
1

Accurately Measuring Denial of Service in

Simulation and Testbed Experiments
Jelena Mirkovic Member, IEEE, Alefiya Hussain, Sonia Fahmy Senior Member, IEEE,

Peter Reiher Member, IEEE, Roshan K. Thomas

Abstract—Researchers in the denial of service (DoS) field
lack accurate, quantitative and versatile metrics to measure
service denial in simulation and testbed experiments. Without
such metrics, it is impossible to measure severity of various
attacks, quantify success of proposed defenses and compare their
performance. Existing DoS metrics equate service denial with
slow communication, low throughput, high resource utilization
and high loss rate. These metrics are not versatile because
they fail to monitor all traffic parameters that signal service
degradation. They are not quantitative because they fail to specify
exact ranges of parameter values that correspond to good or poor
service quality. Finally, they are not accurate since they were not
proven to correspond to human perception of service denial.

We propose several DoS impact metrics that measure the
quality of service (QoS) experienced by end users during an
attack. Our metrics are quantitative: they map QoS requirements
for several applications into measurable traffic parameters with
acceptable, scientifically-determined thresholds. They are versa-
tile: they apply to a wide range of attack scenarios, which we
demonstrate via testbed experiments and simulations. We also
prove metrics’ accuracy through testing with human users.

I. INTRODUCTION

Denial of service (DoS) is a major threat. DoS severely

disrupts legitimate communication by exhausting some critical

limited resource via packet floods or by sending malformed

packets that cause network elements to crash. The large

number of devices, applications and resources involved in

communication offer a wide variety of mechanisms to deny

service. Effects of DoS attacks are experienced by end users

as a severe slowdown, service quality degradation or service

disruption.

DoS attacks have been studied through network simulation

or testbed experiments. Accurately measuring the impairment

of service quality perceived by human clients during an

attack is essential for evaluation and comparison of potential

DoS defenses, and for study of novel attacks. Researchers

and developers need accurate, quantitative and versatile DoS

impact metrics whose use does not require significant changes

in current simulators and experimental tools. Accurate metrics

produce measures of service denial that closely agree with

a human’s perception of service impairment in a similar

scenario. Quantitative metrics define ranges of parameter

values that signify service denial, using scientific guidelines.

Versatile metrics apply to many DoS scenarios regardless of

the underlying mechanism for service denial, attack dynamics,

legitimate traffic mix or network topology.

This material is based on research sponsored by the Department of
Homeland Security under agreement number FA8750-05-2-0197. The views
and conclusions contained herein are those of the authors only.

Existing approaches to DoS impact measurement fall short

of these goals. They collect one or several traffic measurements

and compare their first order statistics (e.g., mean, standard

deviation, minimum or maximum) or their distributions in the

baseline and the attack case. Frequently used traffic measure-

ments include the legitimate traffic’s request/response delay,

legitimate transactions’ durations, legitimate traffic’s goodput,

throughput or loss, and division of a critical resource between

the legitimate and the attack traffic. If a defense is being

evaluated, these metrics are also used for its collateral damage.

Lack of consensus on which measurements best reflect the

DoS impact cause researchers to choose ones they feel are

the most relevant. Such metrics are not versatile, since each

independent traffic measurement captures only one aspect of

service denial. For example, a prolonged request/response time

will properly signal denial of service for two-way applications,

such as Web, FTP and DNS, but not for media traffic that

is sensitive to one-way delay, packet loss and jitter. The

lack of common DoS impact metrics prevents comparison

among published work. We further argue that the current

measurement approaches are neither quantitative nor accurate.

Ad-hoc comparisons of measurement statistics or distributions

only show how network traffic behaves differently under attack,

but do not quantify which services have been denied and how

severely. To our knowledge, no studies show that existing

metrics agree with human perception of service denial. We

survey existing DoS impact metrics in Section II.

We propose a novel, user-centric approach to DoS impact

measurement. Our key insight is that DoS always causes

degradation of service quality, and a metric that holistically

captures a human user’s QoS perception will be applica-

ble to all test scenarios. For each popular application, we

specify its QoS requirements, consisting of relevant traffic

measurements and corresponding thresholds that define good

service ranges. We observe traffic as a collection of high-

level tasks, called “transactions” (defined in Section III). Each

legitimate transaction is evaluated against its application’s QoS

requirements; transactions that do not meet all the require-

ments are considered “failed.” We aggregate information about

transaction failure into several intuitive qualitative and quan-

titative composite metrics to expose the precise interaction

of the DoS attack with the legitimate traffic. We describe

our proposed metrics in Section III. We demonstrate that

our metrics meet the goals of being accurate, quantitative

and versatile (1) through testbed experiments with multiple

DoS scenarios and rich legitimate traffic mixes (Section IV),

(2) through NS-2 simulations (Section V) and (3) through



2

experiments involving human users (Section VI). We survey

related work in Section VII and conclude in Section VIII.

This paper’s contributions are three-fold: (1) We propose

a novel approach to DoS impact measurement relying on

application-specific QoS requirements. Although our proposed

metrics combine several existing approaches, their novelty lies

in (i) the careful specification of traffic measurements that

reflect service denial for the most popular applications, and

(ii) the definition of QoS thresholds for each measurement

and each application class, based on extensive study of the

QoS literature. (2) We aggregate multiple measurements into

intuitive and informative DoS metrics that can be directly

applied to existing testbed experiments and simulations, and

to a variety of DoS scenarios. (3) We demonstrate that our

metrics accurately capture human perception of service denial

by conducting experiments with human users.

Admittedly, calculating our metrics is more

complex than legacy ones. To ease this process,

we have made the program used for DoS metrics

calculation from network traces freely available at

http://www.isi.edu/∼mirkovic/dosmetric.

II. EXISTING METRICS

Prior DoS research has focused on measuring denial of ser-

vice through selected legitimate traffic parameters: (a) packet

loss, (b) traffic throughput or goodput, (c) request/response

delay, (d) transaction duration, and (e) allocation of resources.

Researchers have used both simple metrics (single traffic

parameter) and combinations of them to report the impact of

an attack on the network.

All existing metrics are not quantitative because they do not

specify ranges of loss, throughput, delay, duration or resource

shares that correspond to service denial. Indeed, such values

cannot be specified in general because they highly depend on

the type of application whose traffic co-exists with the attack:

10% loss of VoIP traffic is devastating, while 10% loss of DNS

traffic is merely a glitch. All existing metrics are further not

versatile and we point out below the cases where they fail to

measure service denial. They are inaccurate since they have

not been proven to correspond to a human user’s perception

of service denial.

Loss is defined as the number of packets or bytes lost due

to the interaction of the legitimate traffic with the attack [1]

or due to collateral damage from a defense’s operation. The

loss metric primarily measures the presence and extent of

congestion in the network due to flooding attacks. It cannot be

used for attacks that do not continually create congestion, or do

not congest network resources at all. Examples of such attacks

are pulsing attacks [2], [3], TCP SYN floods [4], attacks that

target application resources and vulnerability attacks that crash

applications and hosts. Further, the loss metric typically does

not distinguish between the types of packets lost, while some

packet losses have a more profound impact than others (for

example, a lost SYN vs data packet) on service quality.

Throughput is defined as the number of bytes transferred

per unit time from the source to the destination. Goodput

is similar, but does not count retransmitted bytes [2], [5].

Both are meaningful for TCP-based traffic, which responds

to congestion by lowering its sending rate. Indirectly, these

metrics capture the presence and extent of congestion in the

network and the prolonged duration of legitimate transactions

due to congestion. They cannot be applied to applications

that are sensitive to jitter or to loss of specific (e.g., control)

packets, because a high throughput level may still not satisfy

the quality of service required by the user. Further, these

metrics do not effectively capture DoS impact on traffic mixes

consisting of short connections, with a few packets to be sent

to the server. Such connections already have a low throughput

so service denial may be masked.

Request/response delay is defined as the interval between

when a request is issued and when a complete response is

received from the destination [6]. It measures service denial of

interactive applications (e.g,, telnet) well, but fails to measure

it for non-interactive applications (e.g., email) which have

much larger thresholds for acceptable request/response delay.

