering transaction variations. This paper intro-
duces a new concept of virtual transactions to achieve more 
reasonable loss allocations than the actual bilateral con-
tracts, which can be well applied for incomplete bilateral 
markets including pool markets. 

Throughout this study, AC power flow analysis is used 
with full consideration of the reactive powers to achieve 
high accuracy in calculations. The distributed slack bus 
[22], [23] is employed to remove the slack-bus dependency 
in loss allocation. 

The proposed algorithm is tested for various sample sys-
tems including the WSCC 9-bus, IEEE 14-bus, New Eng-
land 39-bus, and IEEE 118-bus systems. The test results 
show that considering the nonlinearity of the loss function 
to cover up the weakness of sensitivity analysis in conven-
tional algorithms is possible.  

 
 
2. Conventional Incremental Transmission Loss 

Method: Use of Discrete Integral 
 
Incremental transmission loss (ITL) has some advan-

tages that consider network topology and transactions in 
transmission loss allocation. Many studies on ITL have 
been conducted [15], [20]-[21]. Particularly, Galiana’s re-
search [20] is reviewed and analyzed in this section. 

Incremental contractual loss is given as follows: 
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where GD is the contract matrix, and α is the null space 

vector. 
Using GD, the vector or bus load, PL, can be represented 

as 
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The generation vector can also be expressed as follows: 
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The loss of contract i-j, whose loss is supplied by bus k, 

can be obtained by integrating (1) for ftt 0 . 
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Remarks: Galiana expressed his algorithm as a time in-

tegral, although it is actually a discrete integral. An accep-
tance order of the transaction is used and integrated with 
respect to every transaction change, as seen in Fig. 1.  
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(a) Discrete integral 
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Order 

Transaction 

T1 GD12 
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TN GD69 
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(b) Acceptance order 

Fig. 1. Illustrative example of the discrete integral method. 
 
The above discrete integral in (5) can be expressed in the 

form of summation with order 
 

)()(
/ ),( k

ij
k

Losskij GDKL  QP             (6) 

 
where kijLossK  )(  evaluated at bus injections P, 

and Q determined by the accepted transactions at the k-th 
stage. 

In the above equation, the loss sensitivity )(k
LossK  should 

be computed with the bus injections composed by the 
transactions already accepted in the k-th step. The total loss 
can be calculated by accumulating all the areas from T1 to 
TN, represented as follows: 
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where N is the number of transaction. 

The integration step of discrete integral should be de-
creased to achieve high accuracy in calculation. However, 
this results in a drastic increase in the computational bur-
den. Consequently, Galiana’s method can hardly be applied 
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to large power systems. 
Galiana’s method can be performed using the procedure 

shown in Fig. 2. 
 

Set Acceptance Order 
of transaction

k=1

Excute powerflow with bus injections 
P,Q determined by the already 

accepted transaction

Calculate loss sensitivity, KLoss

for k-th transaction

Using (6), allocate losses to 
transaction or bus

k=k+1

k=N ?

Start

End

no

yes

 

Fig. 2. Loss allocation procedure of Galiana’s method. 
 
 

3. Theory of Loss Allocation Considering  
Path Dependency: Use of Path Integral 

 
Total transmission loss in power systems can be 

uniquely determined by AC power-flow techniques with 
the current system states and has constant values regardless 
of historical paths, such as load increases and generation 
distributions, indicating that the total system loss is path 
independent. However, the nonlinearity of line losses 
causes bus-wise allocated losses to vary considerably as to 
“which generation or load increased ahead,” i.e., the bus-
wise allocated transmission losses are path dependent. 
These two contrary results make it confusing to develop an 
exact theory that provides accurate bus-wise allocated 
losses, of which the sum is only equal to the total transmis-
sion loss [4]-[10], [15], [20]-[21], [24]-[27]. This section 
presents the proposed mathematical theory satisfying both 
the path independency of the total transmission loss and the 
path dependency of bus-wise allocated losses. 

