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Abstract 

Computed tomography (CT) is one of the most efficient diagnostic methods for rapid diagnosis of the widespread COVID-

19. However, reading CT films brings a lot of concentration and time for doctors. Therefore, it is necessary to develop an 

automatic CT image diagnosis system to assist doctors in diagnosis. Previous studies devoted to COVID-19 in the past months 

focused mostly on discriminating COVID-19 infected patients from healthy persons and/or bacterial pneumonia patients, and 

have ignored typical viral pneumonia since it is hard to collect samples for viral pneumonia that is less frequent in adults. In 

addition, it is much more challenging to discriminate COVID-19 from typical viral pneumonia as COVID-19 is also a kind 

of virus. In this study, we have collected CT images of 262, 100, 219, and 78 persons for COVID-19, bacterial pneumonia, 

typical viral pneumonia, and healthy controls, respectively. To the best of our knowledge, this was the first study of quaternary 

classification to include also typical viral pneumonia. To effectively capture the subtle differences in CT images, we have 

constructed a new model by combining the ResNet50 backbone with SE blocks that was recently developed for fine image 

analysis. Our model was shown to outperform commonly used baseline models, achieving an overall accuracy of 0.94 with 

AUC of 0.96, recall of 0.94, precision of 0.95, and F1-score of 0.94. The model is available in https ://githu b.com/Zheng 

fudan /COVID -19-Diagn osis-and-Pneum onia-Class ifica tion.
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1 Introduction

The coronavirus disease emerged in late 2019, which was 

named COVID-19 by the World Health Organization, has 

become a pandemic and poses a serious threat to interna-

tional health. The disease is caused by SARS-CoV-2 [1], 

which can be transmitted from person to person, and the 

number of infected persons has increased dramatically [2, 

3]. Up to August 14, 2020, more than 20 million cases have 

been reported in more than 216 countries and territories, 

resulting in more than 751 thousand deaths [4]. Therefore, 

Fudan Zheng, Liang Li and Xiang Zhang contributed equally.

 * Yuedong Yang 

 yangyd25@mail.sysu.edu.cn

 * Yunfei Zha 

 zhayunfei999@126.com

 * Huiying Zhao 

 zhaohy8@mail.sysu.edu.cn

 * Jun Shen 

 shenjun@mail.sysu.edu.cn

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9664-012X
https://github.com/Zhengfudan/COVID-19-Diagnosis-and-Pneumonia-Classification
https://github.com/Zhengfudan/COVID-19-Diagnosis-and-Pneumonia-Classification
http://crossmark.crossref.org/dialog/?doi=10.1007/s12539-021-00420-z&domain=pdf


274 Interdisciplinary Sciences: Computational Life Sciences (2021) 13:273–285

1 3

a computer aided CT diagnosis system is urgently needed to 

assist doctors in identifying suspected cases.

In order to detect COVID-19 infected patients and to 

prevent community infection brought by missed patients, 

persons are recommended to perform COVID-19 screen-

ing if they have fever, cough, flu-like symptoms, or close 

contact with a COVID-19 infected patient. CT detection is 

becoming an important tool in detecting infected patients 

because of its quickness and low false negative rate [5–7]. 

In addition, CT films can intuitively show the patient’s lung 

details, including locations and characters (ground-glass 

opacities, consolidation shadows, fibrosis, etc. [5–7]) of 

the lesions or inflammations. However, the large number 

of CT images put large burdens on doctors to read them. As 

Michael J Ryan, the executive director of WHO’s emergency 

program said on May 13, COVID-19 might become another 

endemic virus in our communities and might never go away 

[8], it is critical to develop a system that can not only diag-

nose COVID-19 when it is in intensive outbreak, but also 

distinguish COVID-19 from routine examinations when the 

outbreak is under control. Therefore, it is urgent to develop 

computer aided CT diagnosis systems to assist doctors in 

identifying suspected cases.

Recently, there have been many AI-assisted methods on 

COVID-19 and pneumonia classification on CT images or 

chest X-ray images. As summarized in a recent review [9], 

there have been mainly two types of classification, i.e., clas-

sification of COVID-19 from non COVID-19 and classifi-

cation of COVID-19 from other pneumonia. For example, 

Song et al. [10] proposed a CT diagnosis system based on 

deep learning models to distinguish patients with COVID-

19 from bacterial pneumonia patients and healthy persons. 