This metric is also inapplicable to one-way traffic (e.g., media

traffic) which does not generate responses but is sensitive to

one-way delay, loss and jitter.

Transaction duration is the time needed for an exchange

of a meaningful set of messages between a source and a

destination [7], [8], [9]. This metric depends heavily on the

volume of data being transferred and whether the application

is interactive and congestion-sensitive. It accurately measures

service denial for interactive applications, such as Web brows-

ing. For one-way traffic, such as media streaming that may

not respond to congestion and runs over UDP, transaction

duration will not be affected by the attack. Duration of many

non-interactive transactions can be extended without causing

service denial because humans expect that such transactions

may occur with some delay.

Allocation of resources is the fraction of a critical resource

(usually bandwidth) allocated to legitimate traffic vs. attack

traffic [8], [10]. This metric does not provide any insight into

the user-perceived service quality. It assumes the service is

denied due to lack of resources, and applies only to flooding

attacks. Further, it cannot capture collateral damage of a given

defense. For example, a defense that drops 90% of legitimate

and 100% of attack traffic, would appear perfect, since it

allocates all remaining resources to legitimate traffic.

We acknowledge that the existing metrics convey some

notion of denied service, especially when the denial is severe.

They, however, suffer from two major drawbacks: (1) They

measure a single traffic parameter assuming that its degra-

dation always corresponds to service denial, whereas traffic

parameters that signal service denial are actually application-

specific and some attacks can deny service without affecting

the monitored parameter. (2) They fail to define the param-

eter range required for acceptable service quality, which is

application- and task-specific. Finally, the existing metrics

predominantly capture the service denial at the network layer,

en route to the victim server. While many attacks target this

route, some affect the server host or the application directly, or

target supporting network services (such as DNS), or the route

from the server to legitimate users. Network-based metrics fail

to correctly capture the impact of these attacks.



3

III. PROPOSED DOS IMPACT METRICS

We now introduce several definitions needed for our DoS

impact metrics. The client is the host that initiates communi-

cation with another party, which we call the server.

Definition 1: A conversation between a client and a server

is the set of all packets exchanged between these two hosts

to provide a specific service to the client, at a given time.

A conversation is explicitly initiated by a client application

(e.g., by opening a TCP connection or sending a UDP packet

to a well-known service) and ends either explicitly (a TCP

connection is closed, UDP service is rendered to the client) or

after a long period of inactivity. If several channels are needed

to render service to a client, such as FTP control and data

channels, all related channels are part of a single conversation.

Definition 2: A transaction is the part of a conversation that

represents a higher-level task whose completion is perceptible

and meaningful to a user. A transaction usually involves a

single request-reply exchange between a client and a server,

or several such exchanges that occur close in time. A conver-

sation may contain one or several transactions.

Definition 3: A transaction is successful if it meets all

the QoS requirements of its corresponding application. If at

least one QoS requirement is not met, a transaction has failed.

Transaction success/failure is the core of our proposed metrics.

A. Application-Specific QoS Requirements

Our first step was to identify traffic measurements that are

important for service quality for the most popular applications

today. Several organizations that collect and publish traffic

traces [11], [12] analyze Internet applications and the ratio

of the packets and bytes that they contribute to these traces.

We surveyed their findings to assemble a list of popular

applications. Further, we leverage the findings of the 3GPP

consortium on defining application QoS requirements [13],

complemented with findings from contemporary QoS re-

search [14], [15], [16], [17].

Table I summarizes the application categories we propose,

and their corresponding QoS requirements. Should novel ap-

plications become popular in the future, the proposed applica-

tion categories will need to be extended, but our DoS impact

metrics will be immediately applicable to new applications.

Interactive applications such as Web, file transfer, telnet,

email (between a user and a server), DNS and ping involve

a human user requesting a service from a remote server,

and waiting for a response. Their primary QoS requirement

is that a response is served within a user-acceptable delay.

Research on human perception of Web traffic delay shows that

people can tolerate higher latencies for entire task completion

if some data is served incrementally [14]. We specify two

types of delay requirements for email, Web, telnet and file

transfer transactions where a user can utilize a partial response:

(a) partial delay measured between receipt of any two data

packets from the server. For the first data packet, partial delay

is measured from the end of a user request, and (b) whole

delay measured from the end of a user request until the entire

response has been received. Additionally, a telnet application

serves two types of responses to a user: it echoes characters

that a user types, and then generates a response to the user

request. The echo generation must be faster than the rest of

the response, so we define the echo delay requirement for

telnet transactions. We identify the echo delay as the delay

between a user’s request and the first response packet.

We use 250 ms as the telnet echo delay requirement [13].

We use 4 s as the partial-delay threshold for Web, telnet

and email applications [13], and 10 s for file transfer ap-

plications [13]. We use 60 s as the whole-delay requirement

for Web [14], and require that the delay for email and file

transfer not exceed three times the expected delay [18], given

the amount of data being transferred. The expected delay is

defined as the delay experienced by the same transaction in

the absence of an attack. For DNS and ping services, we adopt

a 4 s whole-delay requirement. This is the maximum human-

acceptable delay for interactive tasks [13]. We consider peer-

to-peer applications to be file transfers.

Media applications such as conversational and streaming

audio and video have strict requirements for low loss, low jitter

and low one-way delay. These applications further involve a

media channel (where the audio and video traffic are sent,

usually via UDP) and a control channel (for media control).

Both of these channels must provide satisfactory service to

the user. We adopt the one-way delay and loss requirements

for media traffic from [13]. Because many media applications

can sustain higher jitter than 1 ms [13] using variable-size

buffers, we adopt the jitter threshold value of 50 ms [19]. We

treat control traffic as interactive traffic requiring a 4 s partial-

delay.

Online games have strict requirements for low one-way

delay and loss [13]. We differentiate between first-person

shooter (FPS) and real time strategy (RTS) games, because

research has shown that their QoS requirements differ. We

use [16] (FPS) and [17] (RTS) as sources for specifying delay

and loss bounds (see Table I for specific values).

Chat applications can be used for text and media transfer

between two human users. While the request/response delays

depend on human conversation dynamics, the receipt of user

messages by the server must be acknowledged within a certain

time. We express this delay requirement as a 4 s threshold on

the round-trip time between the client and the server. Addition-

ally, we apply the QoS requirements for media applications to

the media channel of the chat application.

Non-interactive services such as email transfer between

servers and Usenet do not have a strict delay requirement.

Users will accept long delays as long as the transactions

complete within a given interval. 3GPP [13] specifies the

transaction duration threshold as several hours for email and

Usenet. We quantify this as 4 hours, since this value is

commonly used by mail servers to notify a user about a failure

to deliver mail to the destination server.

We impose an additional requirement on services that run

over TCP, which was not included in our previous work [20].

We require that data must be exchanged between the client and

the server during a transaction. This is important to detect fail-

ures where an application aborts its TCP connection without

transmitting any data due to adverse network conditions.



4

Category One-way delay Req/rep delay Loss Duration Jitter

email (srv/srv) whole, RTT <4 h
Usenet whole, RTT <4 h

chat, typing RTT <4 s
chat, typing some data must be sent to server
chat, audio <150 ms whole, RTT <4 s <3% <50 ms
chat, video <150 ms whole, RTT <4 s <3%

Web part, RTT <4 s <60 s
Web some data must be received from server

FTP Data part, RTT <10 s <300%
FTP Control part, RTT <4 s

FTP some data must be exchanged on data channel

FPS games <150 ms <3%
RTS games <500 ms

telnet part, RTT <250 ms
telnet some data must be received from server

email (usr/srv) part, RTT <4 s <300%
DNS whole <4 s
ping whole <4 s

media control media media

audio, conv. <150 ms whole, RTT <4 s <3% <50 ms
audio, messg. <2 s whole, RTT <4 s <3% <50 ms
audio, stream <10 s whole, RTT <4 s <1% <50 ms
videophone <150 ms whole, RTT <4 s <3%

video, stream <10 s whole, RTT <4 s <1%

TABLE I
APPLICATION CATEGORIES AND THEIR QOS REQUIREMENTS.