 
3.1 Mathematical Approach to Path Dependency 

 
The general path dependency in mathematics with a sca-

lar function f (x1, x2,…,xn) can be expressed as follows: 
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with f (0,0, …,0) = 0. 
The total differential of P is given by 
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P can be rebuilt by integrating (9), as shown below: 
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Here, P is uniquely determined by state x n, and it be-

comes path independent even if it is represented by an in-
tegral form. Eq. (10) is a line integral, where c is an inte-
gral path (contour). The condition of path independency is 
given by Clairaut’s theorem [28] as follows: 
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As f(x) in (8) is a well-defined function uniquely deter-

mined by state x, it satisfies (9) for all i, j. Therefore, (10) 
is path independent. 

However, one term of (10) can be expressed as follows: 
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In (12), a line integral for xi should be evaluated along 

path c because ∂f / ∂xi is a function of x. Therefore, each 
term of the line integral in (10), P(i), is dependent on path c, 
whereas P itself in (10) is path independent. 

 
3.2 System Loss and Bus-wise Losses 

 
The total transmission loss in a power system can be 

calculated by AC power-flow techniques with bus injection 
power represented as follows: 
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Here, it is assumed that Bus 1 is a slack and Buses 2 to 

m are voltage-controlled buses. The specified variables 
Vs

G1,…, Vs
Gm, and θ1 can be exempted from the independent 

variable because they are specified as constants.  
The system loss can be regarded as a function of bus in-

jections because bus injections completely determine the 
system state in (13).  

 
),,,,,( 12, nmnlossttlloss QQPPPP           (14) 

 
Note that the function Ploss in (14) is hardly obtained in a 

closed form, but partial differential terms of (14) can be 
calculated easily. However, Ploss is uniquely determined by 
bus injections, and it becomes a well-defined function. 
That Ploss is hardly obtained as a closed form is another 
matter. 
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In the same manner as in (10), Ploss,ttl in (14) can be re-
written by the sum of the partial integrals: 
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where    Tnm
T

n QQPP ,,,,, 12   QP . 

In (15), the total sum of the partial integral terms is path 
independent, but each partial integral term is path depend-
ent for path c. Here, the loss sensitivity factors for P and Q 
are defined as follows: 
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The allocated loss to the i-th bus is given as 
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Ploss(i) is path dependent corresponding to (12). The total 

transmission loss is path independent from (15), and it 
must equal the sum of the allocated losses. 

 
3.3 Loss Sensitivity Factor 

 
In the previous section, the bus-wise allocation of trans-

action losses was expressed by integrating loss sensitivity 
factors. This method also requires a specified slack bus. If 
another slack bus is selected, the loss sensitivity factors 
may vary significantly. In addition, the reactive powers of 
the load buses are determined by the load power factors. 
Thus, the independent variables for system losses become 
active injection powers only. Previous research on the cal-
culation of the slack bus-independent loss sensitivity factor 
can be found in the literature [22], [23]. Based on these 
studies, the loss sensitivity factors for an i-th generator bus 
can be obtained as follows: 
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where 
 
J(θ, V) Jacobian matrix in the power-flow calculation 

ui unit vector, of which the i-th element is equal to 1, i.e., 

 Ti 00100 u  
αL

(i) Load distribution vector corresponding to ∆PGi, i.e., 
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(i) Reactive load distribution vector. 
 
The derivation of (19) is given in references [22], [23]. 

Although active injection power (Pi) is an independent 
variable, it is not explicitly included in (19). However, 
once all injection powers (Pis) are determined, the loss 
sensitivity factor can be calculated uniquely. The following 
calculation procedures are implemented to determine the 
loss sensitivity factor: 

 
Step 1: Once active powers of generation and load for all 

buses, reactive powers of all loads can be calculated by 
load power factors. Accordingly, all the injection powers 
for AC power-flow are provided. 

Step 2: Using P and Q determined in step 1, the AC power-
flow is conducted to determine the state variables θ and V. 

Step 3: Determine αL
(i) for all the buses. If there is a transac-

tion strategy, αL
(i) can be easily determined (as discussed 

later); otherwise, αL
(i) is determined  to distribute the 

generation increase ∆PGi proportionally to all the loads. 
Step 4: The differential increase of the reactive loads is 

determined using αL
(i) and βL

(i) corresponding to ∆PGi. 
Step 5: Loss sensitivity factors are calculated using θ and V.  