The model achieved accuracy of 86.0% and 94.0% for dis-

tinguishing COVID-19 from bacterial pneumonia, and for 

diagnosing COVID-19 infected patients from healthy per-

sons, respectively. Xu et al. [11] proposed a classification 

system to identify COVID-19 patients, Influenza-A patients 

and healthy persons, which achieved an accuracy of 86.7%. 

Li et al. [12] used ResNet50 to discriminate COVID-19 

from non-pneumonia or community-acquired pneumonia, 

acquiring a sensitivity of 90%. Then, Chen et al. [13], Zheng 

et al. [14], Jin et al. [15], Wang et al. [16], Shi et al. [17], 

Rasheed et al. [18], Zhang et al. [19], Ouyang et al. [20], 

Han et al. [21], Kang et al. [22], Apostolopoulos et al. [23] 

and Jaiswal et al. [24] also aimed to separate COVID-19 

infected patients from nonCOVID-19 subjects and other 

pneumonia. However, all of these works have ignored typi-

cal viral pneumonia that is infected by typical virus, which 

is also the most challenging as COVID-19 is also a kind of 

virus.

In recent years, many deep learning methods have 

been used for processing medical images. For example, 

the ResNet50 [25] was commonly used as the backbone 

network because the pre-trained network could capture the 

subtle features in CT images without introducing computa-

tional complexity and performance degradation. VGG [26] 

is another network commonly used to extract key features, 

but it has a large number of parameters and high computa-

tional complexity. DenseNet [27] has much more parameters 

than ResNet50, and is not so flexible to be assembled and 

combined with other networks. On the other hand, the CT 

data contain many image slices, and each slice could provide 

both associated and individual information. The recently 

developed SE block [28] provided a framework to selec-

tively emphasize useful information and suppress useless 

information through network training.

In this study, we have collected CT images of 262, 100, 

219, and 78 persons for COVID-19, bacterial pneumonia, 

typical viral pneumonia, and healthy controls, respec-

tively. To effectively capture the subtle differences in CT 

images, we have constructed a new model by combining 

the ResNet50 backbone with SE blocks for quaternary clas-

sification of patients infected with COVID-19, bacterial 

pneumonia, typical viral pneumonia, and healthy persons 

in CT images. To the best of our knowledge, this was the 

first work to distinguish these four types of cases all at once 

by CT images. Our model achieved an overall accuracy of 

0.94 with AUC of 0.96, recall of 0.94, precision of 0.95, and 

F1-score of 0.94, indicating that it can accurately discrimi-

nate COVID-19 from bacterial and typical viral pneumonia 

and healthy persons.

2  Materials and Methods

2.1  Data Acquisition

The CT images were provided by Sun Yat-sen Memorial 

Hospital and Renmin Hospital of Wuhan University, with 

totally 52973 slices of 659 persons. The CT images from 

Sun Yat-sen Memorial Hospital were obtained by two scan-

ners: Somatom Sensation 64-slice spiral scanner of Siemens 

and Discovery CT 750 HD of GE, with the scanning param-

eters as follows: effective tube current of 200–250 mA; tube 

voltage of 120 kV; matrix of 512 × 512; FOV of 500 mm; 

thickness of 5.0 mm; slice spacing of 5.0 mm; reconstruction 

thickness of 1.0 mm; and reconstruction slice spacing of 1.0 

mm. The scanning body position is the supine position. All 

patients underwent plain scanning, ranging from the tip of 

the lung to the entire area of the bottom of the lung, includ-

ing the chest wall and axilla on both sides. The CT images 

provided by Renmin Hospital of Wuhan University were 

acquired by Optima 680, a 64-section scanner of GE, with-

out using contrast materials. The scanning parameters were 

as follows: automatic tube current; tube voltage of 120 kV; 

matrix of 512 × 512; detector of 35 mm; rotation time of 
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0.35 second; section thickness of 5.0 mm; slice spacing of 

5.0 mm; reconstruction thickness of 0.625 mm; collimation 

of 0.75 mm; pitch of 1–1.2; and inspiration breath holding. 

The images were obtained at the lung window with window 

width of 1000–1500 HU and window level of − 700 HU, 

and mediastinal window with window width of 350 HU and 

window level of 35–40 HU.

