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Abstract—Ultrawide-band pulse radars have immeasurable po-
tential for a high-range-resolution imaging in the near field and
can be used for noncontact measurement of industrial products
with specular or precision surfaces, such as reflector antenna or
aircraft fuselage, or identifying and locating the human body in
security systems. In our previous work, we developed a stable and
high-speed 3-D imaging algorithm, Envelope, which is based on
the principle that a target boundary can be expressed as inner or
outer envelopes of spheres, which are determined using antenna
location and observed ranges. Although Envelope produces a
high-resolution image for a simple shape target that may include
edges, it requires an exact connection for observed ranges to main-
tain the imaging quality. For complex shapes or multiple targets,
this connection becomes a difficult task because each antenna
receives multiple echoes from many scattering points on the target
surface. This paper proposes a novel imaging algorithm without
range point connection to accomplish high-quality and flexible 3-D
imaging for various target shapes. The algorithm uses an accurate
estimation for the direction of arrival using signal amplitudes and
realizes direct mapping from observed ranges to target points.
Several comparative studies of conventional algorithms clarify
that our proposed method accomplishes accurate and reliable 3-D
imaging even for complex or multiple boundaries.

Index Terms—Accurate and stable 3-D imaging, complex
boundary, direction of arrival (DOA) estimation, multiple targets,
range point connection, ultrawide-band (UWB) pulse radars.

I. INTRODUCTION

U LTRAWIDE-BAND pulse radars have great potential for

use in superresolution imaging, which is required in near-

field sensing applications such as target identification and self-

location by robots or automobiles. They can be applied to

surveillance or security systems for intruder detection or aged

care, where an optical camera has the serious problem of

intruding on privacy in bathrooms or living rooms. They are

also suitable for noncontact measurement of reflector anten-

nas or aircraft bodies that have high-precision and specular

surfaces, where an extremely accurate surface measurement is
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required for the product inspection. Although various kinds of

radar algorithms based on data synthesis have been proposed,

such as synthetic aperture radar (SAR) [1], time-reversal al-

gorithms [2], [3], range migration methods [4]–[7], and other

optimization algorithms [8]–[11], they all require intensive

computation and are hardly applicable to the aforementioned

applications. Contrarily, the high-speed 3-D imaging algorithm

SEABED achieves direct and nonparametric imaging based on

reversible transforms, namely, boundary scattering transform

(BST) and inverse BST (IBST), between the time delay and

target boundary [12]–[15]. However, imaging using SEABED

becomes unstable for noisy data because the range derivative

in BST can enhance the fluctuation of small range errors. To

produce a more stable image, we have already proposed a real-

time 3-D imaging algorithm named Envelope [16], [17]. This

method uses an envelope of spheres, which are determined with

antenna locations and observed ranges, to create a stable image

without requiring derivative operations. It has been confirmed

that this method robustly reconstructs a high-resolution 3-D

image for objects of simple shape, including those with edges

when combined with the range compensation method termed

spectrum offset correction [17]. Moreover, an extended algo-

rithm has been published, based on this method and which can

extract an accurate breast surface for cancer detection [18]. In

addition, the ultrasound imaging for airborne objects has been

developed, which is based on the similar principle that a scat-

tering point must be tangent to a sphere or ellipsoid determined

by an antenna location and observed range [19]. However, the

image obtained with Envelope becomes inaccurate for complex

boundaries because it requires an appropriate range connection.

For a complex surface, this connection is often difficult because

each antenna observes multiple echoes, and there are too many

candidates for the connections. Hantscher et al. [20] have

developed an iterative wavefront extraction method for multiple

targets, which recursively subtracts scattered waveforms to

resolve multiple echoes. However, once the range connections

fail, there is nonnegligible inaccuracy in the images obtained by

these conventional algorithms. A global optimization algorithm

based on waveform matching has been developed [21], yet it

still requires a long calculation time. For the ground penetrat-

ing radar applications, Windsor et al. [22] have proposed the

efficient connection algorithm for observed range points, which

uses a cross-correlation of received signals between adjacent

antenna locations. In any event, all conventional algorithms that

are specific to either SEABED or Envelope have a substantial
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Fig. 1. Relationship between (upper) target boundary in r-space and
(lower) quasi-wavefront in d-space.

problem in that they are extremely sensitive to inappropriate

connections of range points.

This paper proposes a novel algorithm based on direct group

mapping from observed ranges to target boundary points with-

out having range connection. This algorithm involves an accu-

rate estimation for the direction of arrival (DOA) using signal

amplitudes, which eliminates the range connecting procedure.

The idea is based on a simple principle, yet it remarkably

enhances an accuracy even in complex boundary extraction.

First, the algorithm for a 2-D model is presented for simplicity,

and it is then extended for a 3-D model. This paper also presents

comparative studies using several conventional algorithms,

such as SAR and Fourier transform. The numerical simulations

indicate that our proposed method has a significant advantage

in accurate imaging even for complex shape or multiple targets.

Although this paper assumes a monostatic radar system, it

is readily extended to the bistatic model. The weakness of

the monostatic radar is that the target surface estimated is

limited compared with a bistatic radar because strong echoes

are observed only from the surface perpendicular to the the line

of sight. Contrarily, the advantage is that a monostatic radar

system can be relatively compact, while a bistatic radar system

[23] uses a large-scale antenna array.