 
Here, the loss sensitivity for the load buses, SpLi(P), can 

be similarly calculated. As mentioned above, the loss sensi-
tivity factor can be calculated from only the active power 
injections, and the bus-wise loss can be determined by the 
loss sensitivity factors. The allocated losses to a generator 
bus can be obtained by the following: 
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Note that bus-wise losses are dependent on path c. The 

integral path is determined using the historical changes of 
Pi, as well as the transaction strategy. Assuming that all of 
the generations and the loads increase proportionally, the 
problem can be simplified, and the transaction strategies 
can be used to determine the path. Using path parameter λ, 
a point on the straight path c  is given as follows: 

 

GiGi PP                (21) 

 
Here, the path parameter λ is the same as the loading fac-

tor. Given a loading factor λ, the marginal loss sensitivity is 
calculated by (19). The marginal loss sensitivity then be-
comes a function of λ.  

The average loss sensitivity is defined as the mean of the 
marginal loss sensitivity varying with the loading condition. 
That is,  
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
1
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The trapezoidal method or the Simpson method can be 

used for the integration to calculate the average loss sensi-
tivity. For λ in the range of [0, 1], marginal loss sensitivi-
ties should be repeatedly calculated at an appropriate inte-
gration interval. The loss sensitivity factor increases with λ 
almost linearly, as illustrated in Fig. 3. Therefore, the accu-
racy of the integration is very insensitive to the integration 
interval, which allows us to take a relatively large interval, 
e.g., ∆λ = 0.2. For large power systems, the computation 
time can be reduced by adjusting the integration interval. 

Bus-wise losses are obtained using the following equation: 
 

GipGiiloss PSP )(                 (23) 

 
Remarks: Compensation for zero-loading loss 
If the system loss at zero loading is zero, no loss com-

pensation is required. However, even at the zero-loading 
condition, line charging currents always incur some 
amount of power loss, requiring a corresponding compen-
sation in the loss allocations. This paper adopts a method to 
distribute the zero-loading loss to each generator in propor-
tion to the dispatched generation because the zero-loading 
loss is relatively small. Bus-wise loss allocations are modi-
fied as follows: 
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where 
LoadNo

lossP  is the system loss at the zero-loading con-
dition. 

 
4. Loss Allocation Considering Transaction Strategy 

 
4.1 Transaction Strategy for Loss Allocation 

 
The transaction strategy [16] for bilateral transactions 

should be considered to achieve more reasonable transmis-

sion loss allocation. In Fig. 4, the transaction contracts be-
tween Gen. 1 and Gen. 2, Load 3, Load 4, and Load 5 are 
shown in Table 1. Gen. 1 is scheduled to generate 30 MW 
to provide 20 MW and 10 MW for Loads 4 and 5, respec-
tively. Gen. 2 is also scheduled to generate 80 MW to pro-
vide 60 MW and 20 MW for Loads 3 and 5, respectively. 

 

 

Fig. 4. Single-line diagram for the 5-bus system. 
 

Table 1. Transaction strategy for the 5-bus system 

[MW] 

Bus no. 3 4 5 Sum 

1 0 20 10 30 

2 60 0 20 80 

Sum 60 20 30 110 

 
Table 1 provides all the information about power trans-

action that deals only with fixed transactions. To consider 
flexible transactions, this paper uses a transaction ratio 

matrix. Note that these )(i
Lk s are the same as those were in 

(19). All the load distribution factors can be determined in 
the same manner. 

Based on the above results, the transaction ratio matrix 

GT
~

 for the generator is given as follows: 
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where TGij is given by αLi

(j). 
The above relation between the load and the generation 

can be expressed as follows: 
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where GD is the well-known transaction matrix [28], 1p is 
a (p×1) vector in which all the elements are filled with one, 
and PL and PG are the (m×1) load vector and (n×1) gen-
eration vector, respectively. The load distribution factors 

are expressed as  T33.067.0000)1( Lα  and 

 T25.0075.000)2( Lα . Loss sensitivities can be 
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Fig. 3. Trend of loss sensitivity factors for the WSCC 9-
bus system (case 1). 
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calculated by substituting the load distribution factors into 
(19). 

