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Accurately modeling the internet topology
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Based on measurements of the internet topology data, we found that there are two mechanisms which are
necessary for the correct modeling of the internet topology at the autonomous sya®nevel: the inter-
active growth of new nodes and new internal links, and a nonlinear preferential attachment, where the prefer-
ence probability is described by a positive-feedback mechanism. Based on the above mechanisms, we intro-
duce the positive-feedback prefererf@P model which accurately reproduces many topological properties
of the AS-level internet, including degree distribution, rich-club connectivity, the maximum degree, shortest
path length, short cycles, disassortative mixing, and betweenness centrality. The PFP model is a phenomeno-
logical model which provides an insight into the evolutionary dynamics of real complex networks.
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[. INTRODUCTION The BA model generates networks with the power-law expo-
nenty=3 [20].

Recently there has been a considerable effort to under- Based on the BA model, a number of evolving network
stand the topology of complex networks-6]. Of particular  models[2,4,6,13 have been introduced to obtain degree dis-
interest are complex networks obtained from evolvingtributions with other power-law exponents. Some of these
mechanisms, like the internet or the worldwide web, as theyiew models have been used to model the internet. However,
are so influential in our daily life. The degré&eof a node is a network model based solely on the reproduction of the
the number of links which have the node as an end point, opower-law exponent of the degree distribution has its limita-
equivalently the number of nearest neighbors of the nodedions, as it will not describe the internet hierarchical structure
The statistical distribution of the degré¢k) gives important  [8]. In the next section we investigate two properties of the
information of the global properties of a network and can benternet that were not accurately modeled by the existing
used to characterize different network topologies. The intermodels, namely, the rich-club connectiv[1] among high-
net has been studied in detfi-13 since the measured data degree nodes and the maximum degree of the network. The
[14—17 became available. Now, it is well known that the accurate modeling of these two properties was our motiva-
internet can be represented ascale-freenetwork, where tion for developing a network model. In Sec. Ill we intro-
the degree distribution is a power lak) ~k™”. The expo- duce the positive-feedback preferent®FP model, which
nenty of the internet at the autonomous syste@S) level IS @ phenomenological model of the AS-level internet topol-
is approximately 2.22see Figs. 1 and)2 ogy. Section IV presents the validation of the model and in

Barabasi and AlbertBA) [19] showed that it is possible Sec. V are the conclusions of this work.
to grow a network with a power-law degree distribution by
using a preferential-growth mechanism: starting with a small
random network, the system grows by attaching a new node 10°
with m links to m different “old” nodes that are already
present in the systeifm=3 to obtain internetlike networls
the attachment is preferential because the probability that a
new node will connect to nodie with degreek;, is
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versity College London, Adastral Park Campus, Ross Buildingset used in this research is a trace-route-derived AS graph measured
Martlesham Heath, Ipswich IP5 3RE, United Kingdom; email in April 2002 [18]. The models illustrated are the positive-feedback
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FIG. 4. Rich-club connectivityb(r/N) vs normalized rank/N.

FIG. 2. The cumulative degree distributi®hmy{k) of the AS  1q o 105 best-connected nodes are marked with the vertical hash
graph decays a®cme{k)~k™*?% hence the degree distribution |jne.

P(k) ~ k™ with exponenty=2.22[7].

member, i.e., they form a fully connected subgraph.
Il. CHALLENGES IN ACCURATE MODELING Figure 4 shows the rich-club connectivity as a function of
OF THE INTERNET the rank normalized by the number of nodes. It is clear that
A. The rich club in the AS graph the high-degree nodes are tightly intercon-
ected. The top 1% best-connected nodes of the AS graph
: . ave 27% of the possible interconnections, compared with
assortative, and neutra| networi#2-24. Social networks only 4.5% obtained from a network topology generated using

(e.g., the coauthorship netwQrre assortative networks, in .
which high-degree nodes prefer to attach to other highzhe BA model which has the same number of nodes as, and

degree nodes. Information networks.g., the worldwide slightly larger number of links, than the AS graiee Table
web and the interngtand biological networksge.g., protein -
interaction networkshave been classified as disassortative
networks, in which high-degree nodes tend to connect witl
low-degree ones.