II. 2-D PROBLEM

A. System Model and Data Processing

The upper diagram in Fig. 1 shows the system model. It

assumes that the target has an arbitrary shape with a clear

boundary and that the propagation speed of the radio wave

is a known constant. It assumes the monostatic radar, and an

Fig. 2. Diagram for the data processing.

omnidirectional antenna is scanned along the x-axis. We use

a monocycle pulse as the transmitting current. The r-space is

defined as the real space in which the target and antenna are lo-

cated, and it is expressed by the parameters (x, z). The parame-

ters are normalized by λ, which is the central wavelength of the

pulse. We assume z > 0 for simplicity.

s′(X, t) is defined as the electric field received at antenna

location (x, z) = (X, 0) at time t. s(X, t) is calculated by

applying the Wiener filter to s′(X, t) as

s(X, t) =

∞
∫

−∞

W (ω)S ′(X, ω)ejωtdω (1)

where S ′(X, ω) is the signal in the frequency domain of

S ′(X, t). W (ω) is defined as

W (ω) =
Sref(ω)∗

(1 − η)S2
0 + η|Sref(ω)|2

S0 (2)

where η = 1/(1 + (S/N)−1) and Sref(ω) is the reference sig-

nal in the frequency domain, which is the complex conjugate

of that of the transmitted signal. S0 is a constant for dimension

consistency. This filter is an optimal mean square error linear

filter for additive noises. With a high S/N (η ≃ 1), it functions

as an inverse filter, and while with a low S/N (η ≃ 0), it

functions as a matched filter. s(X, t) is converted to s(X, Z ′)
using the valuable conversion Z ′ = c0t/2λ, where c0 is the

speed of the radio wave. (X, Z) is defined as the range point

which is extracted from the peaks of s(X, Z ′) as

∂s(X, Z ′)/∂Z ′ = 0

s(X, Z ′) ≥α max
Z′

s(X, Z ′). (3)

The parameter α ≥ 0 is empirically determined. The rational

behind α > 0 is that the response of the Wiener filter to a

single scattered wave is positive, because it has almost the same

phase relationship to the reference signal Sref(ω). Fig. 2 shows

the data processing diagram from the observed electric field

s′(X, t) to the range points (X, Z).
The d-space is defined as the space expressed by (X, Z).

Fig. 1 shows the relationship between (x, z) in r-space and

(X, Z) in d-space. The transform from d-space to r-space

corresponds to the imaging, dealt with in this paper.

B. Conventional Algorithms

1) SAR Technique for Near-Field Imaging: The SAR tech-

nique is the most useful in radar imagery and is based on signal
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Fig. 3. Output of the Wiener filter and the extracted range points.

Fig. 4. Estimated image I(x, z) with SAR.

synthesis [1]. In the near-field case, the distribution image

I(x, z) obtained using SAR is expressed as

I(x, z) =

∞
∫

−∞

s
(

X,
√

(x − X)2 + z2
)

dX. (4)

The target boundary can be extracted from its focused image

I(x, z). An example of applying SAR is presented here. The

target boundary is assumed to be sinusoidal curve and is ex-

pressed as z = 2.0 − 0.2 cos(2πx). Fig. 3 shows the output of

the Wiener filter and the extracted range points (X, Z), where

each signal is received at 101 locations for −2.5 ≤ X ≤ 2.5.

Here, the finite-difference time domain (FDTD) is used for the

calculation of the received signal s′(X, t). The conductivity and

relative permittivity of the target are set to 1.0 × 106 S/m and

ǫ1 = 1.0, respectively. Moreover, the permittivity of air is ǫ0 =
1.0. From this figure, it is evident that there are some responses

before the true time of arrival (Z < 1.8λ), which are caused by

an aliasing effect or cross-correlation response of the Wiener

filter with characteristics of both the inverse and matched filters.

Fig. 4 shows the estimated image with SAR, and the target

boundary is highlighted. Although this method accomplishes a

stable imaging even for a complex target boundary, it cannot

clearly determine the location of target boundaries. Further-

more, this method requires searching operations for the entire

assumed region (x, z), and the calculation time is more than

60 s using a 2.8-GHz Xeon processor. To enhance the speed of

the original SAR, a frequency–wavenumber (F–K) migration

method has been developed [6], [7]. This algorithm is based on

the aperture synthesis in the F–K domains and calculates the

migrated image IFK(x, z) as

IFK(x, z) =

∞
∫

−∞

∞
∫

−∞

S(kX , ω)e
j

(

kXx+

√

ω2

c2
0

−k2
X

z

)

dkXdω

(5)

Fig. 5. Estimated image IFK(x, z) with FK migration.

Fig. 6. Estimated image with SEABED.

where S(kX , ω) is the output of the Wiener filter in the F–K

domain, obtained by a 2-D Fourier transform of s(X, t). Fig. 5

shows the resulting image IFK(x, z). This algorithm makes use

of the FFT algorithm, thereby increasing the imaging speed

even for a massive amount of data. For the example image, the

calculation time is 2.0 s using the same processor as before.

Although the resulting image is almost the same as I(x, z),
there are small differences between the two images because

the latter algorithm makes use of data interpolation in the F–K

domain, and this is often prone to error. Various algorithms,

derived from the SAR method and aimed at resolution or speed

enhancement [4], [5], have been proposed. These algorithms

are, however, barely able to determine the clear surfaces of

targets, particularly around the edges, since they are all based

on focusing the received wavefield.