The load distribution factor can be expressed in the form 
of ∆PLi / ∆PGi. Here, the loss sensitivity can be more rea-
sonably calculated, as the power transactions determine the 
power sink due to the incremental generation increase. 

Once the bus-wise transaction power for each generation 
is determined, the transaction ratio matrix is constructed, 
and the bus-wise loss sensitivity factors can be easily cal-
culated using (19) and (22). 

When all the generation of the i-th bus is transacted to its 
load, the following equation is satisfied:  

 

i
i uαL )(

                   (28) 
 
Therefore, the loss sensitivity factor of the i-th bus be-

comes zero, reflecting the situation of real systems better 
than any of the conventional methods. When a bilateral 
transaction occurs between two close regions, the loss sen-
sitivity factor is small. 

 
4.2 Virtual Transaction Strategy: Bilateral and Pool 

Markets 
 
As the bilateral contracts involve transaction amounts 

between suppliers and consumers, the transaction strategy 
can be constructed using real transaction amounts repre-
sented in the previous section. The charging of losses from 
the power transactions in bilateral markets is fair. 

However, when the market pool has incomplete bilateral 
transaction amounts, no full transaction strategy is obtained. 
Assuming that the transaction amount is contracted in pro-
portion to each load in the market pool, the transaction of a 
load is expressed as follows: 
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The alternative is the use of constructing the full transac-

tion strategy. It is a virtual transaction strategy that is easily 
constructed by allowing free negotiations between market 
participants for the sake of the loss allocation only, regard-
less of the actual transactions. Adopting virtual transactions 
is highly recommended because market participants can 
take advantage of their own efforts in this system.  

For incomplete bilateral markets, we can obtain a full 
transaction by allowing virtual transaction contracts be-
tween market participants for the sake of the loss allocation 
only (regardless of the actual transactions). None of the 
previous studies suggest any appropriate method to solve 
this case. 

Even in the case where the full contracts of bilateral 
transactions are found, utilizing the virtual transaction 
method is highly recommended because market partici-
pants can take advantage of the virtual contracts through 
their own efforts. This allows us to obtain desirable trans-
actions where generations and loads can be automatically 

canceled in the same bus. (Finding the real-flow transac-
tions is impossible, but the virtual transactions are the clos-
est to it among all transactions we can make within the 
market rules.) The virtual transaction strategy is a one-step 
advanced attempt to solve the relevant issue in this area. It 
may not be perfect, but it can be considered one of the 
most reasonable practical solutions to cover up incomplete 
information in transactions. 

In the market pool, this paper proposes the proportional 
distribution method instead of the transaction strategy. 
Combining these two in an incomplete bilateral market is 
possible, i.e., we can apply the proportional distribution to 
market participants having no transactions. An example is 
the WSCC 9-bus system in Fig. 4. Incomplete bilateral 
transactions are given as G1-L5/67 MW, G2-L5/30 MW, 
and G3-L6/50 MW. First, a bilateral transaction strategy is 
constructed using the given transactions. Afterwards, the 
pool transaction strategy is conducted by proportionally 
distributing the rest of the power. The bilateral and pool 
transaction strategies are given in Tables 2 and 3, respec-
tively. Finally, the total transaction strategy can be con-
structed by combining the two above-mentioned strategies 
as given in Table 4. 

 
Table 2. Bilateral transaction strategy 

[MW] 

Bus no. 1 2 3 Sum 

4 0 0 0 0 

5 67 30 0 97 

6 0 0 50 50 

7 0 0 0 0 

8 0 0 0 0 

9 0 0 0 0 

Sum 67 30 50 147 

 

Table 3. Pool transaction strategy 

[MW] 

Bus no. 1 2 3 Sum 

4 0 0 0 0 

5 0 22.167 5.833 28 

6 0 31.667 8.333 40 

7 0 0 0 0 

8 0 79.167 20.833 100 

9 0 0 0 0 

Sum 0 133 35 168 

 