While the AS-level internet is disassortatij&0,11], this
property does not imply that the high-degree nodes ar
tightly interconnected to each oth@ee Fig. 3 One of the

Scale-free networks can be grouped into assortative, dis-

The rich club consists of highly connected nodes, which
re well interconnected between each other, and the average
op distance among the club members is very siaalé to
two hopg. The rich club is a “super” traffic hub of the net-
gvork and the disassortative mixing property ensures that pe-
ripheral nodes are always near the hub. These two structural

structural properties of the AS-level internet is that it Con_properties together contribute to the routing efficiency of the

tains a small number of high-degree nodes. We call thesgetwork. An internet model that does not reproduce the prop-

nodes “rich” nodes, and the set containing them the uricherties of the rich club will underestimate the actual network’s

club.” The inter-connectivity among the club members is_routing effic_iency(shortest path leng)hmd rputing fle>_<ibil-
quantified by the rich-club connectivif21] which is defined ity (alternative reachable pathsind also it will overestimate

as follows. The rank of a node denotes its position on a list the network robustness under node attgz.
of all nodes sorted in decreasing degree. If the network\has The interactive growth model

nodes therr € [1,N]. If the rich club consists of the first .
nodes in the rank list, then the rich-club connectiwitfyr / N) The BA model is based solely on the _attachmgnt of new
nodes. However, the appearance of new internal links among

is defined as the ratio of the number of links connecting theOld nodes has also been observed in the evolution of the

club members over the maximum number of allowable links, .
t(r—1)/2. The rich-club connectivity measures how well internet[10,17. During the last few years, researchers have

) - roposed a number of internet models using the appearance
club members “know” each other. A rich-club connectivity of prop g bp

1 that all th bers h direct link t th of new internal links, such as Dorogovtsev and Mendes’
means that all the members have a direct fink to any o errnodel[26], Bu and Towsley's generalized linear preference

model [27], Bianconi et al's generalized network growth
model[28], Caldarelliet al.'s model[29], and the interactive
growth (IG) model[30]. In addition to the appearance of new
internal links, these models have also used different prefer-
ence schemes to capture selected properties of the internet.
Here we reconsider the interactive growth model as it is
the precursor of the positive-feedback preference model and
the IG model provides a possible way to reproduce both the
FIG. 3. Two disassortative network&) High-degree nodes are power-law degree distribution and the rich-club connectivity
loosely interconnected.(b) High-degree nodes are tightly of the AS graph. The IG model generates a network using
interconnected. interactive growth where new internal links start from the

(@ (b)
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TABLE |. Network parameters.

AS graph  PFP model IG model  BA model

Number of nodes N 11122 11122 11122 11122
Number of links L 30054 30151 33349 33349
Average degree (k) 5.4 5.4 6.0 6.0
Exponent of power law y 2.22 2.22 2.22 3
Rich-club connectivity ¢(r/N=0.01) 0.27 0.30 0.32 0.045
Maximum degree Kmax 2839 2785 700 292
Degree distribution P(k=1) 26% 28% 26% 0%
Degree distribution P(k=2) 38% 36% 34% 0%
Degree distribution P(k=3) 14% 12% 11% 40%
Characteristic path length I* 3.13 3.14 3.6 4.3
Average triangle coefficient (ko) 12.7 12 10.4 0.1
Maximum triangle coefficient Ki max 7482 8611 4123 64
Average quadrangle coefficient (kg 277 247 105.4 1.3
Maximum quadrangle coefficient Kq max 9648 9431 8780 527
Averagek,, (kan) 660 482 103 20
Average betweenness (Ce) 4.13 4.14 4.6 5.3
Maximum betweenness Ch max 3237 3419 1002 1064