2.2  Data Preprocessing

As shown in Fig. 1, we extracted the lung region in each 

slice using the following algorithm: (a) converting the 

image into a binary image with a density threshold of 

− 600 HU to obtain a mask of interest; (b) removing the 

connected regions that are in contact with the edges of the 

image as these are affected by radiations from CT devices; 

(c) keeping the two largest areas as two lungs; (d) perform-

ing a morphological erosion with a disk of radius 2 pixels 

to shrink bright regions and to enlarge dark regions; (e) 

performing binary morphological closing to remove the 

small dark spots and to connect small the bright cracks, 

and filling small holes inside the detected lungs; (f) 

superimposing the binary mask on the input image, and 

detecting the smallest effective rectangle surrounding the 

lungs. Then, the image was filled with 10 translational 

and rotational copies of the lungs on the background to 

avoid the interference of different lung contours on model 

training (Fig. 1g). Finally, the preprocessed images were 

resized into 512 × 512, and sent into the subsequent pro-

cessing with 3 slices as a group.

Since the CT scanners used to capture the CT images 

were set at a slice spacing of 5.0 mm, and the adjacent 

images were highly similar. We found the inclusion of 

all images didn’t increase the performance in our task 

(Results not shown), and selected at most 30 image slices 

for each person to speed up model training and predic-

tions. Specifically, we selected slices with the following 

approach: For patients with fewer than 10 slices, retained 

all slices. For patients with fewer than 30 slices, one slice 

was selected for every two. For patients with more than 

30 slices, slices were selected by the step of slices number 

divided by 30. With this treatment, the number of slices 

per patient will not exceed 30, which can accelerate the 

computations. On the other hand, due to the strong corre-

lation between contiguous slices, the selection of slices at 

certain step intervals will not result in too much informa-

tion loss. Finally, we compiled a dataset of 659 persons 

with 5363 slices. Details of the number of patients and 

slices provided by the two hospitals after preprocessing 

are shown in Table 1.

Fig. 1  The workflow of data preprocessing: a converting the image 

into a binary image with a density threshold of − 600 HU, b remov-

ing the connected regions that are in contact with the edges of the 

image, c keeping the two largest areas, d performing morphologi-

cal erosion, e performing binary morphological closing and filling 

the small holes inside the binary mask of lungs, f superimposing the 

binary mask on the input image and detecting the smallest effective 

rectangle surrounding the lungs, g filling the image with 10 transla-

tional and rotational copies of the lungs on the background
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2.3  Data Augmentation

In total, we had CT slices from four groups of persons 

including patients of COVID-19, typical viral pneumonia, 

bacterial pneumonia, and healthy persons. However, the 

number of CT slices in these four categories varies greatly, 

and such data imbalance will affect the performance of the 

classification model. Moreover, since our model is based on 

deep learning, more samples are needed to learn image fea-

tures. Therefore, we adopt the following three data enhance-

ment methods: horizontal flipping, random translation of 

0–8 pixels in four directions (up, down, left and right), and 

the combination of the previous two ways. The augmenta-

tion was performed at person level. Considering the number 

of existing slices in each category, we augmented 2 times, 

8 times, 8 times and 2 times on the four groups of patients 

respectively, and ended up with a relatively close slices 

number, namely, the slices of COVID-19 infected patients, 

healthy people, bacterial pneumonia patients, and typical 

viral pneumonia patients were 4238, 4656, 4032 and 4316, 

respectively.

2.4  Neural Network Architecture

To accurately classify a person by his/her CT images, we 

developed a new framework based on deep learning neu-

ral networks. As shown in Fig. 2, the CT images were 

first preprocessed according to the above preprocessing 

steps, before they were input to the classification network 

to predict the types for each image. Then, the image-level 

predictions of all images of each person were aggregated 

to provide human-level diagnosis. In this study, we sim-

ply averaged the predicted image-level probabilities of 

all image slices of a person by category, and chose the 

category with the highest score as the diagnosis result for 

the person.

Classification Neural Network

As illustrated in Fig. 3, we used ResNet50 [25] as the 

backbone network, and integrated the network with SE 

blocks as described in the SENet [28]. The ResNet50 was 

selected because we need a deep network to extract the 

hidden features in CT images that are more challenging 

than natural images. The SE blocks could make full use of 

the information between slices of CT images and between 

channels of feature maps by selectively emphasizing 

important information and suppressing the less important 

ones.

