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ABSTRACT

Nowadays, ground-coupled heat pump system (GCHP) becomes one of the most

energy-efficient systems in heating, cooling and hot water supply. However, it

remains challenging to accurately predict thermal energy conversion, and the

numerical calculation methods are too complicated. First, according to seasonality,

this paper analyzes four variables, including the power consumption of heat pump,

the power consumption of system, the ratios of the heating capacity (or the

refrigerating capacity) of heat pump to the operating powers of heat pump and to the

total system, respectively. Then, heat transfer performance of GCHP by historical

data and working parameters is predicted by using random forests algorithm based

on autoregressive model and introducing working parameters. Finally, we conduct

experiments on 360-months (30-years) data generated by GCHP software. Among

them, the first 300 months of data are used for training the model, and the last

60 months of data are used for prediction. Benefitting from the working condition

inputs it contained, our model achieves lower Mean Absolute Error (MAE), Mean

Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) than

Exponential Smoothing (ES), Autoregressive Model (AR), Autoregressive Moving

Average Model (ARMA) and Auto-regressive Integrated Moving Average Model

(ARIMA) without working condition inputs.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning

Keywords Ground-coupled heat pump system, Autoregressive model with working condition
inputs, Time series analysis, Random forests

INTRODUCTION
The ground-coupled heat pump system (GCHP) system (Tian, Wu & Shi, 2016) is an

energy utilization system to employ environment-friendly, pollution-free alternative

energy source, addressing the challenge of balancing the resource consumption (such as

mineral resources) with clean environment. Compared with common resources, heat

pumps have the following advantages: (a) significant environmental and economic

benefits, (b) no pollution or squander of water source, (c) extensive applications in

air-conditioning, refrigeration, heating, and daily hot water supply, etc., (d) low
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maintenance cost, guard-free and space saving. Evelyn et al. (2020) simulated five

occupants residential dwelling in a largest village in Nunavik, a very subarctic remote

Canada region, and they verified that shallow geothermal energy through state of-the-art

heat pumps is the most economically attractive heating option. Because of its sustainable

development ability, GCHP system becomes more and more popular all over the world.

The performance of the GCHP system may degrade when installed in heating-

dominated buildings, where the amount of heat extracted from the ground exceeds that of

the released. Therefore, the total heat loss may reduce the temperature of intake water.

This thermal imbalance can be eliminated by increasing the space between boreholes, as

well as by adopting strip type and block layout with higher-level initial investment (Yang,

Chen & Shi, 2013). Other methods are also developed to address this problem. Trillat-

Berdal, Souyri & Fraisse (2006) presented an experimental study of a GCHP combined

with thermal solar collectors, whose advantages are the balance of the ground loads, longer

operating time of the solar collectors and avoidance of overheating. Several alternative heat

compensations have been studied to date. Tian et al. (2017) proposed GCHP with a

coupled operation of the heat compensation unit to investigate such issues as heating

capacity deficiency at peak heating loads and high borehole investment, and they found

that during a heating season, the temperature of the fluid entering the evaporator of heat

pump can be increased by the heat compensation unit. By comparison with a non-coupled

system, they built a TRNSYS model for evaluation of the system reliability, efficiency

and economy, and they came to the conclusion that the coupled system’s payback period

was only 1 year. In view of the limited accessible land area, plate ground heat exchanger

(GHE) is paid more attention to due to its highest heat transfer rate per unit. Therefore,

Ali, Mohammad & Ali (2020)made a profound study of the thermal performance of vertical

plate GHEs caused by GHE spacing, buried depth, the height of GHE, soil type, and so on.

They found that avoiding the adverse effect of thermal interference, 4 m is the optimum

distance between two adjacent GHEs through their built 3-D numerical model. Linfeng et al.

(2018) proposed a novel hourly simulation method for the energy performance of an office

building served by a GCHP system. In their method, Fast Fourier Transform (FFT) was

used to analyze the coefficient of performance (COP) of the system because of its

computation speed and accuracy. Furthermore, U-pipe shank spacing under various models,

fluid and ground temperature on GCHP system performance are also analyzed.