host nodes, which are the old nodes that new nodes are ateme this shortfall, it is possible to favor high-degree nodes
tached to. The IG model starts with a small random networkby using the nonlinear preferential probabil[®6,31]
At each time step(1) with probabilityp  (0,1), a new node

is attached to one host node and two new internal links ap- _ @
pear between the host node and two other old nagdesr mi)=Z2—, a>1. 2
nodes; (2) with probability 1, a new node is attached to > Ki

two host nodes and one new internal link appears between !
one of the host nodes and a peer node. To examine the above nonlinear preference, here we study
In the actual internet, new nodes bring new traffic load toa so-called Test* model, which is a modification of the 1G
its host nodes. This results in both the increase of traffianodel. The Test* model uses the same interactive growth
volume and the change of traffic pattern around host nodesiechanism as the IG model, but it does not use the linear
and triggers the addition of new links connecting host nodegreference given by EqJ); instead it uses the nonlinear
to peer nodes in order to balance network traffic and optipreference given by Eq2). Numerical experiments showed
mize network performance. From numerical simulations, wethat, whena=1.15+0.01, the Test* model generates net-
found that whenp=0.4 the interactive growth model also works with the maximum degree similar to the AS graph.
satisfies the following two characteristics obserj@€l2 in However, as shown in Fig. 4, the rich-club connectivity pro-
the internet measurements. First, the majority of new nodeduced by the Test* model deviates from the AS graph. For
are added to the system by attaching them to one or two oldxample, the 1% best-connected nodes of the Test* model
nodes(m=2). Second, the degree distribution of the AS have 42% allowable interconnections compared with 27% of
graph is not a strict power law as it has more nodes wittthe AS graph.
degree 2 than nodes with degree [B(2)=38%>P(1)
=26%; see Table]l The IG model uses the BA model's
linear preference of Eql) in the attachment of new nodes
and the appearance of new internal links. As shown in Fig. 1, ; i )
Fig. 2, Fig. 4, and Table I, the IG model closely resemble . Based on the internet-history data, Pastor-Satostes.

Co . 0] and Vazquezt al. [11] measured that the probability
both the power-law degree distribution and the rich-club con o+ 2 new node links with a low-degree old node follows the
nectivity of the AS graph.

linear preferential attachment given by E(L), whereas
Chenet al. [9] reported that high-degree nodes have a stron-
ger ability of acquiring new links than predicted by Ed).

The IG model still has its limitations. The maximum node The internet-history data also show that at early times, the
degreekaxpresent in the AS graph is nearly a quarter of thenode degree increases very slowly; later on, the degree grows
number of nodesk,.,=N/4) and is significantly larger than more and more rapidly. Taking into account these observa-
the maximum degree obtained by the IG and BA modeldions, we modified the IG model by using the nonlinear pref-
using linear preferential attachmefsee Table ). To over-  erential attachment

Ill. POSITIVE-FEEDBACK PREFERENCE MODEL

B. Maximum degree
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k_1+6logmki
Mi)=——, &e[0,1]. (3) the PFP model is faster than in the IG model and the BA

> K log1ok;’ model(see Fig. 6.
j

We call this the positive-feedback preference model. From IV. MODEL VALIDATION

numerical simulations, we found that0.048 prOdUCES the The validation was done by Comparing the AS grm

best result(It is interesting to notice that fo6=0.048 and  ith networks generated by the PFP model, the IG model,
the maximum degred,=2839 as measured on the AS anq the BA model. For each model, ten different networks
graph, the exponent function of ¥H0g;0kmax=1.166, were generated and averaged. The networks had the same

which is close to the value af used in the Test* model  nymber of nodes and similar numbers of links as the AS
We also refine the interactive growth mechanism. Theyraph(see Table)l