2) SEABED: We have already proposed a nonparametric

imaging algorithm, known as SEABED, that drastically short-

ens the calculation time for target boundary extraction [13],

[14]. For direct extraction of a clear target boundary, this

algorithm connects the range points (X, Z) for each X , creating

what is called a quasi-wavefront. The reversible transform BST

is then used between a target point in r-space and the quasi-

wavefront in d-space. IBST is expressed as

x = X − Z∂Z/∂X
z = Z

√

1 − (∂Z/∂X)2

}

. (6)

This transform provides a strict solution for the assumed inverse

problem. The observed range and its derivative are directly

transformed to the target boundary by IBST. We confirm that

this method achieves high-speed and nonparametric imaging

of a simple target. However, for a complex one, the image

produced by SEABED is quite unstable, as shown in Fig. 6,

where the same data as in Fig. 3 are used. This is because IBST

uses the derivative of the quasi-wavefront. The small range
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Fig. 7. Relationship between target boundary and envelopes of circles in 2-D
problem.

fluctuations due to multiple interferences are enhanced by the

range derivative ∂Z/∂X even if the condition |∂Z/∂X| ≤ 1 is

used. IBST also requires an appropriate range point connection

to calculate an accurate derivative of quasi-wavefront. For the

complicated range points shown in Fig. 3, this operation is

extremely difficult. To overcome this difficulty, several meth-

ods for finding an appropriate range point connection have

been developed, such as the iterative wavefront subtraction for

multiple-target recognition [20] and using a global optimization

algorithm based on waveform matching [21]. However, they all

have a substantial problem in that if the range point connection

fails, there is serious image distortion because an incorrect

range connection causes large derivative errors.

3) Envelope: To suppress the instability due to fluctuation

in the range derivative, a stable and rapid imaging algorithm

Envelope has been developed [16]. This algorithm uses the prin-

ciple that the target boundary is expressed as the envelope of the

circles, with a center point (X, 0) and radius Z. Fig. 7 shows

the relationship between the target boundary and the envelopes

of circles. Fig. 7 shows that the envelopes of the circles should

circumscribe or inscribe to the target boundary, according to

the sign of ∂x/∂X = 1 − Z∂2Z/∂X2 − (∂Z/∂X)2, which

denotes the target curvature. This method also requires the

quasi-wavefront to create the envelope of circles. This method

approximates a target region (x, z) for each (X, Z) as

max
νX(Xi−X)<0

xp(Xi) ≤ x ≤ min
νX(Xi−X)>0

xp(Xi)

z =
√

Z2 − (x − X)2

}

(7)

where νX = sgn(∂x/∂X) and Xi is a searching variable.

xp(Xi) is defined as the intersection point between the circles,

determined with (X, Z) and (Xi, Zi), as shown in Fig. 7.

Equation (7) enables group mapping from the points (X, Z)
to the points (x, z) without derivatives. Thus, the instability

caused by range fluctuation is suppressed.

It is confirmed that this method achieves high-speed and

stable imaging for a simple target boundary. However, as shown

in Fig. 8, the image produced by Envelope is inaccurate for

the complex one. This is because Envelope requires appro-

priately connected range points to obtain an accurate image.

Complex targets, in general, have many scattering points on

their surfaces, and each antenna observes many ranges. The

connection procedure is a complicated problem because each

point of (X, Z) has multiple connecting candidates around

Fig. 8. Estimated image with Envelope.

Fig. 9. Estimated image with Fourier transform and IBST.

itself. If the connection fails, the image estimated by Envelope

has nonnegligible errors because it uses an incorrect envelope

of circles with mistakingly determined νX .

4) IBST With Fourier Transform: An imaging algorithm

using Fourier transform and IBST realizes stable imaging be-

cause it does not require range point connections. The range

inclination ∂Z/∂X can be calculated with the received 2-D

data s(X, Z ′). In this method, ∂Z/∂X for each point (X, Z)
is approximated as

∂Z/∂X ≃ −k̂X/k̂Z (8)

where k̂X and k̂Z are calculated as

(k̂X , k̂Z) = arg max
kX ,kZ

∣

∣S(kX , kZ)(X,Z)

∣

∣ . (9)

Here, S(kX , kZ)(X,Z) is the 2-D Fourier transform of the

spatially filtered signal around (X, Z) given as

S(kX , kZ)(X,Z) =

∞
∫

−∞

∞
∫

−∞

Γ(X ′, Z ′;X, Z)s(X ′, Z ′)

· e−j(kXX′+kZZ′)dX ′dZ ′ (10)

where the gate function Γ(X ′, Z ′;X, Z) is defined as

Γ(X ′, Z ′;X, Z) = exp

{

−
(X − X ′)2 + (Z − Z ′)2

2σ2
F

}

. (11)

The derivative for each range point can be stably calculated

using the pulse waveform and amplitude. Fig. 9 shows the

image estimated by combining the 2-D Fourier transform and

IBST for the same data in Fig. 3. σF = 0.2λ is set. The figure
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Fig. 10. Relationship between the target boundary and the convergence orbit
of the intersection points.

shows that the obtained image has many inaccurate points and

that the correct target boundary is hardly reconstructed. This

is because the accuracy for ∂Z/∂X is affected by waveform

deformations caused by interferences from multiple scatterers.