Concretely, for each building block of ResNet50, a 

channel squeeze and excitation operation was added for 

every three convolution layers (1 × 1 conv, 3 × 3 conv, 

1 × 1 conv). In the SE block, the generated feature maps 

from ResNet blocks, X ∈ R
H×W×C with H × W  as the spa-

tial dimension and C as the number of channel, were con-

verted through a channel squeeze and excitation operation 

to X
�

∈ R
H×W×C.

For the squeezing step F
CS
(⋅) , a simple global average 

pooling was used to shrink X through its spatial dimension 

H × W  , such that the cth channel of X was calculated by:

Table 1  The number of 

persons and CT slices provided 

by the two hospitals after 

preprocessing

COVID-19 Healthy people Bacterial pneu-

monia

Typical viral 

pneumonia

Total

Patients Slices Persons Slices Patients Slices Patients Slices Persons Slices

Sun Yat-sen 

Memorial 

Hospital

– – 22 295 22 113 61 647 105 1055

Renmin 

Hospital 

of Wuhan 

University

262 2119 56 287 78 391 158 1511 554 4308

Total 262 2119 78 582 100 504 219 2158 659 5363

Fig. 2  The pipeline of the proposed system. The CT images were first preprocessed, and then sent to the classification network to make predic-

tions in image level. Then, the image-level predictions of all images of each person were aggregated to provide human-level diagnosis
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Then, the excitation step F
CE
(⋅) was performed with two 

linear transformations to the squeezed information S. The 

network could automatically learn the most important chan-

nels so as to endue these channels with higher attentions. 

The F
CE
(⋅) operation was as follows:

where � and � were the ReLU and Sigmoid functions, 

respectively, W
1
 , W

2
 , b

1
 , and b

2
 were weights and bias to 

learn. The value of each channel in E represented the impor-

tance of the channel learned by the network, which would be 

attached to the corresponding channel to obtain new features 

for the channel by:

where F
CM

(⋅) represented channel-wise multiplication.

After the above channel squeeze and excitation opera-

tions, a new feature map X� = [X1
�
, X2

�
, ..., X

C

�] was gener-

ated, which emphasized informative channel features.

At the end of the network, a fully connected layer was 

used for the multi-class prediction by minimizing the 

cross-entropy loss.

(1)Sc = FCS(Xc) =
1

H × W

H
∑

i=1

W
∑

j=1

Xc(i, j).

(2)E = FCE(S, W) = �(W2�(W1S + b1) + b2)

(3)X
c

� = F
CM

(E
c
, X

c
)

2.5  Training Configurations and Implementation 
Details

Our method was implemented in Pytorch framework [29]. 

All experiments were conducted on a container equipped 

with 28 Intel Xeon Gold 6132 CPUs working at 2.6 GHz and 

16 NVIDIA TESLA V100 SXM2 with 16 GB of memory. 

In the training stage of our method, we trained the deep net-

works end to end through back-propagation and Adam Opti-

mizer [30] with an initial learning rate of 1e−5. The model 

was trained for 100 epochs, which was sufficient for con-

vergence, and the epochs with best validation performance 

were selected for test. The training batch size was set as 64, 

and the parameters were initialized by normalization [31].

2.6  Dataset Split Strategy

Our system could perform auxiliary diagnoses in both image 

and human levels. It is obvious that human-level results are 

more meaningful than image-level results for medical diag-

noses. Therefore, we split the training, validation and test 

sets by person, so that images of one person are always in 

the same set.

As our data came from 2 different hospitals, and each 

hospital used different equipments for CT examination, so 

the CT slices collected were various in pixel size, spatial 

Fig. 3  The architecture of the classification model. Channel SE blocks were introduced to emphasize important channels and suppress less 

important ones
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resolution, layer thickness, and layer distance. The differ-

ences between these devices might interfere with the train-

ing and inference of the models. To avoid learning the dif-

ferences between devices, we randomly extracted data only 

from the Renmin Hospital of Wuhan University to form the 

test set, and utilized the remaining as the training data. The 

number of persons and CT slices in the training set, valida-

tion set and test set for the quaternary classification task of 

all the four types of persons are shown in Table 2.