PFP model starts with a small random network. At each time
step,(1) with probabilityp € [0, 1], a new node is attached to
one host node, and at the same time one new internal link
appears between the host node and a peer n@leyith
probability g e [0, 1-p], @ new node is attached to one host The PFP model produces networks that closely match the

node, and at the same time two new internal links appeafi€gree distributiorisee Fig. 1 and Fig.)2the rich-club con-
between the host node and two peer nod8swith prob- nectivity (see Fig. 4, and the maximum degr&eee Table)l
ability 1-p—g, a new node is attached to two host nodes,Of the AS graph. Also the networks ggnerat_ed using the PFP
and at the same time one new internal link appears betwedRodel have th_% same power-law relationship between degree
one of the host nodes and one peer node. and rank,k~r~"°° as the AS graplisee Fig. J. In certain

When p=0.3 andg=0.1, the generated PFP network hasrespects the accuracy (_)f the PFP model to reproduce_ these
the same ratio of nodes to links as in the AS grésge Table properties is not a surprise. After all, the model was designed
). Equation(3) is used in choosing host nodes and peert© Mmatch these properties.

A. Degree distribution, rich-club connectivity,
and maximum degree

nodes.
The PFP model satisfies the observations of Pastor- B. Shortest path length
Sartorraset al., Vazquezet al, and Chenet al. For low- The average shortest path lengitiof a node is defined as

degree nodes, the preferential attachment is approximated B gverage of the shortest-paths from the node to all other
Eqg. (1). For high-degree nodes, the preferential attachment

increases as a nonlinear function of the node de@ee Fig.

. . 10
5). Hence, as the time passes by, the rate of degree growth in
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degree, wherg¢ is the average over nodes with the same degree.

and the networks obtained from the PFP model have similar

nodes in the network. Figures 8 and 9 show that the PFRuymulative distributions of short cycles. Figures 12 and 13
model reproduces the cumulative distribution of averageshow that the PFP networks exhibit similar correlations be-
shortest path length and the correlation between averaggeen short cycles and degree as in the AS graph.
shortest path length and degree of the AS graph. Notice that the clustering coefficieatof a node can be

The characteristic path Iength of a network is the aver- expressed as a function of the node’s dedcemnd triangle
age of the shortest paths over all pairs of nodes. The charagoefficientk,,
teristic path length indicates the network overall routing ef-
ficiency. The AS graph is a small-world netwoid2] c= ke 4)
because the characteristic path length is very small compared k(k—1)/2°
with the network size. Table | shows that the AS graph and
the networks obtained from the PFP model have nearly th

same characteristic path length.

he reason we study short cycles instead of clustering coef-
icients is that short cycles have the advantage of providing
neighbor clustering information of nodes with different de-
C. Short cycles grees.
Cycles[28,33 encode the redundant information in the D. Disassortative mixing
network structure. The number of short cycles ) o ] ) o )
(triangles and quadrang)ess a relevant property because the The internet exhibits dlsassortatlve mixing behavior
multiplicity of paths between any two nodes increases with[10,11,23,2% where on average, high-degree nodes tend to
the density of short cyclegiote that an alternative path be- connect to peripheral nodes with low degrees. A network’s
tween two nodes can be longer than their shortesppatte ~ Mixing pattern is identified by the cgndltlonal probability
triangle coefficientk, is defined as the number of triangles pc_(k’|k) that a link connects a node with degrieéo a node
that a node shares. Similarly, the quadrangle coeffidigis with degreek’. This condltlon'al probability can be indicated
the number of quadrangles that a node has. [10,17 by ksn, the nearest-neighbor average degree of a node
Table | shows the AS graph and the networks generate®ith degreek.
using the PFP model have higher densities of short cycles Figure 14 and Table | show that on average the nearest-
((ky and(ky) than networks generated using the IG modelneighbor average degree of a node in the AS graph and the