Moreover, the method requires 240 s for imaging, which is not

suitable for the real-time application.

C. Proposed Algorithm

1) Principle of the Proposed Algorithm: This section de-

scribes a proposed imaging algorithm to resolve the problems of

the conventional algorithms. The proposed algorithm is based

on the simple principle that a target boundary point should exist

on a circle, with a center at (X, 0) and radius of Z. Thus, each

point (x, z) can be calculated using the corresponding angle of

arrival, defined as DOA. For the DOA estimation, the following

function f(θ, q, qi) is introduced:

f(θ, q, qi) = exp

[

−
{θ − θ(q, qi)}

2

2σ2
θ

]

, (X �= Xi) (12)

where q = (X, Z), qi = (Xi, Zi), and θ(q, qi) denotes the

angle from the x-axis to the intersection point of the circles,

with parameters (X, Z) and (Xi, Zi). Any function with a

center peak and symmetric curve, such as the raised cosine

function, can be used in (12) instead of the Gaussian function.

Fig. 10 shows the relationship between the intersection points

of the circles and the angle of arrival.

Let us now introduce the following proposition in order to

verify the suitability of the evaluation function F (θ; q), which

is subsequently defined. We assume that (Xi, Zi) moves to

(X, Z) along an exact quasi-wavefront, as defined in [16].

Under this condition, the following proposition holds.

Proposition 1: If |X − Xi| ≤ |X−Xj | and (X−Xi)(X −
Xj) ≥ 0 are satisfied, then

|x − xp(Xi)| ≤ |x − xp(Xj)| (13)

where x = X − Z∂Z/∂X . Proposition 1 is proved in the

Appendix. This proposition states that, as Xi moves to X , the

distance between x of the target point and xp(Xi) decreases.

θ(q, qi) then converges to the true angle of arrival. According

TABLE I
REQUIRED PROCEDURES IN EACH METHOD

to these conditions, the evaluation value F (θ; q) for the angle

estimation is introduced as

F (θ; q) =

∣

∣

∣

∣

∣

∣

Nq
∑

i=1

s(Xi, Zi)f(θ, q, qi) e
−

(X−Xi)
2

2σ2
X

∣

∣

∣

∣

∣

∣

(14)

where the constants σθ and σX are empirically determined

and Nq is the total number of the range points. The weight

function exp{−(X − Xi)
2/2σ2

X} in (14) yields a convergence

effect of intersection points to the angle estimation given in

Proposition 1. The optimum DOA for each q is calculated as

θopt(q) = arg max
θ

F (θ; q). (15)

The target boundary (x, z) for each range point (X, Z) is

expressed as x = X + Z cos θopt(q) and z = Z sin θopt(q). A

noteworthy advantage of this algorithm is that the optimum

DOA can be calculated without connecting the range points

in (14). This method realizes direct mapping from the points

of range to the points of target boundary without range point

connections or derivative operations. Thus, the inaccuracy oc-

curring in the conventional algorithms can be substantially

avoided with this method.

2) Procedure of the Proposed Method:

Step 1) Calculate F (θ; q) in (14) for q = (X, Z).
Step 2) Obtain θopt(q) in (15), where ζ(q) is set as

ζ(q) = F (θopt(q); q) . (16)

Step 3) Calculate the point on the target boundary (x, z) as

x = X + Z cos θopt(q)
z = Z sin θopt(q)

}

. (17)

Step 4) Carry out steps 1)–3) for all range points, and obtain

target points.

Step 5) Remove the target points that satisfy

ζ(q) ≤ β max
i

ζ(qi). (18)

β is empirically determined.

Step 5) Suppresses false images caused by random noise, where

its ζ(q) becomes smaller than that of a true image in most

case. In this procedure, the proposed method determines each

target point (x, z) by only finding θ which maximizes the

evaluation function F (θ; q), and then, it can avoid the difficulty

of connecting range points.

Table I shows the required procedures for each method. The

processes “Derivative Operation” and “Range Point Connec-

tion” yield inaccuracy and difficulties for imaging in the case of

complex boundaries, as described in Section II-B. The proposed

method does not require these procedures, and inaccuracy can

be substantially resolved.
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Fig. 11. Estimated image with the proposed method.

Fig. 12. Error distribution for each method at the complex target.

D. Performance Evaluation of the Numerical Simulation

1) Complex Boundary: Fig. 11 shows the image estimated

by the proposed method for the same data as those in Fig. 3.

σX = 1.0λ, σθ = π/50, α = 0.2, and β = 0.3 are set. A dis-

cussion of the parameter selection is given in the latter part

of this section. This result verifies that the proposed method

significantly enhances the accuracy of the estimated points,

even for a complex target boundary. It also shows that there are

false images above the target boundary caused by the multiple

scattered signals, which we aim to suppress in the future. For a

quantitative evaluation of the accuracy, ǫ(xi
e) is introduced as

ǫ
(

x
i
e

)

= min
x

∥

∥x − x
i
e

∥

∥

2
, (i = 1, 2, . . . , NT ). (19)

Here, x and x
i
e express the location of the true target point and

that of the estimated point, respectively. NT is the total number

of x
i
e. Fig. 12 shows the number of the estimated points for

each value of ǫ. SAR is discarded in this evaluation to allow the

comparison of only those methods using range points (X, Z).
The value of NT for each algorithm is 521 for SEABED, 430

for Envelope, 375 for IBST+Fourier, and 517 for the proposed

method. The figure reveals that the number of estimated points

with ǫ ≤ 0.1λ is significantly larger than the numbers for the

other algorithms. Furthermore, the detection probability PD of

each algorithm is investigated, where PD is defined as the ratio

of the number of the estimated points with ǫ ≤ 0.1λ to NT . The

PD values for the algorithms are 0.316 for SEABED, 0.353 for

Envelope, 0.470 for IBST+Fourier, and 0.720 for the proposed

method. This result also verifies that the proposed algorithm

enhances the accuracy remarkably in terms of its ability to

Fig. 13. Enlarged view for the range points in Fig. 3.