B. Measurement Approach

During simulation, collection of necessary traffic measure-

ments usually implies slight simulator modification. Such

collection is a challenge in testbed experimentation, and we

explored two possible approaches: (i) Instrumented-clients:

instrumenting each client application to compute required

measurements, or (ii) Trace-based: using real, uninstrumented

applications and traffic generators, identifying transactions in

collected packet traces and computing traffic measurements.

The instrumented client approach can precisely identify trans-

actions, but it limits the metrics’ usability to open-source

clients. We thus decided to use the trace-based approach,

since it is easily applicable to most test scenarios and im-

mediately usable by other researchers. In implementing trace-

based QoS evaluation, we encountered several challenges in

transaction and request/response identification. We summarize

our handling of these challenges here; more details are in [20].

Table II shows how we identify transactions in the trace data.

For interactive applications, an inactive time (user think time)

followed by a new user’s request denotes a new transaction.

A transaction is either a partial or entire flow, where flow

is defined as all traffic exchanged between two IP addresses

and port numbers. For traffic requiring multiple flows, such as

media or FTP traffic, a transaction spans both flows.

We identify requests and responses using the data exchange

between senders and receivers. Let A be a client that initiates

some conversation with server B. A request is defined as all

data packets sent from A to B, before any data packet is

received from B. A reply is defined as all data packets sent

from B to A, before any new request from A. Fig. 1 illustrates

request and reply identification, and measurement of partial

delay, echo delay and whole delay.

Application Transaction

email (srv/srv), Usenet TCP flow

chat, Web, telnet, email (usr/srv) TCP flow and inactive > 4 s

FTP TCP flow and inactive > 4 s
on both control and data channel

games UDP flow and inactive > 4 s

DNS, ping One request/response exchange
with unique request ID

audio and video TCP flow (control channel) and
matching UDP flow (media traffic)

TABLE II
TRANSACTION IDENTIFICATION.

10 ms

20 ms

40 ms

55 ms

70 ms

client

part=20 ms

part=15 ms whole=50 ms

100 ms

part=15 ms

re
q
u
e
s
t

re
s
p
o
n
s
e

server

echo=20 ms

Fig. 1. Illustration of request/response identification.

C. DoS Metrics

We aggregate the transaction success/failure measures into

several intuitive composite metrics.

Percentage of failed transactions (pft) per application type.

This metric directly captures the impact of a DoS attack on

network services by quantifying the QoS experienced by end

users. For each transaction that overlaps with the attack, we

evaluate transaction success or failure applying definition 3. A

straightforward approach to the pft calculation is dividing the

number of failed transactions by the number of all transactions

during the attack. This produces biased results for clients that

generate transactions serially. If a client does not generate each

request in a dedicated thread, timing of subsequent requests

depends on the completion of previous requests. In this case,

transaction density during an attack will be lower than without

an attack, since transactions overlapping the attack will last

longer. This skews the pft calculation because each success or

failure has a higher influence on the pft value during an attack

than in its absence. In our experiments, IRC and telnet clients

suffered from this deficiency. To remedy this problem, we

calculate the pft value as the difference between 1 (100%) and

the ratio of the number of successful transactions divided by

the number of all transactions that would have been initiated

by a given application during the same time if the attack were

not present.

The DoS-hist metric shows the histogram of pft measures

across applications, and is helpful to understand each applica-

tion’s resilience to the attack.

The DoS-level metric is the weighted average of pft mea-

sures for all applications of interest: DoS-level =
∑

k
pft(k) ·

wk, where k spans all application categories, and wk is

a weight associated with a category k. We introduced this

metrics because in some experiments it may be useful to

produce a single number that describes the DoS impact. But



5

we caution that DoS-level is highly dependent on the chosen

application weights and thus can be biased.

QoS-ratio is the ratio of the difference between a trans-

action’s traffic measurement and its corresponding threshold,

divided by this threshold. The QoS metric for each successful

transaction shows the user-perceived service quality, in the

range (0, 1], where higher numbers indicate better quality. It

is useful to evaluate service quality degradation during attacks.

We compute it by averaging QoS-ratios for all traffic measure-

ments of a given transaction that have defined thresholds.

For failed transactions, we compute the related QoS-

degrade metric, to quantify severity of service denial. QoS-

degrade is the absolute value of QoS-ratio of that transaction’s

measurement that exceeded its QoS threshold by the largest

margin. This metric is in the range [0,+∞). Intuitively, a value

N of QoS-degrade means that the service of failed transactions

was N times worse than a user could tolerate. While arguably

any denial is significant and there is no need to quantify its

severity, perception of DoS is highly subjective. Low values

of QoS-degrade (e.g., < 1) may signify service quality that is

acceptable to some users.

The life diagram shows the birth and death of each trans-

action in the experiment with horizontal bars. The x-axis is

time and the bar position shows a transaction’s birth (start of

the bar) and death (its end). We show failed and successful

transactions on separate diagrams, for clarity. This metric

can help quickly show which transactions failed and indicate

clusters that may point to a common cause.

The failure ratio shows the percentage of live transactions

in the current (1-second) interval that will fail in the future.

The failure ratio is useful for evaluation of DoS defenses,

to capture the speed of a defense’s response, and for time-

varying attacks [2]. Transactions that are born during the attack

are considered live until they complete successfully or fail.

Transactions that are born before the attack are considered

live after the attack starts. A failed transaction contributes to

the failed transaction count in all intervals where it was live.

IV. EVALUATION IN TESTBED EXPERIMENTS

We first evaluate our metrics in experiments on the DETER

testbed [21]. The testbed is located at the USC Information

Sciences Institute and UC Berkeley, and allows security re-

searchers to evaluate attacks and defenses in a controlled

environment.

A. Topology

Fig. 2 shows our experimental topology. Four legitimate

networks and two attack networks are connected via four core

routers. Each legitimate network has four server nodes and two

client nodes, and is connected to the core via an access router.

Links between the access router and the core have 100 Mbps

bandwidth and 10–40 ms delay, while other links have 1 Gbps

bandwidth and no added delay. The location of bottlenecks is

chosen to mimic high-bandwidth local networks that connect

over a limited access link to an over-provisioned core. Attack

networks host two attackers each, and connect directly to core

routers.

Attack

A

B

G

F

Web
DNS FTP Telnet

C

Core

1

Attack

E

Web

DNS FTP
Telnet

D H
Web/DNS

Telnet/FTP

4
3

2

VoIPIRC

Web/DNS

Telnet/FTP VoIP
IRC

Web, FTP, Telnet, DNS traffic 

IRC traffic
VoIP traffic
Attack traffic

Client

Server

Attacker

Router

Bottleneck link

Fig. 2. Experimental topology.

B. Background Traffic

Each client generates a mixture of Web, DNS, FTP, IRC,

VoIP, ping and telnet traffic. We used open-source servers

and clients when possible to generate realistic traffic at the

application, transport and network level. For example, we used

an Apache server and wget client for Web traffic, bind

server and dig client for DNS traffic, etc. Telnet, IRC and

VoIP clients and the VoIP server were custom-built in Perl.

Clients talk with servers in their own and adjacent networks.

Fig. 2 shows the traffic patterns. Traffic patterns for IRC and

VoIP differ because those application clients could not support

multiple simultaneous connections. All attacks target the Web

server in network 4 and cross its bottleneck link, so only this

network’s traffic should be impacted by the attacks.

Our previous work [20] used a similar experimental setup to

illustrate our metrics in realistic traffic scenarios for various

attacks. Here, we show a different set of experiments with

one novel attack scenario (Section IV-D). We modified the

topology from [20] to ensure that bottlenecks occur only

before the attack target, to create more realistic attack con-

ditions. We used a more artificial traffic mix than in [20],

with regular service request arrivals and identical file sizes for

each application, to clearly isolate and illustrate features of our

metrics. Traffic parameters are chosen to produce the same

transaction density in each application category (Table III):

roughly 100 transactions for each application during 1,300

seconds, which is the attack duration. All transactions succeed

in the absence of the attack.