Table 4. Total transaction strategy 

 [MW] 

Bus no. 1 2 3 Sum 

4 0 0 0 0 

5 67 52.167 5.833 125 

6 0 31.667 58.333 90 

7 0 0 0 0 

8 0 79.167 20.833 100 

9 0 0 0 0 

Sum 67 163 85 315 



Kyung-Il Min and Young-Hyun Moon 517

 
4.3 Comparison with Galiana’s Method 

 
The proposed method is quite similar to Galiana’s 

method [20]. If all reactive power is neglected, the loss 
sensitivity Kpi becomes the same as that given in Galiana’s 
paper. Eq. (18) in [20] can be rewritten as dLij/s=KpidGDij, 
where k is taken to be the slack bus s.) However, there are 
many differences as stated as follows: 

 
1) Galiana considered the time integral instead of the inte-

gral path. However, the contract trajectory, altered by the 
acceptance order of the transactions, is arguable without 
providing any proper method to determine integral paths. 

2) All reactive power is neglected in [20], causing some 
errors in loss calculation.  

3) The proposed method fully considers the effects of reac-
tive power including the zero-loading loss, which guar-
antees accurate loss allocations with negligible error be-
tween the actual system loss and the sum of the allocated 
losses. 

4) This paper provides discussions on the determination of 
integral path while observing practical load changes. 
Smooth property of the marginal loss sensitivity, as ob-
served in Fig. 2, allows us to save much computation 
time in calculating the average loss sensitivity, whereas 
Galiana’s method does not. This is an important discov-
ery for field applications. 

5) A new concept of virtual transaction is introduced in this 
paper to achieve more reasonable loss allocations than 
the actual bilateral contracts. 

6) The proposed method adopts a transaction ratio matrix 
that provides information on the ratio of the generation 
(the load) supplying for (receiving from) each load (gen-
erator) instead of a transaction matrix. Previously, settled 
transactions cannot be applied to the transaction varia-
tion in practical systems because loss is allocated after 
the transaction. The use of a ratio can provide more 
flexibility when considering the transaction variations. 

7) Galiana’s method uses a discrete integral, although it is 
expressed in the form of a time integral. Thus, his 
method should decrease the integration step to increase 
the accuracy and take drastically more computational 

burden. However, the proposed method can provide ac-
curate results with less computational burden (although 
only three points are integrated, its accuracy is not fully 
alleviated). 
 
 

5. Case Studies 
 
The WSCC 9-bus, IEEE 14-bus, England 39-bus, and 

IEEE 118-bus systems are tested to evaluate the proposed 
method. The total loss in power systems has been verified 
to be independent of the path the power takes through the 
transaction strategy. Several transaction strategies are con-
structed for all of the systems evaluated. Results show that 
the loss sensitivity factors and the allocated losses vary 
significantly with the transaction strategy. However, that 
the sum of the bus-wise allocated losses is nearly constant 
and is equal to the total loss is confirmed as expected. 

 
5.1 WSCC 9-bus System 

 
Four transaction strategies are used to test the WSCC 9-

bus system shown in Fig. 5. The transaction strategies, 
Cases 1-3, are given in Table 10 of the Appendix. The 
transaction strategy for a pool contract is evaluated in Case 
4. Table 5 shows the allocated losses of the WSCC 9-bus 
system. 

 
Table 5. Results of allocated losses for the WSCC-9 bus 

system 

[MW] 

Use of average loss sensitivity Use of marginal loss sensitivity
Gen

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

1
0.294

(0.252)
0.308

(0.266)
0.273

(0.230)
-0.113 

(-0.155) 
0.780 0.814 0.724 -0.122

2
2.890

(2.788)
2.432

(2.329)
3.635

(3.533)
3.342 

(3.240) 
6.154 5.143 7.800 7.135

3
1.457

(1.404)
1.902

(1.849)
0.734

(0.680)
1.413 

(1.359) 
3.108 4.085 1.518 3.012

Total
4.641

(4.444)
4.641

(4.444)
4.641

(4.444)
4.641 

(4.444) 
10.042 10.042 10.042 10.025

Actual loss: 4.641 (zero-loading loss: 0.198) 

(The figure in the parenthesis indicates the loss prior to zero-loading 
compensation.) 