Fig. 14. Evaluation example for f(θ, q, qi) and F (θ; q) at q = (0.0, 2.05).

detect targets. It should, however, be noted that this algorithm

does not improve the spatial resolution, which is strictly limited

to one-half of the wavelength of the transmitted pulse. However,

the proposed method can provide more significant images to

recognize target shapes with clear surfaces, by increasing the

number of accurate boundary points.

Here, we discuss the effectiveness of the proposed method.

Fig. 13 shows an enlarged illustration of the range points in

Fig. 3. In this figure, two of the true quasi-wavefronts (solid

lines) intersect at point q = (0.0, 2.05). Then, the derivatives

∂Z/∂X for the two wavefronts are around 0.4 and −0.4,

respectively, which correspond to approximately 65◦ or 115◦

using the relationship θ = cos−1(−∂Z/∂X) [16]. However,

the observed range points (black dots) around q = (0.0, 2.05)
are not on the true quasi-wavefronts, because multiple scat-

tered waves are included in ranges that are smaller than the

wavelength and the peak estimations have nonnegligible errors.

Then, the estimated derivative ∂Z/∂X is around zero, which

corresponds to an incorrect DOA of 90◦. Contrarily, Fig. 14

shows each value of f(θ, q, qi) and F (θ; q) for q = (0.0, 2.05),
and we recognize the maximum for θ = 65◦ or θ ≃ 115◦

around the true angle using (15) in the proposed method. This is

because each angle of arrival can be calculated from the global

distribution of the range points, and this avoids inaccuracy in

the angle of arrival due to the derivative or misconnection of

the range points.

The sensitivity of the proposed method with respect to

parameters α, β, σX , and σθ is investigated as follows. The

graphs on the left- and right-hand sides of Fig. 15 show PD
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Fig. 15. Sensitivity evaluations of the proposed method for (left) α and
(right) β.

Fig. 16. Sensitivity evaluation of the proposed method for σX and σθ in
(left) PD and (right) NT .

and NT values for α and β, respectively, given that σθ = π/50
and σX = 1.0λ. In both graphs, NT decreases as either α or β
increases. This is because α limits the number of range points

in the peak extraction of s(X, Z ′) in (3). Moreover, β regulates

the threshold of selecting the estimated points in (18). On the

other hand, Fig. 15 shows that PD increases gently for α ≤ 0.6,

because a large α suppresses the extraction of false ranges

from unnecessary responses of the Wiener filter in Fig. 3. It

also shows that PD increases as β increases, because more

accurate points have a higher value of F (θ; q). Considering

the balance between the PD and NT values, α and β should

be set to about 0.2 and 0.3, respectively. The left- and right-

hand sides of Fig. 16 show the PD and NT values for each σX

and σθ, given that α = 0.2 and β = 0.3. The left-hand side of

Fig. 16 shows that, although PD decreases as σθ increases, PD

does not depend on σX . This is because the larger σθ blurs the

peak of (14) and distorts the accuracy for θopt. On the other

hand, the right-hand side of Fig. 16 shows that NT has an

increasing tendency for the both σθ and σX . From these results,

the appropriate parameters have been determined as σθ = π/50
and σX = 1.0λ. Furthermore, by using these same parameters,

we have confirmed that the proposed algorithm produces accu-

rate images for various kinds of target shapes with edge, plate,

concave, or convex boundaries. Thus, the selection of parameter

values is not substantially affected by the target shapes.

It is shown that the calculation time of the proposed method

is within 0.2 s for processing on a Xeon 2.8-GHz computer,

which is suitable for real-time operation. In addition, Table II

shows the comparison of the calculation time and computa-

tional complexity for each algorithm, where NX , NZ′ , Nx,

and Nz denote the sampling numbers of X , Z ′, x, and z,

respectively, and O(∗) gives the Landau notation. The high-

speed imaging is possible because the method uses only the

ranges and amplitudes, and this decreases the calculation cost

for the boundary extraction when compared with SAR and other

data synthesis algorithms.

TABLE II
CALCULATION TIME (FOR XEON 2.8-GHz PROCESSOR) AND

COMPUTER COMPLEXITY OF EACH ALGORITHM

Fig. 17. Output of the Wiener filter and the extracted range points for S/N =
20 dB.

Fig. 18. Estimated image with the proposed method for S/N = 20 dB.