The efficiency, cost-effectiveness, and durability of the heat pump whether it can be

accepted and deployed in any new building heating and/or cooling technology. In order to

assess building energy performance, researchers have worked with various data mining

techniques such as adaptive neuro-fuzzy inference systems (ANFIS) (Esen, Inalli & Sengur,

2008a), support vector machine (SVM) (Esen, Inalli & Sengur, 2008c), iteratively

reweighed least squared (IRLS) (Tsanas & Xifara, 2012), random forest (RF) (Tsanas &

Xifara, 2012), multiple regression model (Catalina, Iordache & Caracaleanu, 2013),

multivariate adaptive regression splines (MARS) (Cheng & Cao, 2014) and artificial neural

network (ANN) (Sun, Hu & Lei, 2015). In our previous work (Zhuang, Ben & Yan, 2017),

M5 Model Tree, Support Vector Regression (SVR) and Partial Least Squares Regression

(PLSR) are used to predict the heat transfer performance for the GCHP system. However,
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these methods only consider the time series and ignore the influence of working condition

inputs, and there has been few works on predicting the performance of solar-assisted

ground-coupled heat pump systems.

In order to make full use of both working condition information and history data and

make up for the lack of work on solar-assisted GCHP system, we propose a novel

autoregressive model with working condition inputs to accurately predicting heat transfer

performance of solar-assisted ground-coupled heat pump system.

Our main contributions of this paper are summarized as follows. First, we find the

seasonal factor decomposition is good for predicting heat transfer performance of ground

coupled heat pump system. Second, working condition inputs are introduced to the

prediction model, which can achieve lower MAE, MAPE, RMSE than ES, AR, ARMA and

ARIMA without working condition inputs. Third, our code and model are available at

https://github.com/JayShaun/ARX.

Related work

With the flourish of machine learning and big data technology, some data-mining based

methods, such as ANN and SVM have been applied to predict the energy transfer

performance. Zhao, Zhong & Zhang (2016) applied ANN and SVM models to do energy

consumption predicting of variable refrigerant volume (VRV) system in office buildings.

Le Cam, Daoud & Zmeureanu (2016) presented an application of the process of knowledge

discovery in databases (KDD) using nonlinear ANN for the forecasting of the electrical

power demand of a supply fan of an AHU (air handling unit). Ceci, Corizzo & Fumarola

(2017) tackled the problem of power prediction of several photovoltaic (PV) plants and

indicated that regression trees provided better models than artificial neural networks on

two PV power plant datasets. Ceci et al. (2020) also proposed an unsupervised change

detection method which is able to analyze streaming data generated by sensors located in

smart grid. Yan, Hu & Li (2016) studied the performance prediction of ground source

heat pump (GSHP) systems by real-time monitoring data and data-driven models. They

used back-propagation neural network (BPNN) algorithm to establish the data-driven

models. Candanedo, Feldheim & Deramaix (2017) presented and discussed data-driven

predictive models for the energy use of appliances. They trained four statistical models:

multiple linear regression, support vector machine with radial kernel, random forest and

gradient boosting machines (GBM) to predict energy used in a low-energy house. Xiao,

Wang & Cheng (2017) explored the potential application of advanced data mining

techniques for effective utilization of big building operational data. Deep learning-based

prediction techniques, decision tree and association rule mining were adopted to analyze

the operational data. Bedi & Toshniwal (2018) proposed an empirical mode decomposition

method combined with the long short-term memory network to estimate electricity

demand for the given season, day, and time interval of a day. Mathioulakis, Panaras &

Belessiotis (2018) introduced artificial neural networks for the performance prediction of

heat pump hot water heaters, which verified that a trained ANN could represent an

effective tool for the prediction of the air-to-water heat pump (AWHP) performance in
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various operation conditions and the parametrical investigation of their behavior. Xia,

Ma & Kokogiannakis (2018) presented a model-based design optimization strategy for

ground source heat pump systems with integrated solar photovoltaic thermal collectors

(GSHP-PVT). The highlight of this paper was an artificial neural network (ANN) model

was used for performance prediction and a genetic algorithm (GA) was implemented as

the optimization technique.

Some data mining methods were also applied to forecast the performance of ground-

coupled heat pump system. Esen, Inalli & Sengur (2008b) tried to improve the performance

of an artificial neural network with a statistical weighted pre-processing method to learn to

predict ground source heat pump systems with the minimum data set. They used three

work conditions as input layer, while the output was coefficient of performance of system.