2.7  Metrics

The performance was evaluated by the following 5 metrics. 

The AUC (area under the receiver operating characteristics 

curve) of a classifier represents the probability that the posi-

tive instances of the prediction rank ahead of the negative 

ones[32]. Obviously, a classifier with a larger AUC works 

better. Recall, precision, F1-score and accuracy are defined 

as:

where TP, FP, TN, and FN are the numbers of true positive, 

false positive, true negative, and false negative, respectively.

(4)Recall =
TP

TP + FN
,

(5)Precision =
TP

TP + FP
,

(6)F1-score =
2 × precision × recall

precision + recall
,

(7)Accuracy =
TP + TN

TP + FP + TN + FN
,

2.8  To Identify Four Different Types of Persons 
from Each Other

3  Results

We evaluated the performance of our classification model 

from the following aspects: (1) the ability of the model to 

identify four different types of persons from each other; (2) 

ablation study; (3) comparison with other models. Note that 

all the results were with data augmentation, except the com-

parison experiments in ablation study.

Table 3 exhibits the performance of our model to iden-

tify four different types of persons all at once. As shown in 

Table 3, our model achieved a macro average performance 

with AUC of 0.96, recall of 0.94, precision of 0.95, and 

F1-score of 0.94. The overall accuracy is 0.94. When con-

sidering each type, the separation of healthy persons has 

the highest AUC that is close to 100%. This is as expected 

because the other three types are different kinds of pneu-

monia and there are clear differences between the imaging 

features of healthy CT images and those of pneumonia CT 

images. The discriminations of bacterial and typical viral 

pneumonia achieved AUCs of 0.97 and 0.95, respectively. 

Though COVID-19 is the most difficult to discriminate, it 

achieved an AUC of 0.93 and a high recall of 0.97. It is 

worth mentioning that high recall is very important for such 

a COVID-19 diagnosis system because a higher recall means 

that fewer COVID-19 infected patients will be missed, which 

can greatly prevent further infection by missed diagnoses.

The receiver-operating characteristic curve and confu-

sion matrix of our classification model in identifying four 

Table 2  The number of persons 

and CT slices in the training set, 

validation set and test set for the 

quaternary classification task of 

all the four types of persons

COVID-19 Healthy people Bacterial pneumonia Typical viral 

pneumonia

Patients Slices Persons Slices Patients Slices Patients Slices

Training set 205 1667 42 394 60 306 167 1713

Validation set 27 205 6 57 10 64 22 215

Test set 30 247 30 131 30 134 30 230

Total 262 2119 78 582 100 504 219 2158

Table 3  Performance of 

our classification model in 

identifying four different types 

of persons all at once

AUC Recall Precision F1-score Accuracy

Macro average performance 0.96 0.94 0.95 0.94 0.94

Healthy 0.999 0.97 1 0.98 –

COVID-19 0.93 0.97 0.85 0.91 –

Bacterial pneumonia 0.97 1 0.97 0.98 –

Typical viral pneumonia 0.95 0.83 0.96 0.89 –
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different types of persons all at once are shown in Figs. 4a 

and 5a respectively. As can be seen in the confusion matrix 

in Fig. 5a, the model mistakenly identified some typical 

viral pneumonia patients as COVID-19 infected patients, 

resulting in a slightly lower recall of typical viral pneumo-

nia (as shown in Table 3). We visualized some CT images 

Fig. 4  The receiver-operating characteristic curves of our classification model. a Is for the quaternary classification in identifying four different 

types of persons all at once and b is for the binary classification in identifying COVID-19 from the other types

Fig. 5  Confusion matrix of our classification model. a Is for the qua-

ternary classification in identifying four different types of persons all 

at once, b–d are for the binary classification in identifying COVID-19 

from the other types respectively, and e is for the binary classification 

in identifying COVID-19 from all the others
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of COVID-19 infected patients and typical viral pneumonia 

patients in Fig. 6 to figure out the reasons. As Fig. 6 shows, 

the correctly predicted COVID-19 images in Row (a) had 

very distinct imaging characteristics of COVID-19, which 

were very different comparing to the correctly predicted 

typical viral pneumonia images in Row (c). However, for 

the images of typical viral pneumonia that were incorrectly 

predicted as COVID-19, the images were indeed similar to 

those of COVID-19, especially in a single slice. Therefore, 

in future study, to improve the prediction performance, a 

whole CT image will be taken as input to extract 3D fea-

tures. Moreover, some slices contained small lung areas, 

which also affected the learning of intrapulmonary charac-

teristics. In practical clinical applications, the majority of 

lesions are found in the middle portion of the CT volume, so 

the anterior and posterior slices of the CT volume containing 

small lung areas can be removed to make the model focus on 

the learning of intrapulmonary features.