C. UDP Bandwidth Flood

Our first experiment is a UDP flood attack, frequently used

in the literature and frequently observed in the Internet. This

attack can deny service in two ways: (1) by generating a large

traffic volume that exhausts bandwidth on bottleneck links

(more frequent variant), (2) by generating a high packet rate

that exhausts the CPU at a router leading to the target. We

generate the first attack type: a UDP bandwidth flood. Packet



6

Type Parameter (unit) Distribution

telnet

Request interarrival time 10 s
Response size 4 KB

Session duration 60 s
Time between sessions (s) 15 s

FTP
Request interarrival time 13 s

File size 10 KB

Web
Request interarrival time 13 s

File size 1 KB

DNS Request interarrival time 13 s

ping Request interarrival time 13 s

IRC
Request interarrival time 5 s

Message size 10 KB

VoIP
Packet interarrival time 0.03 s

Talk time 8 s
Think time 5 s

TABLE III
LEGITIMATE TRAFFIC PARAMETERS AND THEIR VALUES.

Fig. 3. UDP bandwidth flood: DoS-hist and DoS-level measures.

sizes had range [750 B, 1.25 KB] and total packet rate was

200 Kpps. This generates a volume that is roughly 16 times

the bottleneck bandwidth. The expected effect is that access

link of network 4 will become congested and traffic between

networks 1 and 4, and networks 3 and 4 will be denied service.

Fig. 3 shows the DoS-hist measures for all source and

destination networks, and the DoS-level measure assuming

Fig. 4. UDP bandwidth flood: QoS measures for successful transactions.

Fig. 5. UDP bandwidth flood: QoS-degrade measures for failed transactions.

Fig. 6. UDP bandwidth flood: Failure ratio for transactions from network
4 to network 1.

equal application weights. Labels at the top of the graph show

measures that belong to the same source network, x-axis labels

denote the destination network, and the y-axis shows the pft

per application. As expected, only traffic to and from network

4 is affected. Transactions between networks 1 and 4 have

somewhat higher pft than transactions between networks 3 and

4. A similar trend is also noticeable in other experiments, and

occurs because traffic between networks 1 and 4 shares one

more router with the attack (router B) than does traffic between

3 and 4 (crosses C and D but not B). DoS-level is around 98%

for traffic between 1 and 4, and around 91% for traffic between

3 and 4.

Fig. 4 shows the QoS measure, averaged over successful

transactions. Service quality degrades among transactions in-

volving servers or clients in network 4. Other transactions have

consistently high service quality. The QoS-degrade measure

is shown in Fig. 5, averaged over failed transactions. While

a single large value could bias this metric, values in our

experiments were fairly balanced over failed transactions in

the same application category. Transactions with network 4

experience large service denial, receiving a service with 10-

300 times worse quality than expected.

Fig. 6 shows the failure ratio for transactions originating



7

Fig. 7. UDP bandwidth flood: Life diagram of successful transactions from
network 4 to network 1.

Fig. 8. UDP bandwidth flood: Life diagram of failed transactions from
network 4 to network 1.

from network 4 to network 1. Throughout the attack, the

failure ratio value stays close to 1, illustrating that nearly all

service between these two networks is denied.

Fig. 7 and 8 show the life diagrams of successful and failed

transactions. The x-axis shows the start and end time of a

transaction, the bar length represents transaction duration, and

the y-axis shows the transaction ID. We assign consecutive IDs

to transactions of the same type. All failures occur during the

attack, and all transactions fail regardless of their application

type. One Web transaction succeeds during the attack because

it obtains enough bandwidth by chance in competition with

the attack. Note the difference in transaction density during

the attack between telnet and other applications (Fig. 8).

Telnet and IRC clients in our experiments generate transactions

serially and thus their transaction density reduces when an

attack prolongs transactions.

We now contrast our metrics with the legacy metrics:

transaction duration, request/response delay, throughput, loss

and resource allocation. Since the UDP bandwidth flood is

the simplest form of DoS attack that denies service through

excessive congestion, we expect that many existing metrics

will do well in predicting transaction failure. An effective

metric would have a clear separation of values for successful

Fig. 9. UDP bandwidth flood: Transaction cdf with respect to loss;
transactions originated by network 4 with network 1.

Fig. 10. UDP bandwidth flood: Transaction cdf with respect to average data
throughput; transactions originated by network 4 with network 1.

and for failed transactions.

The cumulative distribution function (cdf) of maximum

loss within a 5-sec interval for all transactions originated by

network 4 with network 1 is shown in Fig. 9. We also show

the cdf in the baseline case. Baseline transactions all have zero

loss, and are clustered at the origin on the graph. Successful

transactions also all have zero loss, and quite a few failed

transactions have high loss (between 0.5 and 1). However,

many failed transactions have zero loss, as shown in area A

in the figure, and fail because their other QoS requirements

are not met. This overlap between values for successful and

failed transactions makes the loss metric insufficient for DoS

measurement.

Fig. 10 shows the cdf of average data throughput (control

packets are not counted) for all transactions during the attack

and for the baseline case. The attack clearly lowers the trans-

action throughput — many failed transactions have throughput

close to zero (and zero, not shown on the log-scale graph) and

all successful transactions have a higher throughput. However,

there is one transaction that failed despite high throughput,

shown in the area B in the figure. This was a Web transaction

that managed to quickly deliver a request to the server;

the request was acknowledged but the data reply was lost.



8

Fig. 11. UDP bandwidth flood: Transaction cdf with respect to request/reply
delay; transactions originated by network 4 with network 1.

Fig. 12. UDP bandwidth flood: Transaction cdf with respect to duration;
transactions originated by network 4 with network 1.

Because transactions can fail and still have high throughput,

the throughput metric by itself cannot accurately measure DoS.

The cdf of request/reply delay for all transactions is shown

in Fig. 11, during the attack and for the baseline case. Many

failed transactions have high delay but there is a signifi-

cant overlap in delay values between failed and successful

transactions, in the area C in the figure. This overlap makes

request/reply delay insufficient for DoS measurement.

Fig. 12 shows the cdf of transaction duration for all trans-

actions during the attack, and for the baseline. The attack

prolongs durations, and successful transactions finish sooner

than failed ones. There is a narrow but clear separation of

values, in the area D in the figure. Thus the duration metric

could predict DoS in this particular experiment but we will

show it fails in experiments with other attack types.

Considering resource allocation, around 97% of bandwidth

on network 4’s access link was consumed by the attack. This is

close to some DoS-hist and DoS-level values for transactions

between networks 1 and 4, in Fig. 3, but higher than the

DoS impact on transactions between networks 3 and 4. Hence,

resource allocation metric indicates DoS impact in this case,

but is not completely accurate in predicting its severity.

The remaining experiments discuss a subset of the metrics.

Fig. 13. UDP bandwidth flood — low-rate: DoS-hist and DoS-level measures.

Fig. 14. UDP bandwidth flood — low-rate: Transaction cdf with respect to
average throughput; transactions originated by network 3 with network 4.

D. UDP Bandwidth Flood — Low Rate

We now illustrate the inadequacy of metrics that were

adequate for high-rate UDP bandwidth floods — duration,

resource allocation, and throughput (if we ignore the one failed

transaction with high throughput). We reduce the rate of the

UDP flood attack to 80% of the bottleneck link bandwidth.

Fig. 13 shows the DoS-hist and DoS-level measures. Traf-

fic to and from network 4 suffers service denial, but the

percentage of impaired traffic varies greatly depending on

application. Web transactions suffer the least service denial (8-

20%), followed by telnet, DNS and ping. FTP is less impacted

when the server is in network 4 than when the clients are there,

because our FTP transactions are downloads, so most data

flows from server to client. This is also why FTP suffers more

than Web, telnet, DNS and ping when network 4 is the source

network. About 50% of IRC transactions fail and 100% of

VoIP transactions fail. For the QoS-degrade metric (not shown

in graph due to space), telnet, DNS, FTP and ping traffic have

10-100 times worse QoS than required. When the server is

in network 4, Web traffic has 2-10 times degraded service

and VoIP has only 0.15 times degradation. Clearly, resource

allocation metrics cannot predict such variability in service

denial: 20% of resources are allocated to legitimate traffic.



9

Fig. 15. UDP bandwidth flood — low-rate: Transaction cdf with respect to
duration; transactions originated by network 3 with network 4.