①

② ③

④

⑤

71.6G1

⑥

⑦
⑧

⑨
G2 G3

90125

100

163 85

 

Fig. 5. Single-line diagram for the WSCC 9-bus system. 

 

Fig. 6. Single-line diagram for the IEEE 14-bus system.
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The loss sensitivity factors vary according to the transac-
tion strategies, i.e., the charged losses with generator buses 
vary and are dependent on the path. The sum of the 
charged losses is nearly constant and is equal to the actual 
loss experienced by the AC power flow after the zero-
loading compensation. 

 
5.2 Comparisons of Path-integral and Discrete Inte-

gral Methods 
 
The allocated losses and the actual loss are calculated for 

the 5-bus systems in [20] for the comparison between the 
proposed and Galiana’s methods. Table 6 represents an 
acceptance order, transactions, loss sensitivity factors, and 
the allocated losses by discrete integral for the WSCC 9-
bus system. The results of the WSCC 9-bus and Galiana’s 
5-bus systems [20] are shown in Tables 7 and 8, respec-
tively. The proposed method provides almost accurate re-
sults. However, in the Galiana’s method, the sum of the  

 
Table 6. Acceptance order, transactions, loss factors, and 

allocated losses by discrete integral for the 
WSCC 9-bus system 

Acceptance 
order 

Transaction MW 
Loss 
factor 

Allocated
loss 

T1 GD15 62 0.0105 0.651 

T2 GD25 63 0.0320 2.013 

T3 GD16 5 -0.00233 -0.012 

T4 GD36 85 0.0519 4.407 

T5 GD28 100 0.0133 1.329 

 
Table 7. Comparison of the allocated losses and the their 

sums for the WSCC 9-bus system (case 2) 

Allocated losses [MW] 
Gen 

Discrete integral Proposed 

1 0.639 0.308 

2 3.342 2.432 

3 4.407 1.902 

Loss sum 8.388 4.641 

Difference 3.747 0.000 

Actual loss 4.641 

 
Table 8. Comparison of the allocated losses and their sums 

for the Galiana 5-bus system 

Allocated losses [MW] 
Gen 

Discrete integral Proposed 

1 51.8 38.193 

2 7.0 4.818 

3 -49.3 -48.314 

4 62.1 51.501 

5 0.2 4.028 

Loss sum 71.8 50.225 

Difference 15.88 0.099 

Actual loss 50.132 

allocated losses is different from the actual loss. It does not 
guarantee high accuracy because it accepts the transactions 
in some orders. If the computation time allows, we can 
suppose that all the transactions be divided into 10 (or 100) 
steps. Each step accepts only 10% (or 1%) of the total 
transactions. We will then have 10 (or 100) times of trans-
actions through 10 (or 100) times bidding. Although com-
putation burden is increased drastically, Galiana’s method 
produces more accurate loss allocations. 

 
5.3 IEEE 14-bus System 

 
The proposed method is also applied to the IEEE 14-bus 

system shown in Fig. 6. The transaction strategies from 
Cases 1-3 are given in Table 11 of the Appendix. 

The transaction strategy for a pool contract is evaluated 
in Case 4. Table 9 shows the results of the loss allocation of 
the IEEE 14-bus system. The results indicate that the mar-
ginal/average loss sensitivities vary with the transaction 
strategy as the latter determines the integral path. Conven-
tional approaches have been somewhat unfair in such a 
way that the sum of the allocated losses doubles the actual 
loss. Here, note that the proposed method improves the 
reliability of the loss allocation by showing that the sum of 
the allocated losses is almost equal to the actual loss. 