We further illustrated the feature maps of the CT images 

of the four different types of persons extracted by our clas-

sification model to explore the overall feature learning 

and representation capabilities of the network. As shown 

in Fig. 7, the areas where the lesions were located showed 

a higher response, demonstrating that our model was able 

to learn the underlying characteristics of CT images of the 

three different types of patients.

Since the diagnosis framework may not be faced with so 

many types of data at the same time in daily routine exami-

nation, we removed the images of healthy persons, bacte-

rial pneumonia patients and typical viral pneumonia patients 

respectively, and conducted a series of binary classification 

experiments to see if it still performed well. The experiments 

included: (1) to diagnose whether a person is healthy or with 

COVID-19; (2) to distinguish COVID-19 from bacterial 

pneumonia; (3) to distinguish COVID-19 from typical viral 

pneumonia; (4) to distinguish COVID-19 infected patients 

from all the other persons. In the above four binary clas-

sification tasks, the goal of our classification model was to 

detect COVID-19 infected patients. Once the predicted prob-

ability exceeded a certain threshold (threshold = 0.5 in this 

paper), the prediction was considered positive, otherwise it 

was considered negative. Table 4 shows the performance 

of our model in the binary classification tasks. It can be 

seen that the model still performed very well in distinguish-

ing COVID-19 infected patients from healthy persons. This 

might due to the fact that comparing to COVID-19 infected 

Fig. 6  CT images of COVID-19 and typical viral pneumonia patients. 

Row a are CT images of COVID-19 infected patients that are cor-

rectly predicted. Row b are CT images of typical viral pneumonia 

patients that are incorrectly predicted as COVID-19. Row c are CT 

images of typical viral pneumonia patients that are correctly predicted
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patients, the lung parenchyma in the CT images of healthy 

persons was very clean and clear, without any lesions, which 

was very easy to distinguish. However, the results of other 

binary classification tasks were not as good as those of the 

quaternary classification tasks in Table 3. That was because 

in the quaternary classification, the model was fed with more 

diverse data, which enabled it to acquire stronger discrimina-

tion through learning. Therefore, in clinical application, it 

is better to train the network on more diverse data, e.g., the 

above four types of data, and then make auxiliary diagnosis 

according to the needs of daily examination. The receiver-

operating characteristic curves and confusion matrixes are 

shown in Figs. 4b and 5b–e, respectively. As Fig. 5d shows, 

11 typical viral pneumonia patients were wrongly diagnosed 

as COVID-19 infected patients, which was understandable. 

As visualized in Fig. 6 above, CT images of typical viral 

pneumonia are indeed similar to CT images of COVID-19, 

which may easily lead to misdiagnosis. In future studies, we 

will distinguish these two types of pneumonia more based on 

the combination of their pathological characteristics and CT 

image features. We also conducted a series of experiments 

of triple classification of COVID-19/Healthy/Bacterial 

Pneumonia, COVID-19/Healthy/Typical Viral Pneumonia 

and COVID-19/Bacterial Pneumonia/Typical Viral Pneu-

monia, which are described in the supplementary material.