and the BA model. Figures 10 and 11 show that the AS graph

10* =
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I1G modcl [r— E 2
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g g
2 g ol
g °
=] D)
2 & 10 AS graph
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10-2 " 2
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FIG. 12. Correlation between triangle coefficidptand degree,
FIG. 10. Cumulative distribution of triangle coefficient. wherek; is the average over nodes with the same degree.
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PFP networks is significantly larger than that in the IG and
BA networks. Figure 15 shows that the PFP model closelyrality estimates the node’s capacity needed for a free-flow
reproduces the negative correlation between nearesétatus[34]. A node with a large’s is “important” because it
neighbor average degree and node degree of the AS grapfrries a large traffic load. If this node fails or gets con-
and therefore exhibits similar disassortative mixing as the A%ested, the consequences to the network traffic can be drastic
graph. [35]. Here the betweenness centrality is normalized by the
number of nodes and denoted@s The average of theor-
malized betweenness centrality in a netwo(Rg)=1*+1
[35], wherel* is the network’s characteristic path length.

On a network, there are nodes that are more prominent Figure 16 shows that the cumulative distribution of be-
because they are highly used when transferring informationweenness centralit,.{Cg) of the networks exhibit similar
A way to measure this “importance” is by using the conceptpower-law behaviors characterized by slope -1.1; hence
of nodebetweenness centralityhich is defined as follows. p(c;)M(C*B)—Z-l [10,11. However, as shown in Table I, the
Given a source nodeand a destination nods; the number  maximum values of the betweenness centraljy, .. for the
of different shortest paths fromto d is g(s,d). The number A graph and the PFP model are significantly larger than
of shortest paths that contain the nodes g(w;s,d). The  those for the IG model and the BA model. Figure 17 shows
proportion of shortest paths, frosto d, which contain node  that only the PFP model closely matches the correlation be-

W is psg(W)=g(w;s,d)/g(s,d). The betweenness centrality tween betweenness centrality and degree of the AS graph.
of nodew is defined ag34,35

Cg(w) = E E ps,d(W)v (5) V. CONCLUSIONS AND DISCUSSION
s d#s

E. Betweenness centrality

In summary, the PFP model accurately reproduces many
where the sum is over all possible pairs of nodes wi#hd. of the topological properties measured in the internet at the
The betweenness centrality measures the proportion of sho#S level. The model is based on two growth mechanisms
est paths that visit a certain node. If all pairs of nodes of avhich are the nonlinear positive-feedback preferential attach-
network communicate at the same rate, the betweenness cenent combined with the interactive growth of new nodes and

1 v 10°
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FIG. 14. Cumulative distribution of nearest-neighbor average FIG. 16. Cumulative distribution of betweenness centrality,
degree. PeurdCa)-
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work evolves. Rich nodes not only become richer, they be-
come disproportionately richer. While our initial motivation
was to create a model that can accurately reproduce the rich-
club connectivity and the maximum degree of the AS graph,
the PFP model actually captures other properties as well.
Further studies are needed to explain why the internet growth
seems to follow the nonlinear preferential attachment given
by the PFP model and what are the consequences of this
growth mechanism for the future of the internet. This re-
- search provides an insight into the basic mechanisms that
100100 1('), 1(;2 1(')3 could be responsible for the evolving topology of complex
Degree networks.
Finally, the validation of the model was not conducted
FIG. 17. Correlations between betweenness centréfinand ~ with measurement data based on the Border Gateway Proto-
degree, wher€j, is the average over nodes with the same degree.col tables, but with the trace-route-derived AS graph, which
is regarded as a more realistic and reliable measurement of
new internal links. Both the mechanisms are basedaonl  the internet36].
supported bythe observations on the internet-history data.
Th_e positivg-feedback preferenc_e means that, as a node ACKNOWLEDGMENT
acquires new links, the node’s relative advantage when com-
peting for more links increases as a nonlinear feedback loop. This work was funded by the U.K. Engineering and
This implies that the inequality in the link-acquiring ability Physical Sciences Research Courf@iPSRG under Grant
between rich nodes and nonrich nodes increases as the né&o. GR-R30136-01.
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