Fig. 14 shows the cdf of average throughput for all transac-

tions during the attack initiated by network 3 with network 4,

and for the corresponding baseline case. There is a significant

overlap of throughput values for successful and failed trans-

actions in the area E, which shows that throughput by itself

cannot accurately measure DoS.

Fig. 15 shows the cdf of duration for all transactions

initiated by network 3 with network 4 during the attack, and

for the corresponding baseline case. Durations of failed and

successful transactions overlap in area F in the graph, showing

that duration by itself cannot accurately measure DoS.

Loss and request/reply delay do not adequately capture DoS

impact due to a large overlap in values for failed and successful

transactions. We omit these graphs due to space.

E. TCP SYN Flood with Syn-cookie Defense

Another popular attack with both attackers and researchers

is the TCP SYN flood [4]. It denies service by sending a TCP

SYN flood that consumes OS memory at the target. This attack

can be largely countered if the target deploys the TCP syn-

cookie defense [22], which allocates memory only after the 3-

way handshake is completed. Since attackers do not complete

the handshake, the attack is thwarted. We generated a TCP

SYN flood to port 80 on the Web server in network 4, sending

500 pps. We turned syn-cookies on 650 seconds after the start

of attack, at time 715 seconds.

The DoS-hist and DoS-level measures are shown in Fig. 16.

As expected, all traffic to network 4’s Web server suffers

service denial. The severity is around 50%, in line with the

expectation that almost all transactions were denied service

before the syn-cookie defense was turned on, and none af-

terward. There is a slight DoS for the VoIP traffic from

network 1 to network 4, when 1 out of 100 transactions fails

because of excessive loss. The loss is due to aggressive TCP

retransmissions and is minor (3.3%) but higher than the 3%

QoS threshold for VoIP.

Fig. 17 shows the Web transaction failure ratio from network

1 to network 4. During the attack, the value goes to 1, but

reverts to zero when syn-cookies are deployed.

Fig. 16. TCP SYN flood with syn-cookies: DoS-hist and DoS-level measures.

Fig. 17. TCP SYN flood with syn-cookies: Failure ratio for Web traffic from
network 1 to network 4.

The life diagrams of successful and failed transactions are

shown in Fig. 18. Only Web transactions fail during the attack,

and only during a period when syn-cookies are off.

We summarize legacy metrics, for space reasons. Dura-

tion and loss metrics capture DoS impact well in this case,

but throughput and request/reply delay produce overlapping

regions for failed and successful Web transactions and thus

cannot measure DoS accurately. Only 18% of bandwidth is

consumed by the SYN flood, yet 100% of web transactions are

denied service when syncookies are off. The better approach

to resource allocation measurement would be to measure

occupancy of the TCP connection table at the Web server. We

lacked tools to obtain this information easily from the OS, but

we infer from the Web transaction success/failure metrics that

the table would mostly be occupied by attack connections.

V. EVALUATION IN NS-2 SIMULATIONS

To extend the application of our proposed metrics to simu-

lated DDoS defense evaluation, we have ported the metrics to

the popular NS-2 simulator [23]. We illustrate the DoS impact

metrics in small-scale experiments using NS-2 (version 2.29),

and compare the results with identical experiments on the

DETER testbed. During simulations, we generate flows that



10

Fig. 18. TCP SYN flood with syn-cookies: Life diagram of successful and
failed transactions from network 1 to network 4.

(a) NS-2

(b) DETER

Fig. 19. DoS-hist and DoS-level measures in NS-2 and DETER experiments.

each represent a transaction and we compute required traffic

measurements from NS-2 logs.

We use a simple network topology with a single legitimate

client, an attacker, and a server. All nodes are connected

to the same router. The link between the server and router

is 10 Mbps with 10 ms delay. The other two links are

100 Mbps bandwidth with 10 ms delay. We use a queue

size of 100 packets, with a drop-tail queuing strategy. We

generate the following legitimate traffic between the client and

the server: (1) Web and FTP traffic with file size 1000 bytes

and 20 s request interarrival period. (2) Telnet traffic with

10 pps and a 100-byte packet size. During the simulation,

we start a new telnet connection every 60 s with duration of

120 s. (3) DNS and ping traffic with 10 s request interarrival

period. We use the following modules in NS-2 to generate

the traffic: Application/FTP for FTP, PagePool/WebTraf for

Web, Application/Telnet for telnet, Agent/Ping for ICMP, and

a modified version of Agent/Ping with a maximum of 3

retransmissions with 5-s timeouts for DNS. We generate a

UDP flood that overwhelms the bottleneck link with 10 Mbps

(moderate attack) or 80 Mbps (large attack) rate.

Fig. 19 shows the DoS-hist measure for the client’s traffic

to the server during the two attacks for the NS-2 and DETER

experiments, and in no-attack case. The x-axis shows the attack

strength, and the column height denotes the result of 10 test

runs, with error bars shown. Since the legitimate traffic pattern

is fixed for the NS-2 simulation, we achieve variability by

randomly choosing a small delay (10-100 ms) to apply to the

attack start time. The traffic pattern in testbed experiments de-

pends on a random seed. We also show the DoS-level measure

using equal application weights. The telnet application is the

most affected by the attack due to its small echo-delay bound

(250 ms). Denial of service is similar for DNS and ping, even

though DNS can retransmit requests up to three times, because

these retransmissions occur after the DNS request/response

delay threshold is exceeded (4 s). Web transactions survive

the attack best because of the generous (4 s) delay threshold

and because the lost packets are retransmitted by TCP. At high

attack rate (80 Mbps), the pft of all applications goes to almost

100%.

Comparing simulation results with testbed results (Fig. 19(a)

vs 19(b)), we find that trends in both graphs are similar

but more transactions fail in simulations. This is because the

software routers used on the testbed can handle the attack

traffic much better than the simple output queuing model used

in NS-2. The results are consistent with [24], which shows

much higher throughput and TCP congestion window sizes

in testbed experiments compared to the same experiments in

NS-2.

VI. EVALUATION IN HUMAN-USER EXPERIMENTS

To evaluate our metrics’ ability to capture a human user’s

perception of service denial, we have conducted an experiment

where users interact with a server that is occasionally subjected

to denial-of-service attacks. After each interaction, a user rates

her satisfaction with service quality and we compare this rating

with two of our denial-of-service metrics: the transaction

success/failure metric and the QoS metric.



11

NAT R1 R2

making R1-Content

link a bottleneck with

10 Mbps bandwidth

Content

A1

A2

Control

User

EmulabInternet

Control

Frame

source

points 

to 

NAT

Frame

source

points 

to 

Request 1

Reply 1

Request 2

Reply 2

Tcpdump

Fig. 20. Topology for Human-user DoS experiments.

A. Service and Content

We limited legitimate traffic to a single application, Web

browsing, to simplify user interaction with the server and

facilitate wide participation in our experiment. Users interact

with the server by browsing through a set of Web pages. They

rate their satisfaction with the loading speed of each page by

filling in a Web form shown to the left of the page, in a separate

frame.

We wanted to provide interesting and copyright-free content

to attract participants and achieve reasonably long interac-

tions with the server. We downloaded 21 select pages from

Wikipedia [25], which is a highly popular online encyclopedia

that allows content copying and modification under the terms

of the GNU Free Documentation License. These 21 pages

were grouped into four content categories: Sports (geocaching,

abseiling, aerobatics, fell running, Chilean rodeo, paintball),

Music (blues, hip hop, rock and roll, heavy metal, the relation-

ship between music and mathematics), Film (Star Wars, God-

father, Lord of the Rings, Casablanca, An Inconvenient Truth)

and Famous People (Walt Disney, Shakespeare, Christopher

Columbus, Benjamin Franklin, Mozart). We modified each

page to fit into 1-2 screens of text.

B. Experiment Setup

Because the Web server had to be subjected to occasional

DoS attacks, we needed a controlled, isolated environment

such as the DETER testbed [21]. However, our desire to attract

many survey participants dictated the need for experimental

machines to be reachable by users from outside the testbed.

DETER currently prohibits any communication between exter-

nal machines and experimental ones, and thus could not host

our experiment. Instead, we used the Emulab testbed [26],

which is similar to the DETER testbed but it allows external

Web requests to experimental nodes.