3.1  Ablation Study

Since the four groups of CT images we obtained are in dif-

ferent sample sizes, to avoid the performance loss caused 

by sample size unbalance and to prevent overfitting caused 

by insufficient samples, we adopted three data augmenta-

tion ways: horizontal flipping, random translation of 0–8 

pixels in four directions of up, down, left and right, and 

the combination of the previous two. We conducted experi-

ments to explore the effects of these three data augmentation 

ways. As can be seen in Row (1)–(4) and Row (7) in Table 5, 

the performance of the model was better when horizontal 

flipping, translation, or a combination of the two was used 

alone [Row (2), (3), (4)] than when no data enhancement 

was used at all [Row (1)], and the performance of the model 

was best when all three data enhancements were used [Row 

Fig. 7  The feature maps of the CT images of four types of persons extracted by our classification model

Table 4  The performance 

of our model in the binary 

classification tasks

Task AUC Recall Precision F1-score Accuracy

COVID-19 or healthy? 0.99 1 0.96 0.98 0.98

COVID-19 or bacterial pneumonia? 0.94 0.93 0.81 0.86 0.86

COVID-19 or typical viral pneumonia? 0.91 0.92 0.81 0.86 0.83

COVID-19 or all others (healthy, bacterial 

pneumonia, typical viral pneumonia)?

0.92 0.90 0.82 0.86 0.85
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(7)], which meant that all the three data augmentation ways 

we used were effective.

Moreover, we conducted experiments to inquiry the 

impact of the SE blocks we integrated into the backbone net-

work and the effect of aggregation. By comparing Row (5) 

and Row (7) in Table 5, we can conclude that the SE blocks 

do work. After the integration of the SE blocks, the model 

had a great improvement in the metrics of recall, precision, 

F1-score and Accuracy. The main reason, in our view, was 

that the importance of CT Slices of a patient varied, as did 

the importance of the various channels of the feature maps 

after the feature extraction network.With the introduction 

of SE Blocks, it was helpful to discover the more important 

slices and feature map channels, thereby directing the net-

work to learn the more important features.

In addition, by comparing Row (6) and Row (7) in 

Table 5, it can be found that the aggregation of image-

level results into human-level results was not only more in 

line with the actual diagnostic needs, but also significantly 

improved the diagnostic performance. This was because, in 

image-level prediction, there were no lesions in some slices 

of the patient, which would lead to slight deviation in the 

image-level prediction. By aggregating image-level results 

into human-level results, such deviation could be alleviated.

3.2  Comparison with Other Models

The model was compared with other existing deep learning 

models, i.e., DenseNet, VGG, and ResNet. We conducted all 

experiments using the same data split strategy and training 

configuration. The results in Table 6 show that our model 

outperformed other models. Consistent with the previous 

ablation study in Table 5, our network exceeded ResNet in 

every metric. On the one hand, it was due to the strong learn-

ing ability of the backbone network and the alleviation of 

the performance degradation of the deep network caused by 

the residual layer; on the other hand, it was mainly due to 

the addition of SE module, which ensured that the features 

of the multi-channel feature maps could be fully learned.

4  Discussion

Currently, identification of COVID-19 infected patients 

from bacterial pneumonia patients and typical viral pneu-

monia patients is important for taking accurate treatments 

for COVID-19. As indicated by many previous studies [10, 

11], the CT images of typical viral pneumonia patients 

and bacterial pneumonia patients are similar to that of 

COVID-19 infected patients. Especially, these images all 

have shadow and ground-glass opacity. Accurately distin-

guishing them in short time is critical for doctors to diag-

nose immediately. To increase the accuracy of diagnosis 

and reduce the burdens of doctors in reading CT images, 

it is important to develop a computer-based approach to 

classify the pneumonia types according to CT images. 

However, most of the current models are constructed to 

classify the COVID-19 and healthy controls or bacte-

rial pneumonia, and have ignored typical viral pneumo-

nia. For example, Xu et al. [11] distinguished COVID-19 

patients, Influenza-A patients and healthy persons using a 

deep learning model. Li et al. [12] used ResNet50 to dis-

criminate COVID-19 from non-pneumonia or community-

acquired pneumonia. Song et al. [10] proposed a deep CT 

diagnosis system to detect COVID-19 infected patients 

from healthy persons and bacterial pneumonia patients. 