 
Table 9. Results of allocated loss for the IEEE 14-bus system 

[MW] 

Use of average loss sensitivity Use of marginal loss sensitivity
Gen

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

1 
0.018

(-0.000)
-0.003

(-0.021)
0.017

(-0.001)
0.078 

(0.060) 
0.026 -0.017 0.025 0.172

2 
0.570

(0.431)
0.606

(0.467)
0.470

(0.331)
0.768 

(0.629) 
1.042 1.118 0.718 1.466

3 
0.099

(0.000)
0.099

(0.000)
0.099

(0.000)
0.024 

(-0.076) 
0.000 0.000 0.000 -0.304

6 
0.673

(0.554)
0.698

(0.578)
0.803

(0.683)
0.611 

(0.492) 
1.162 1.217 1.440 1.141

8 
0.373

(0.234)
0.333

(0.194)
0.344

(0.205)
0.256 

(0.113) 
0.655 0.567 0.702 0.410

Total
1.734

(1.218)
1.734

(1.218)
1.734

(1.218)
1.734 

(1.218) 
2.885 2.885 2.885 2.885

Actual loss: 1.734 (zero-loading loss: 0.515) 

(The figure in parenthesis indicates the loss prior to zero-loading compen-
sation) 

 
5.4 New England 39-bus System and IEEE 118-bus 

System 
 
To apply the proposed method to larger systems, the al-

gorithm is tested using the New England 39-bus and IEEE 
118-bus systems. The reactive power limit in the bus is not 
considered to simplify the test. As shown above, it is con-
firmed that the sum of the allocated losses is almost equal 
to the actual loss, and the bus-wise losses vary with the 
transaction strategy. 

In the case of the pool contract, the actual losses are 
132.812 MW and 42.733 MW, with the differences be-
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tween the calculated and actual loss being 2.84×10-5 MW 
and 0.020 MW for the New England 39-bus system and the 
IEEE 118-bus system, respectively. Similar differences are 
observed in the case of the bilateral contract with the trans-
action strategy: 6.65×10-5 MW and 0.054 MW for the New 
England 39-bus system and the IEEE 118-bus system, re-
spectively. The differences in all cases are small enough to 
be neglected or proportionally distributed to each generator. 
The numerical results show that the proposed algorithm 
can be applied well to real systems. 

Table 10 shows the results of the sample tests with sev-
eral integral step sizes. When the step size is very large 
(step = 0.5), the proposed method produces very accurate 
results (error is within 0.1%). This fact is very important 
for reducing the computational burden for practical field 
application to large power systems. 

 
Table 10. Actual and sum of the allocated losses and error 

in the New England 39-bus and IEEE 118-bus 
systems 

Step size 0.1 0.2 0.5 

Simpson 42.7329 42.7442 42.7675 

Error (%) 7.02E-05 0.026 0.081 

Trapezoidal 42.7411 42.8330 43.4681 

New England 
39-bus system 

 
Actual:42.7329 

Error (%) 0.019 0.23 1.72 

Simpson 132.8316 132.8525 132.8516

Error (%) 0.015 0.031 0.030 

Trapezoidal 132.8791 133.0216 134.0148

IEEE 118-bus  
system 

 
Actual:132.8116 

Error (%) 0.051 0.16 0.91 

 
 

6. Conclusions 
 
This paper proposes a new transmission loss allocation 

method that can provide a reliable way to satisfy the path 
independency of the total sum of allocated losses. We also 
compare this method with Galiana’s discrete integral 
method. Bus-wise allocated losses vary according to the 
transaction strategy. However, the sum of the allocated 
losses of each bus, including zero-loading loss, is nearly 
constant and equal to the actual loss. The proposed method 
solves the problem of conventional approaches that use the 
sensitivity method. These approaches result in the total 
sum of allocated losses becoming almost twice of the ac-
tual loss. Slack-bus-independent loss sensitivity is adopted 
to minimize the variation in the sensitivity that occurs 
when a new slack bus is selected. This paper introduces a 
loss allocation method for pool and bilateral markets. The 
proposed method is applied to the WSCC 9-bus, IEEE 14-
bus, New England 39-bus, and IEEE 118-bus systems. The 
results indicate that transmission loss can be allocated 
fairly and accurately while still considering the transaction 
strategy. 

 
 
 

Appendix A 
 
Path dependency for partial integral 
To help understand path dependency by path integral 

(line integral), illustrative examples are presented as fol-
lows. 