2) Performance in Noisy Situation: Next, the application

example of a noisy situation is presented. Fig. 17 shows the

output of the Wiener filter and the extracted range points for

S/N = 20 dB. Here, S/N is defined as the ratio of the peak

instantaneous signal power to the averaged noise power after

applying the matched filter. As shown in Fig. 17, there are many

incorrect range points due to the random noise. Fig. 18 shows

the target image obtained with the proposed method. Although

there are some false images due to random noise, for example

(x, z) = (−0.25, 2.5), an accurate image is still produced even

in a noisy environment. The accuracy for each method is quan-

titatively compared for various noisy cases using the evaluation

value µ, which is defined as the root mean squares of ǫ(xi
e)

defined in (19). Fig. 19 shows the relationship between S/N
and µ for each method. The figure verifies that the proposed

method provides an accurate image in noisy situations, and µ
holds within 0.15λ for S/N ≥ 20 dB. Here, it should be noted

that the assumed target boundary represents one of the most

difficult cases with the surface variation around 0.4λ, because

multiple interferences from the different scattering points on

this target surface are included in the received signal for ranges

that are smaller than wavelength. These interferences create

a complicated distribution of (X, Z) as in Fig. 3, because
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Fig. 19. µ for each S/N at the complex target boundary.

Fig. 20. Output of the Wiener filter and the extracted range points for the
small circle and concave boundary.

Fig. 21. Estimated image with the proposed method for the small circle and
concave boundary.

multiple range points converge in the small region of (X, Z).
This distribution, therefore, causes serious errors in images

obtained using the conventional algorithms as shown in Figs. 6,

8, and 9. On the contrary, the proposed method improves the

accuracy remarkably compared to the conventional algorithms,

even with one of the most difficult target shapes.

3) Multiple Boundaries: We show that the proposed algo-

rithm achieves accurate imaging, where multiple boundaries

with large and small curvatures are intermingled. Fig. 20 shows

the output of the Wiener filter in the case of the concave

boundary and small circle. Fig. 21 shows the produced image

by the proposed method. The figure confirms that the image

accurately expresses both target boundaries. This is because

the evaluation value F (θ; q) in (14) depends on the received

amplitude s(X, Z) and the density of the intersection points

between the circles. Although the power of each received signal

from the small circle is smaller than that from the concave

Fig. 22. System model in 3-D problem.

boundary, the density of the intersection points of the small

circle is greater than that of the concave boundary above. Thus,

in the case of the small circle or the concave boundary, F (θ; q)
creates a significant peak for each DOA.

III. 3-D PROBLEM

A. System Model

Fig. 22 shows the system model for a 3-D problem. The

target model, antenna, and transmitted signal are the same as

those assumed in the 2-D problem. The antenna is scanned

along the plane, z = 0. We assume a linear polarization in

the direction of the x-axis. The r-space is expressed by the

parameter (x, y, z). We assume z > 0 for simplicity. s′(X, Y, t)
is defined as the received electric field at the antenna lo-

cation (x, y, z) = (X, Y, 0). The output of the Wiener filter

s(X, Y, Z ′) is obtained by the same procedure described in

Section II-A. We connect the significant peaks of s(X, Y, Z ′)
as Z for each X and Y and extract range point as (X, Y, Z)
by using the same criteria in (3). The d-space is defined as the

space expressed by (X, Y, Z).

B. Conventional Algorithms

1) SEABED: The SEABED algorithm for 3-D problems has

been developed. It achieves real-time and nonparametric 3-D

imaging with IBST [14]. The IBST from the quasi-wavefront

(X, Y, Z) to the target boundary (x, y, z) is formulated as

x = X − Z∂Z/∂X
y = Y − Z∂Z/∂Y
z = Z

√

1 − (∂Z/∂X)2 − (∂Z/∂Y )2

⎫

⎬

⎭

. (20)

This transform gives us a direct solution for the clear bound-

ary extraction. An application example of SEABED is pre-

sented as follows. We assume a complex target boundary

with sinusoidal surfaces as shown in Fig. 22, which

is defined as z = 1.2 − 0.3{cos(πx) + 0.5}{cos(1.5πy) +
0.5}e−(x2+y2)/9. The range points are extracted from the re-

ceived data calculated by the FDTD method, and the quasi-

wavefront is created by connecting these points. Figs. 23 and

24 show the outputs of the Wiener filter and the extracted

range points (X, Y, Z) at X = 0 and Y = 0.6, respectively. We

take the received signal at 51 locations for −2.5 ≤ x, y ≤ 2.5.

Fig. 25 shows the estimated images at x = 0 and y = 0.6,
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Fig. 23. Output of the Wiener filter and extracted range points at X = 0.

Fig. 24. Output of the Wiener filter and extracted range points at Y = 0.6.

Fig. 25. Estimated image with SEABED for the 3-D complex target.

respectively, using SEABED. The figure shows that there is a

nonnegligible fluctuation of the estimated points because the

image estimated by SEABED strongly depends on the accuracy

of the derivative of Z, which is quite sensitive to small range

errors due to interference.

2) Envelope: The Envelope method for 3-D problems has

been proposed to realize stable and high-speed 3-D imaging

with an envelope of spheres [17]. Similar to the 2-D problem,

this method calculates the target boundary (x, y, z) for each

(X, Y, Z) as

max
νX(Xi−X)<0

x3d
p (Xi) ≤ x ≤ min

νX(Xi−X)>0
x3d

p (Xi)

max
νY (Yi−Y )<0

y3d
p (Yi) ≤ y ≤ min

νY (Yi−Y )>0
y3d

p (Yi)

z =
√

Z2 − (x − X)2 − (y − Y )2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(21)

where Xi and Yi are searching variables and νY =
sgn(∂y/∂Y ). y3d

p (Yi) is defined as the intersection point be-

tween the projected circles of two spheres determined by

(X, Y, Z) and (X, Yi, Zi) on the plane x = X . x3d
p (Xi) is

defined similarly on the plane y = Y . Equation (21) determines

an arbitrary target boundary without derivative operations,

which can suppress the instability caused by small range errors.