Since COVID-19 is also a type of viral pneumonia and 

its imaging features are similar to those of typical viral 

Table 5  The performance of ablation study in quaternary classifica-

tion. Row (1)–(4) are the performance of different data augmentation 

methods. Row (5) is the performance of our model without the SE 

blocks. Row (6) is the performance of our model in image level with-

out aggregation into human level. Row (7) is the performance of our 

model

Flipping Translation Flipping + 

translation

SE Aggregation AUC Recall Precision F1-score Accuracy

(1) ✓ ✓ 0.88 0.73 0.78 0.73 0.73

(2) ✓ ✓ ✓ 0.90 0.77 0.81 0.77 0.79

(3) ✓ ✓ ✓ 0.94 0.83 0.84 0.82 0.82

(4) ✓ ✓ ✓ 0.95 0.87 0.92 0.88 0.87

(5) ✓ ✓ ✓ ✓ 0.94 0.80 0.82 0.79 0.80

(6) ✓ ✓ ✓ ✓ 0.92 0.84 0.82 0.83 0.84

(7) ✓ ✓ ✓ ✓ ✓ 0.96 0.94 0.95 0.94 0.94

Table 6  Performance of our classification model comparing with 

other existing models

Model AUC Recall Precision F1-score Accuracy

DenseNet 0.90 0.79 0.78 0.78 0.79

VGG 0.93 0.80 0.81 0.79 0.80

ResNet 0.94 0.80 0.82 0.79 0.80

OURS 0.96 0.94 0.95 0.94 0.94
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pneumonia, it is of great significance to assist doctors in 

distinguishing COVID-19 from typical viral pneumonia.

In this study, we integrated ResNet and SE blocks to 

develop a model to distinguish COVID-19 infected patients, 

healthy persons, bacterial pneumonia patients and typical 

viral pneumonia patients all at once. This model was dif-

ferent from previous methods in several aspects. First, it 

took multiple slices as input to take full advantage of the 

contextual information between slices. Then, it focused on 

the relationship between multiple slices, which was unique 

to medical images, and used a SE module to learn the dif-

ferent importance of multiple slices and multiple channels 

of the feature maps. Most importantly, it was trained on 

data of COVID-19, healthy persons, bacterial pneumonia, 

and typical viral pneumonia, which enabled the model to 

identify more types of persons and pneumonia than the pre-

vious models. Because of the properties of this model, it 

is accurate in distinguishing the pneumonia types. Moreo-

ver, comparison with other models showed that our model 

achieved higher AUC, Recall, Precision, F1-score and 

Accuracy. Thus, this model has the potential to become a 

daily used tool for doctors to classify pneumonia patients 

especially when the COVID-19 may become a long term 

existing virus. Another advantage of this model is that it can 

diagnose quickly. For a slice of CT, the model can give an 

image-level diagnosis in just 20 milliseconds.

On the other hand, this model can be further improved 

in many aspects. First, the current model adopted 2D CNN. 

Although multiple slices were used to retain the context 

information of channels, 2D CNN was inferior to 3D CNN in 

learning such volume information as CT images. Therefore, 

in subsequent study, we consider using 3D CNN to learn 

the information of the entire CT volume. Second, in a com-

plete CT volume, the anterior and posterior slices contain 

very small areas of lung parenchyma, and they can provide 

little diagnostic information. Therefore, these slices can be 

removed in subsequent study to prevent the network from 

learning irrelevant information, so as to improve the effi-

ciency of diagnosis. Third, as experimental results show, it 

is more difficult to distinguish typical viral pneumonia from 

COVID-19. One possible reason is that the model based on 

deep learning needs a great deal of samples for training, 

but currently there are not enough samples. Therefore, it 

is considered to collect more samples of COVID-19 and 

typical viral pneumonia in subsequent studies, so that the 

model can rely on more samples for training to extract more 

discriminative features in CT images of the two types. Then, 

since CT images of typical viral pneumonia patients are very 

similar to that of COVID-19 infected patients, pathological 

characteristics of these two types of pneumonia can be used 

to assist in discrimination. Finally, inspired by [33] and [34], 

on the basis of the existing category label, we consider to 

increase the disease severity, such as the area ratio of the 

lesion to the lung, as an additional label to perform multi-

label classification.

5  Conclusion

We have developed a CT image diagnosis system via deep 

learning for rapid COVID-19 diagnosis by integrating 

ResNet with SE blocks. This model can identify COVID-

19 CT from CT of healthy persons, CT of bacterial pneu-

monia patients and CT of typical viral pneumonia patients 

separately. This is the first model to distinguish between so 

many different types of pneumonia all at once. Experimental 

results indicated that our model achieves high AUC, recall 

and precision, which indicated the reliability of the model. 

The model performed better than the model using ResNet 

only, which indicated the effectiveness of SE in feature 

extraction.
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