 

yzzyxyxzyxf 2),,( 222         (A.1) 

 
Eq. (A.1) is reconstructed in the same manner as (10), 

which is given as follows: 
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It is assured that the above integration form, (A.2), satis-

fies the condition of (11), and total integration P becomes 
path independent. However, each partial term is path de-
pendent. For example, one point on the integral path, 

),,( zyx , is given as 1xx  , 1yy  , and 1zz   if 

from )0,0,0(  to ),,( 111 zyx  a linear integral path c  is 

selected, where ]1,0[ . Thus, each of the partial integra-

tion and total integration are manipulated as follows: 
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In turn, if path 1c  is constructed by combining paths 

ac  and bc  which are linear between )0,0,0(  and 

)0,,( 11 yx , and between )0,,( 11 yx  and ),,( 111 zyx  respec-

tively, each of the partial integration is given as: 
 



Accurate Transmission Loss Allocation Algorithm Based on the Virtual Transaction Strategy~ 520 

11
2
1

1

0
111

),,(

)0,,(

)0,,(

)0,0,0(

),,(

)0,0,0(

)1(

2

1
0)2(

)2()2(

)2(

111

11

11

111

1

yxxdxyx

dxyxdxyx

dxyxP

zyx

yx
c

yx

c

zyx

c

ba















 (A.7) 








),,(

)0,,(

)0,,(

)0,0,0(

),,(

)0,0,0(

)2(

111

11

11

111

1

)22()22(

)22(

zyx

yx
c

yx

c

zyx

c

dyzyxdyzyx

dyzyxP

ba

2
1112

1
yyx                                   (A.8) 








),,(

)0,,(

)0,,(

)0,0,0(

),,(

)0,0,0(

)3(

111

11

11

111

1

)22()22(

)22(

zyx

yx
c

yx

c

zyx

c

dzyzdzyz

dzyzP

ba

  

11
2
1 2 zyz                                  (A.9) 

1111
2
1

2
1

2
1 2 zyyxzyxP        (A.10) 

 
In the above manipulation, the integrations on paths ac  

and bc  use path parameter  . Each of the partial integra-

tion term varies with the path, which means that the partial 

term )(iP  is path dependent. Each of the partial integration 
term is always path dependent if a function is reconstructed 
by the sum of the partial integration terms. However, note 
that without reference to the path, the sum of each partial 
integration term is always the same as (A.1), that is, path 
independent. 

 
 

Appendix B 
 

Table 11. Transaction strategy for the WSCC 9-bus system 

 Case 1 Case 2 Case 3 

G1 38.4/L5, 28.6/L6 62/L5, 5/L6 67/L6 

G2 86.6/L5, 76.4/L8 63/L5, 100/L8 125/L5, 38/L8 

G3 61.4/L6, 23.6/L8 85/L6 23/L6, 62/L8 

 
Table 12. Transaction strategy for the IEEE 14-bus system 

 Case 1 Case 2 Case 3 

G1 3.8/L2, 5.2/L5 9/L2 4/L2, 5/L5 

G2 
17.9/L2, 27.3/L3, 
22.4/L4, 2.4/L5 

12.7/L2, 27.3/L3, 
30/L4 

17.7/L2, 4/L3, 
47.8/L4, 0.5/L5 

G3 50/L3 50/L3 50/L3 

G6 

11.8/L4, 11.2/L6, 
6/L10, 3.5/L11, 

6.1/L12, 13.5/L13, 
7.9/L14 

7.6/L5, 11.2/L6, 
9/L10, 3.5/L11, 

6.1/L12, 13.5/L13, 
9.1/L14 

2.1/L5, 11.2/L6, 
8.7/L10, 3.5/L11,

6.1/L12, 13.5/L13,
14.9/L14 

G8 
16.9/L3, 13.6/L4, 
29.5/L9, 3/L10, 

7/L14 

16.9/L3, 17.8/L4, 
29.5/L9, 5.8/L14 

40.2/L3, 29.5/L9,
0.3/L10 

Tables 10 and 11 show the transaction strategies of cases 
1-3 for the WSCC 9-bus system and the IEEE 14-bus sys-
tem, respectively (legend: 10/L1 means 10 MW to load at 
bus 1). 
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