Fig. 26. Estimated image with Envelope for the 3-D complex target.

Fig. 27. Intersection line Li of two spheres on z = 0 plane.

Fig. 26 shows the image obtained with Envelope from the same

views as those in Fig. 25. It is confirmed that the fluctuation of

the estimated points is suppressed without the use of the range

derivative. However, there are significant image distortions

because the misconnection of the range points produces an

incorrect envelope of spheres, which results in the large errors

for the estimated regions. This determination requires a correct

wavefront connection for the range points, and it often becomes

more difficult than that in a 2-D problem because each point

must be correctly connected along both the x- and y-axes.

C. Proposed Imaging Algorithm

To resolve the previous problems, we extend the proposed

method to 3-D modeling. In this model, the orbit of intersection

points between two spheres for (X, Y, Z) and (Xi, Yi, Zi)
becomes a circle. The projected curve of this circle on z = 0
becomes a straight line. We define this line as Li. Fig. 27 shows

the intersection line Li of two spheres on the z = 0 plane.

Here, each angle of arrival corresponds to the location for (x, y)
for the assumption z ≥ 0. This method determines the target

location (x, y) by using the evaluation function, defined as

f
(

x, y, q3d, q3d
i

)

= exp

{

−
d

(

x, y, q3d, q3d
i

)2

2σ2
d

}

(22)

where q
3d = (X, Y, Z), q

3d
i = (Xi, Yi, Zi), and d(x, y, q3d,

q
3d
i ) denotes the minimum distance between the projected line

Li and (x, y). We use the extended principle that if (Xi, Yi, Zi)
moves to (X, Y, Z) along an exact quasi-wavefront, (x, y)
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Fig. 28. Estimated image with the proposed method for the 3-D complex
target.

converges to that of the true target point. For accurate locating

of (x, y), the evaluation value F 3d(x, y; q3d) is introduced as

F 3d(x, y; q
3d)

=

∣

∣

∣

∣

∣

∣

Nq
∑

i=1

s(Xi, Yi, Zi)f
(

x, y, q3d, q3d
i

)

e
−

D(q
3d,q3d

i )
2

2σ2
D

∣

∣

∣

∣

∣

∣

(23)

where D(q3d, q3d
i )=

√

(X−X2
i )+(Y − Y 2

i ), σd, and σD are

empirically determined. The x- and y-coordinates of the target

boundary for each range point q
3d are then calculated as

(

x(q3d), y(q3d)
)

= arg max
x,y

F 3d(x, y; q3d). (24)

The z-coordinate of each target point is given by z(q3d) =
√

Z2 − {x(q3d) − X}2 − {y(q3d) − Y }2 . The method elim-

inates the connecting procedures of the range points, which can

avoid inaccuracy due to the failure of range connections. Thus,

it achieves a direct mapping from the all range points to the

points of the target boundary without grouping.

D. Performance Evaluation in Numerical Simulation

This section presents an application example of a 3-D prob-

lem for the proposed method. Fig. 28 shows the image esti-

mated by the proposed method. σd = 0.1λ and σD = 0.5λ are

set. The method remarkably enhances the accuracy for 3-D

complex target imaging. This is because it does not require

range point connection and it eliminates inaccuracy due to

an inappropriate range connection. Furthermore, the proposed

method makes use of the distribution of the range points along

not only the x- and y-axes but also all directions to obtain an

accurate target point. Fig. 29 shows the distribution of ǫ(xi
e)

defined in (19) for the images estimated using each method.

This figure quantitatively shows that the proposed method

increases the number of the estimated points with ǫ ≤ 0.1λ. The

total number of the estimated points NT is 4928 for SEABED,

5626 for Envelope, and 5763 for the proposed algorithm. The

detecting probability PD defined in Section II-D is 0.305 for

SEABED, 0.468 for Envelope, and 0.544 for the proposed

method. In addition, the proposed method obtains ǫ = 0.091λ,

where ǫ denotes the mean value of ǫ. This value is superior to

those in SEABED (ǫ = 0.215λ) and Envelope (ǫ = 0.151λ).
The calculation time for this method is around 50 s for a Xeon

2.8-GHz processor, because it requires a 2-D search for the

assumed region for (x, y) for each range point.

Fig. 29. Error distribution for each method at the 3-D complex target.

Fig. 30. True target contour image.

Next, the smoothing examples for the obtained images are

presented to clearly show that our algorithm offers a higher

quality 3-D image compared with the images for the con-

ventional algorithms (Fig. 30). Here, we apply the simple

smoothing algorithm by combining an extended median filter

and the Gaussian function. First, we select the estimated points

(xi, yi, zi), which are included in the preselected region for

(x, y), and zi is updated with other points included in this

region as

zup
i =

⎧

⎨

⎩

zmed,

{

zi ≥ (1 − ξ)minj zj + ξ maxj zj

zi ≤ (1 − ξ)maxj zj + ξ minj zj

}

zi, (otherwise)

(25)

where zmed is the median value for z among the selected target

points. ξ is empirically determined. Second, the z-coordinate

of the selected region (x, y) is smoothed with the Gaussian

function as

z(x, y) =

∑

i zup
i exp

{

− (x−xi)
2+(y−yi)

2

2σ2
I

}

∑

i exp
{

− (x−xi)2+(y−yi)2

2σ2
I

} . (26)

Fig. 30 shows the true target boundary. The left- and right-

hand sides of Fig. 31 show the estimated contour image and

its cross section along x = 0 using SEABED, respectively.