A naive experimental topology would use one Web server in

the Emulab testbed, and the user traffic would reach the server

directly. Such a topology was inadequate for our purposes, for

the following reasons:

(1) Users must reach two types of pages (a) Wikipedia content

on a server that may be a DoS target, (b) welcome and thank-

you pages, and pages with QoS rating forms that must always

be loaded promptly regardless of an attack. We used two

Web servers — one to host control information for the survey

(welcome, thank-you pages and rating forms) and one to host

the content and be the DoS target.

(2) For DoS attacks that target bandwidth, user traffic must

share the bottleneck link with the attack. Thus, user Web

requests must be tunneled to the content Web server instead

of reaching it directly. Fig. 20 shows the topology used in the

experiment. User traffic first reaches the Web server Control,

which hosts control information. When the survey starts, the

right frame of the pages displayed to the user points to the host

NAT, which acts as a network address translator and tunnels

the user’s Web requests to the Web server Content over the

bottleneck link, which is shared with attack traffic from hosts

A1 and A2. Machine R1 is an aggregation router and machine

R2 emulates a 10 Mbps link using Click [27]. All physical

links are 100 Mbps. We run tcpdump for each user on the

link leading from NAT to R1, anonymizing the output. We

use this output to calculate our DoS measures.

The first page displayed to a user is the registration page,

with only one button labeled “Register.” A click on this button

assigns a sequential ID to the user and starts tcpdump; user

ratings will be saved under this ID and tcpdump output will

bear the name derived from the ID. We next generate a random

number in the range 1–4. Number 1 triggers a UDP flood

attack on the bottleneck link, number 2 triggers this same

attack but at a smaller rate, which aims to degrade but not

to deny service. Number 3 triggers a SYN flood attack on the

Content Web server and number 4 does not trigger any attack,

i.e., users in this category form the control group.

The next page is the welcome page, loaded from Control

server, that explains experiment goals and setup, and gives

instructions to the user. Users are asked to click on at least 5

pages of their choice, not to repeat clicks and not to follow

external links from the Wikipedia pages. Repeated clicks can

lead to erroneous perception of service quality because they

display the content from the browser’s cache, and external-

page clicks bypass the testbed.

The welcome page also displays 21 buttons for the content

pages, and a button to quit the survey. Clicking on a content

button generates a web page with content on the right and

the rating form on the left. If the Content server were under

attack, the page in the right frame may not load, or it may

take a long time to load. Users rate their satisfaction with

service quality on 1–4 scale, where 4 means “Excellent”, 3

means “Mostly OK”, 2 means “Poor, but acceptable” and 1

means “Unacceptable.” The rating form is multiple-choice and

allows only a single item to be selected. The users can browse

naturally: they are allowed to rate their satisfaction at any time;

i.e., they did not have to wait for the page to load completely

and they did not have to read any content. When the user

clicks the “Submit” button on the rating page, the content file

name and the rating are saved in a log file. After the rating is

submitted, the welcome page is displayed again. The survey

ends when the user clicks the “Quit” button on the welcome

page. The thank-you page is then displayed and user ratings

are shown side by side with our DoS metrics. We describe the

process of mapping our measures to the same rating scale as

used by human users in Section VI-C.

We experimented with the following attack dynamics before



12

settling on one of them: (1) The attack starts immediately

upon registration and lasts for a long time. This generates

predictable results because either all user transactions are

affected by the attack or none are. This scenario was too

simplistic to validate our metrics; we preferred to have each

user experience some good and some poor service. (2) The

attack starts when a user requests a content page displaying

Wikipedia content. This scenario would be ideal but it had

timing problems. A Web request is contained in very few

packets sent to server — two to open a TCP connection and

one to request a Web page — and only this path is affected

by the attack. Request packets are sent rapidly when the

user clicks on the content button. If the attack is triggered

simultaneously, there was a race condition between creating

sufficient congestion and user packets reaching the server. If,

on the other hand, we delayed page load until the attack

has started, this would affect the user’s perception of service

quality and skew the rating toward lower values. (3) The attack

is triggered upon the registration click. It runs periodically,

thus a given user may experience some high quality and

some low quality transactions. We opted for this scenario

since it was rich enough to generate interesting test cases for

our measures and did not suffer from the timing problems

present in scenario 2. Each attack starts 60 seconds after the

registration click, lasts for 30 seconds and repeats every 60

seconds for total of 10 times. We carefully selected the attack

period and duration to maximize the chance that attack traffic

overlaps with user requests. The attack is aborted when the

user quits the survey.

C. Mapping our DoS Metrics to User-Compatible Ratings

User ratings of service quality are on the scale 1–4, where

2, 3, 4 ratings denote successful transactions with increasing

degrees of user satisfaction and 1 denotes failed transactions.

Two of our DoS metrics are comparable with user ratings:

the transaction success/failure metric and the QoS metric. The

QoS metric is on the scale (0, 1] and is calculated only for

successful transactions; we set it to zero for failed transactions.

Higher QoS values denote higher service quality.

We mapped transaction success/failure and the QoS measure

into the 1–4 scale as follows (summarized in Table IV). If a

transaction failed, our rating of its service quality was set to 1

and its QoS measure was set to 0. If it succeeded, we run an

optimization algorithm to find the best values for thresholds

on the QoS measure that denote the limits between ratings 2

and 3, and ratings 3 and 4. For our experimental results, these

thresholds were 0.87 and 0.88, respectively.

QoS Rating

0 1

≥ 0 but < 0.87 2

≥ 0.87 but < 0.88 3

≥ 0.88 4

TABLE IV
MAPPING OF QoS METRIC TO USER RATING SCALE.

We also had to map transactions into clicks. Our measures

are calculated per transaction, which in case of Web service

may denote the event of initiating the communication with

the server, partially or completely loading a page, or loading

each embedded object in a page. Thus one user click usually

maps into several transactions. We map clicks into transactions

by first identifying TCP connections in the tcpdump output

associated with one Web page load, then relating our transac-

tions to these connections (and thus to page loads), and finally

pairing the page loads with the user clicks recorded in our

rating log file, as explained next.

Identification of TCP connections associated with one page

load proceeds as follows: (1) Identify TCP connections in the

collected tcpdump file by looking for a 3-way handshake and

all subsequent traffic between the same IP addresses and port

numbers until either a FIN or a RESET. (2) If a connection

contains a packet with an HTTP GET directive in the content

field, parse the file name following this directive. For files

ending in .html this connection denotes a new page load.

For other files, look for the Referer field in the packet

containing HTTP GET, and parse the name of the referring file,

which in our case always ends in .html. This connection is

added to the page load of the referring file. (3) If a connection

does not contain a packet with an HTTP GET directive, it is

associated with a “NO URL” page load. These connections

usually contain a partial or full 3-way handshake, but the

service denial was so large that the connection never advanced

to data exchange.

Relating our transactions to TCP connections involved

selecting the TCP connection that had the same port numbers

as the given transaction and encompassed its start and end

times. After all transactions were paired with TCP connections

and thus with page loads, we calculate the success/failure and

the QoS measure for each page load. A load’s success/failure

measure is a “success” only if all transactions that are mapped

to this load were successful, otherwise it is a “failure.” A load’s

QoS measure is 0 if its success/failure measure is “failure.”

Otherwise, the QoS measure is the average of QoS measures

of transactions associated with this page load.

Pairing Web page loads with user clicks from the rating log

file was performed by pairing the file names from the loads

with URLs in the log file. If we cannot find the name from

the log file among our page loads, we next attempt to pair this

click with our “NO URL” load based on timing. If this fails,

the click is marked invalid. Repeated clicks are also considered

invalid because they may be served from a client’s cache; an

action invisible in network traces.

D. Results

We recruited experiment participants from the following

populations: (1) graduate students and faculty at the University

of Delaware, (2) graduate students at UCLA, (3) graduate

students at Purdue University, (4) attendees of SIGMETRICS

2007, and (5) subscribers of the TCCC mailing list. We kept

the survey open for four months (July-October 2007) and had

101 participants and 840 clicks. 32 (3.8%) clicks were invalid,

leaving 808 valid clicks for 100 users.