Fig. 32 shows the image estimated with Envelope from the

same view as that in Fig. 31. σI = 0.1λ and ξ = 0.2 are

set. The target surface is removed if the number of estimated

points becomes zero in the selected region (x, z). These figures

show that the smoothed images with both methods hardly

reconstruct a correct target boundary, and the characteristic
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Fig. 31. (Left) Estimated contour image with SEABED after smoothing and
(right) its cross-sectional view at x = 0.

Fig. 32. Smoothed image with Envelope from the same view in Fig. 31.

Fig. 33. Smoothed image with the proposed method from the same view
in Fig. 31.

of the target boundary is lost by the smoothing of inaccurate

points. Contrarily, Fig. 33 shows the image estimated by the

proposed method from the same view as that in Figs. 31 and 32.

The white symmetric patches in this figure show the removed

surfaces in the smoothing process. The figure confirms that

the image smoothing is effective for the proposed method, and

the target boundary can be accurately reconstructed even for

complex targets. This result shows that there is a remarkable

advantage in using the proposed method in complicated surface

imaging. In addition, it shows that ǫ = 0.081λ for SEABED,

ǫ = 0.097λ for Envelope, and ǫ = 0.060λ for the proposed

method. This evaluation quantitatively proves the effectiveness

of our proposed method. Furthermore, in the case of the target

which depolarizes an incident wave such as conductive cylinder

with length much greater than radius, the proposed method

hardly reconstructs its original image because this depolariza-

tion highly suppresses the received signals, which reduces the

estimation accuracy for (x(q3d), y(q3d)) as in (23) and (24).

IV. CONCLUSION

We have proposed a novel imaging algorithm without range

point connections for complex shape targets. First, we dis-

cussed the characteristic of the images estimated by the con-

ventional algorithms as SAR, F–K migration, SEABED, Enve-

lope, and IBST with Fourier transform. Next, we presented an

accurate and high-speed imaging algorithm with the evaluation

function of DOA. This algorithm does not require connections

between range points and yet substantially resolves the inaccu-

racy of the conventional algorithm. The numerical simulations

show that the proposed method increases substantially the num-

ber of estimated points with ǫ < 0.1λ, and also the detection

probability, even for the most complex shaped targets. It was

also shown that the calculation time for the proposed method

2-D model is within 0.2 s, which is appropriate for real-time

operation.

We also extended the proposed algorithm to 3-D modeling

and made statistical calculation for the x and y target coordi-

nates. It was confirmed that this method accomplishes accurate

imaging even for 3-D complex targets. The calculation time for

this method is around 50 s, and it is important in our future

work to enhance the speed of the imaging. For simple target

boundaries such as trapezoidal or spherical targets, there are

advantages in using the conventional algorithm Envelope in

terms of real-time and superresolution imaging. It is promising

to select or combine appropriate algorithms for the assumed

application. In addition, all the algorithms in this paper can

be implemented on the same hardware or radar system, able

to measure the received electric field for each antenna location.

Future work includes an experimental study of the proposed

method.

APPENDIX

PROOF OF PROPOSITION 1

Here, we utilize the following proposition, which has been

proved in [16].

Proposition 2: If ∂x/∂X > 0 holds for all (X, Z), each

target boundary (x, z) satisfies

(x − X)2 + z2 ≥ Z2 (27)

where an equal sign holds at only one point of (X, Z). Here,

the target point is defined as (x(Xi), z(Xi)), which satisfies

x(Xi) = Xi − ZiZiXi
, and z(Xi) = Zi

√

1 − (ZiXi
)2, where

ZiXi
= ∂Zi/∂Xi. Substituting (x(Xi), z(Xi)) to (27) gives

Z2
i + (Xi − X)2 − Z2 − 2ZiZiXi

(Xi − X) ≥ 0. (28)

Contrarily, the derivative of xp(Xi) for Xi is expressed as

∂xp(Xi)

∂Xi
=

Z2
i + (Xi − X)2 − Z2 − 2ZiZiXi

(Xi − X)

2(X − Xi)2
.

(29)

From (28)

∂xp(Xi)

∂Xi
≥ 0 (30)

holds. Moreover, if ∂x/∂X > 0, then (7) gives

(X − Xi) (x − xp(Xi)) ≥ 0. (31)
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Thus

xp(Xj) ≤ xp(Xi) ≤ x, (Xj ≤ Xi ≤ X)
x ≤ xp(Xi) ≤ xp(Xj), (X ≤ Xi ≤ Xj)

}

(32)

is proved. For ∂x/∂X < 0, the following relationship also

holds with the similar approach:

xp(Xj) ≤ xp(Xi) ≤ x, (X ≤ Xi ≤ Xj)
x ≤ xp(Xi) ≤ xp(Xj), (Xj ≤ Xi ≤ X)

}

. (33)

Equations (32) and (33) correspond to the Proposition 1.
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