Assignment of users to attack categories was balanced: 23

experienced a UDP flood attack, 28 experienced a low-rate



13

UDP flood, 29 experienced a SYN flood attack, and 20 were

in a control group with no attack being launched. UDP flood

is the most severe attack, because it affects all request traffic.

SYN flood has lower severity — it only prevents connection

setup, but once a user’s TCP SYN packet is accepted by the

server, communication proceeds normally. We expected that

the low-rate UDP flood would have modest to no impact

on service quality, and that the best service quality will be

assigned to clicks in the control group.

Users who experience poor service usually lose interest in

interacting with the server. The average number of clicks per

user in different groups was 6.17 for UDP flood, 8.03 for low-

rate UDP flood, 7.86 for SYN flood and 10.2 for the control

group. These results agree with our expectations and indicate

that users in the control group had the best service, followed

by users in the low-rate UDP flood group, users in the SYN

flood group, and finally users in the UDP flood group.

Users’ ratings Our ratings
Attack 1 2 3 4 µ σ 1 2 3 4 µ σ

UDP 85 34 12 20 1.78 1.06 107 17 4 23 1.62 1.1

low-UDP 0 11 89 125 3.51 0.59 1 0 33 191 3.84 0.40

SYN 78 27 49 74 2.52 1.26 74 16 16 122 2.81 1.37

No 4 14 95 91 3.34 0.69 1 2 19 182 3.87 0.4

TABLE V
SUMMARY OF RATINGS, MEANS (µ) AND STANDARD DEVIATIONS (σ)

Table V shows the distribution of users’ and our ratings.

Users’ ratings agree with our expectations — satisfaction

with service quality was lowest for the UDP flood group,

followed by the SYN flood group, and the control and low-

rate UDP flood groups experienced the best service quality.

Attack groups had some percentage of high ratings (3 and

4) — this is because overlap of an attack with user traffic

was random, thus some transactions completed without service

denial. Surprisingly, clicks in the low-rate UDP flood group

had a slightly higher user rating than clicks in the control

group. This was mostly due to more 4 than 3 ratings in the low-

rate UDP group, versus the control group. The best explanation

we have for this is the subjectivity of human perception of

QoS, which was observed in [14] but is not quantified.

Comparing our success/failure metric with user ratings, we

had 728 matches, which constitutes 90% of total valid clicks.

Out of the 80 mismatches, 40 were cases where we considered

a click to be failed while a user gave it a successful rating.

These were all cases where an embedded picture in the page

did not load quickly enough or at all. Some users did not

consider this significant enough for a failure, while we did.

Given the high subjectivity of human QoS perception [14],

we view a 90% match as proof of high accuracy of our

success/failure metric.

Comparing our QoS metric with user ratings, both mapped

to 1–4 scale, we had 441 matches (54.5% accuracy) and

367 mismatches. If we leave out the 80 mismatches where

our success/failure metric disagreed with a user’s, of the

287 remaining mismatches, in 240 (29.7% of all clicks) a

user assigned a rating 4 (Excellent) and we assigned a 3

(Mostly OK), or vice versa. This is expected, since categories

“Excellent” and “Mostly OK” are very similar and humans

find it more difficult to distinguish between an excellent and a

slightly impaired service, than between an excellent and a poor

service. Together, matches and four/three mismatches make

84.2% of all clicks. If we merge the “Excellent” and “Mostly

OK” ratings, then, we have 84.2% accuracy of our QoS metric,

which is fairly high given human subjectivity in rating QoS.

Overall, our metrics accurately predicted human perception of

service denial (success/failure metric) and service quality (QoS

metric).

VII. RELATED WORK

A number of computer science fields have developed sys-

tematic, standardized approaches to performance measure-

ment. Two examples of this are the TPC benchmarks for

application servers and web services [28], and the SPEC

benchmarks for a variety of application categories [29]. These

efforts adopt a representative workload mix for an application

of interest, and a set of performance measures with thresholds

that signify success or failure. Measures are calculated at the

application level. Our measures are similar to those in TPC

and SPEC, but are less diversified, since our inference of

application-specific tasks at the network level is difficult and

imperfect.

In the quality of service field, there is an initiative, led by

the 3GPP partnership, to define a universally accepted set of

QoS requirements for network applications [30]. While we

reuse many of the specified requirements in our work, we

extend, modify and formalize these requirements as explained

in Section III-A.

The networking research community has separated applica-

tions into categories based on their sensitivity to delay, loss

and jitter [31]. That work focuses on providing applications

guaranteed service, rather than measuring service denial. The

Internet Research Task Force Transport Modeling Research

Group (TMRG) discussed using user-based QoS metrics for

measuring congestion, but did not specify such metrics in any

detail [32].

In [33], the authors measure DoS impact on real-world

traffic via the distributions of several parameters: the through-

put of FTP applications, round-trip times of FTP and Web

flows, and latency of Web flows and the DNS lookup service

in real world traces before, during, and after an attack. Our

paper strives to define a more formal threshold-based model

for these and other parameters that can be extended to a

broader variety of services and attacks. In [7], the authors

measure the percentage of “completed” transactions, which

may appear similar to our pft metric and our “successful”

transactions. However, their transactions count as success if

they complete at all during the simulation, however late, while

our transactions are successful only if they complete while

meeting all their QoS requirements. Our metric thus more

accurately captures user perception of service quality.

In [34], a user satisfaction index is computed from Skype

traces and validated via analysis of other call characteris-

tics, such as conversation interactivity. Our work provides a

framework where this index can be easily incorporated into a



14

DoS metric for Skype and other VoIP traffic. In slow-motion

benchmarking [35], the authors use network traces collected at

the client to measure performance of thin clients. Their only

performance measure is the sum of transaction durations in

the benchmark.

VIII. CONCLUSIONS AND FUTURE WORK

One cannot understand a complex phenomenon like denial

of service without being able to measure it in an objective,

accurate way. The work described here represents the first

attempt to define accurate, quantitative and versatile metrics

for measuring effectiveness of denial of service attacks and

defenses. By focusing on the issue of measuring human user

perception of application-level service quality, the metrics cut

to the heart of the problem and avoid issues of the specific

form of the attack and legitimate traffic mix. Our approach

is objective, reproducible, and applicable to a wide variety

of attack and defense methodologies. Its value has been

demonstrated in both testbeds and simulation environments.

Further, we have addressed the main concern of metrics that

focus on an application-level phenomenon – the accuracy of

the metric compared to human perceptions – via tests with

human subjects that validated our results.

Our metrics are usable by other researchers in their own

work. They offer the first real opportunity to compare and

contrast different denial of service attacks and defenses on

an objective head-to-head basis. We expect that this work

will advance denial-of-service research by providing a clear

measure of success for any proposed defense, and helping

researchers gain insight into strengths and weaknesses of their

solutions.

While our DoS metrics are a necessary condition for per-

formance comparison of DoS defenses, they are not sufficient.

A related problem is devising standardized benchmarks for

DoS defense testing, so all products are tested under the same

conditions. We have done some pioneering work in this area

[36] but ours is just a first, small step and an engagement of

a wider research community is needed to completely address

this problem.

REFERENCES

[1] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow
Filter to Mitigate DDoS Flooding Attacks. In Proceedings of the IEEE

Security and Privacy Symposium, 2004.
[2] A. Kuzmanovic and E. W. Knightly. Low-Rate TCP-Targeted Denial

of Service Attacks (The Shrew vs. the Mice and Elephants). In Proc.

of ACM SIGCOMM, August 2003.
[3] M. Guirguis, A. Bestavros, and I. Matta. Exploiting the Transients of

Adaptation for RoQ Attacks on Internet Resources. In Proceedings of

ICNP, Oct 2004.
[4] CERT CC. CERT Advisory CA-1996-21 TCP SYN Flooding and IP

Spoofing Attacks. http://www.cert.org/advisories/CA-1996-21.html,
1996.

[5] Srikanth Kandula, Dina Katabi, Matthias Jacob, and Arthur Berger.
Botz-4-Sale: Surviving Organized DDoS Attacks that Mimic Flash
Crowds. In NSDI, 2005.

[6] Hani Jamjoom and Kang Shin. Persistent Dropping: A Efficient
Control of Traffic Aggregates. In ACM SIGCOMM Conference, 2003.

[7] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting Network
Architecture. In ACM SIGCOMM Conference, 2005.

[8] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern
Paxson, and Scott Shenker. Controlling high bandwidth aggregates in
the network. In ACM Computer Communication Review, July 2001.

[9] Angelos Stavrou, Angelos D. Keromytis, Jason Nieh, Vishal Misra,
and Dan Rubenstein. MOVE: An End-to-End Solution to Network
Denial of Service. In NDSS, 2005.

[10] G. Oikonomou, J. Mirkovic, P. Reiher, and M. Robinson. A
Framework for Collaborative DDoS Defense. In Proceedings of

ACSAC, December 2006.
[11] Cooperative Association for Internet Data Analysis. CAIDA Web

page. http://www.caida.org.
[12] WIDE Project. MAWI Working Group Traffic Archive.

http://tracer.csl.sony.co.jp/mawi/.
[13] Nortel Networks. QoS Performance requirements for UMTS. The 3rd

Generation Partnership Project (3GPP). http://www.3gpp.org/ftp/tsg
sa/WG1 Serv/TSGS1 03-HCourt/Docs/Docs/s1-99362.pdf.

[14] Nina Bhatti, Anna Bouch, and Allan Kuchinsky. Quality is in the Eye
of the Beholder: Meeting Users’ Requirements for Internet Quality of
Service. Technical Report HPL-2000-4, Hewlett Packard, 2000.

[15] L. Yamamoto and J. G. Beerends. Impact of network performance
parameters on the end-to-end perceived speech quality. In In

Proceedings of EXPERT ATM Traffic Symposium, September 1997.
[16] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and

M. Claypool. The Effects of Loss and Latency on User Performance in
Unreal Tournament 2003. In In Proceedings of ACM NetGames 2004.

[17] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and
Emmanuel Agu. The Effect of Latency on User Performance in
Warcraft III. In In Proceedings of ACM NetGames 2003.

[18] B. N. Chun and D. E. Culler. User-centric Performance Analysis of
Market-based Cluster Batch Schedulers. In In Proceedings of the 2nd

IEEE International Symposium on Cluster Computing and the Grid,
May 2002.

[19] J. Ash, M. Dolly, C. Dvorak, A. Morton, P. Taraporte, and Y. E.
Mghazli. Y.1541-QOSM – Y.1541 QoS Model for Networks Using
Y.1541 QoS Classes. NSIS Working Group, Internet Draft, Work in
progress, May 2006.

[20] J. Mirkovic, A. Hussain, B. Wilson, S. Fahmy, P. Reiher, R. Thomas,
W. Yao, and S. Schwab. Towards User-Centric Metrics for
Denial-Of-Service Measurement. In In Proceedings of the Workshop

on Experimental Computer Science, June 2007.
[21] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower,

R. Ostrenga, and S. Schwab. Experiences With DETER: A Testbed for
Security Research. In 2nd IEEE TridentCom Conference, March 2006.

[22] D. J. Bernstein. TCP syncookies. http://cr.yp.to/syncookies.html.
[23] The Network Simulator ns 2. NS-2 Web page.

http://www.isi.edu/nsnam/ns/.
[24] R. Chertov, S. Fahmy, and N. Shroff. Emulation versus Simulation: A

Case Study of TCP-Targeted Denial of Service Attacks. In
Proceedings of the 2nd International IEEE CreateNet TridentCom

Conference, February 2006.
[25] Wikipedia, the Free Encyclopedia. http://www.wikipedia.com.
[26] University of Utah. Emulab testbed. http://www.emulab.net.
[27] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The

Click Modular Router. ACM Transactions on Computer Systems,
18(3):263–297, August 2000.

[28] Transaction Processing Performance Council. TPC Benchmarks.
http://www.tpc.org/information/benchmarks.asp.

[29] Standard Performance Evaluation Corporation. SPEC Benchmarks and
Published Results. http://www.spec.org/benchmarks.html.

[30] 3GPP. The 3rd Generation Partnership Project (3GPP).
[31] M. W. Garrett. Service architecture for ATM: from applications to

scheduling. IEEE Network, 10(3):6–14, May/June 1996.
[32] IRTF TMRG group. The Transport Modeling Research Group’s Web

Page. http://www.icir.org/tmrg/.
[33] Kun chan Lan, Alefiya Hussain, and Debojyoti Dutta. The Effect of

Malicious Traffic on the Network. In Passive and Active Measurement

Workshop (PAM), April 2003.
[34] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei.

Quantifying Skype User Satisfaction. In Proceedings of the ACM

SIGCOMM, September 2006.
[35] Jason Nieh, S. Jae Yang, and Naomi Novik. Measuring Thin-Client

Performance Using Slow-Motion Benchmarking. ACM Transactions

on Computer Systems, 21(1), February 2003.
[36] J. Mirkovic, S. Wei, A. Hussain, B. Wilson, R. Thomas, S. Schwab,

S. Fahmy, R. Chertov, and P. Reiher. DDoS Benchmarks and
Experimenter’s Workbench for the DETER Testbed. In Proceedings of

Tridentcom, 2007.



15

Dr. Jelena Mirkovic is a Computer Scientist at

the USC Information Sciences Institute, which
she joined in 2007. Prior to this she was an Assis-
tant Professor at the Computer and Information

Sciences Department, University of Delaware,

2003-2007. She received her M.S. and Ph.D.

from UCLA, and her B.S. in Computer Science

and Engineering from the School of Electrical

Engineering, University of Belgrade, Serbia. Her

current research is focused on accountability,

safe sharing of network data, denial-of-service

attacks, and IP spoofing. Her research is funded by the National Science

Foundation and the Department of Homeland Security.

Dr. Alefiya Hussain is a Senior Principal Scientist

at Sparta Inc. Her research interests include

statistical signal processing, protocol design, se-

curity, and network measurements. She received

a Bachelor of Engineering degree from Pune In-

stitute of Computer Technology, and a M.S. and

Ph.D. in Computer Science from the University

of Southern California. She is a member of ACM

and Upsilon Pi Epsilon.

Dr. Sonia Fahmy is an Associate Professor at the

Computer Science department at Purdue Univer-

sity. She received her PhD degree from the Ohio

State University in 1999. Her current research

interests lie in the areas of Internet tomography,

network security, and wireless sensor networks.

She received the National Science Foundation

CAREER award in 2003, and the Schlumberger

technical merit award in 2000. She is a member

of the ACM. For more information, please see:

http://www.cs.purdue.edu/∼fahmy/

Dr. Peter Reiher received his B.S. in Electrical

Engineering and Computer Science from the

University of Notre Dame in 1979. He received his

M.S. and Ph.D. in Computer Science from UCLA

in 1984 and 1987, respectively. He has done

research in the fields of distributed operating sys-

tems, security for networks and distributed com-

puting, file systems, optimistic parallel discrete

event simulation, ubiquitous computing, naming

issues in distributed systems, active networks,

and systems software for mobile computing. Dr.

Reiher is an Adjunct Associate Professor in the Computer Science

Department at UCLA.

Dr. Roshan Thomas is a Senior Principal Scien-

tist at Sparta, Inc. He has over thirteen years

of experience as a researcher at the Principal

Investigator level in various aspects of com-

puter security including access control models,

network security, policy languages, secure dis-

tributed database management and multilevel-

secure object-oriented distributed computing. As

part of the research into cross domain solutions

for the Collaborative Technology Alliance (CTA),

he is developing policy languages for cross do-

main information release. He is also currently a PI on an IARPA-

funded project called TDOC that is looking at advanced dissemination

controls models to prevent insider leaks in the computer systems for the

intelligence community. In the past, he has been a Principal Investigator

and researcher on a variety of DARPA and NSF-funded research projects

that investigated active and collaborative access control models, network

security, and security in mobile ad-hoc networks. Dr. Thomas served as

the co-founder of the First IEEE International Workshop on Pervasive

Computing and Communication Security (PerSec 2004) and served as the

PC co-chair for the second workshop (PerSec 2005). Dr. Thomas holds

bachelor’s and master’s degrees in Computer Science and earned a Ph.D

in Information Technology with a specialization in computer security

from George Mason University, Fairfax, VA, U.S.A in May 1994.