Besides, they reported on a modeling study of ground coupled heat pump system

performance by using a support vector machine method (Esen, Inalli & Sengur, 2008d).

Wang et al. (2013) proposed an application of artificial neural networks based on improved

Radial Basis Function (NNCA-RBF) to predict performance of a horizontal ground-

coupled heat pump system. Roberto et al. (2021) propose a Tucker tensor decomposition,

capable of extracting a new feature space for forecasting the multiaspect renewable energy.

These mentioned methods only use either time series information to make a time series

prediction or external inputs to simulate a regression function. This paper proposes an

autoregressive model with working condition inputs to accurately predicting heat transfer

performance of ground-coupled heat pump system.

Data

A quantitative validation of heat transfer performance data analysis has been obtained

according to GCHP software, which is developed by ZhongRui New Energy Science &

Technology Co., Ltd. 5,000 working conditions of solar-assisted GCHP system with vertical

GHE during 30 years (360 months) is simulated, and the detailed description of the input data

(working conditions variables) can be found in our previous work (Zhuang, Ben & Yan, 2017).

Working conditions variables

The 30 years’ heat transfer performance data including heat exchange ability, temperature

of circulating liquid, inlet and outlet temperature of heat pump are simulated. Table 1

shows the detailed characteristics of input parameters. In Table 1, numerical types (Type

for short) of the data include real and nominal numbers. The minimum (Min. for short)

and maximum (Max. for short) are the smallest and largest values of a set of an input

variable in 5,000 working conditions, respectively. The average (Avrg. for short) is the

mean value of a set of an input variable in 5,000 working conditions, denoting a measure of

central tendency. Standard deviation (Std. for short) is a measure used to quantify the

amount of variation or dispersion of a set of data values. Range measures the difference

between the Max. and Min. in a set. The median (Med. for short) can be found by

arranging all the observations from lowest value to highest value and picking the

middle one.
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Heat pump performance output data

The solar-assisted GCHP system for 360 months are simulated and the heat transfer

performance Y1–Y4 are recorded. Y1 denotes the monthly power consumption of heat

pump. Y2 denotes the monthly power consumption of whole system, including heat pump

and water pump. Y3 denotes the ratio of the heating capacity or the refrigerating capacity

of heat pump to the operating power of heat pump. Y4 denotes the ratio of the heating

capacity or the refrigerating capacity of heat pump to the total operating power of system.

The overall tendencies of Y1–Y4 are given in Fig. 1.

METHODOLOGY
In this section, seasonal factor decomposition and Autoregressive model with working

condition inputs are described in detail.

Seasonal factor decomposition

The relevant temperature data, strongly influenced by the weather, is a seasonal periodical

time series. Generally speaking, seasonal time series have the following components:

tendency (T), cycle (C), seasonality (S), irregular variations (I). Additive seasonal

decomposition model can be expressed as: Yt = Tt + St + Ct + It and a term-by-term

separation is as follows:

Trend item: moving average prediction method

The observed value of time series is denoted as yt,t = 1,2,…,N, and the moving average

value is calculated as follows:

Mt ¼
yt þ yt�1 þ � � � þ yt�n�1

n
; t ¼ 1; 2;…;N; n�2: (1)

Consequently, the predicted value for t + 1 would be ŷtþ1 ¼ Mt , therefore, the time

series without trend term is obtained.

Table 1 Input parameters.

Variable Type Min. Max. Avrg. Std. Range Med

X1-Borehole arrangement Nominal 1 5 3 1.4144 4 3

X2-Borehole depth (mm) Real 100,000 120,000 109,950 8,155.4 20,000 110,000

X3-Borehole radius (mm) Real 55 75 65 7.1 20 65

X4-Borehole number Real 46 56 50.956 3.9546 10 50

X5-Vertical spacing (mm) Real 4,000 5,000 4,495 409.3 1000 4,500

X6-Column spacing (mm) Real 4,000 5,000 4,478 410.2 1,000 4,500

X7-Thermal conductivity coefficient (W/(mm ⋅ °C)) Real 0.0013 0.0028 0.002049 0.000461 0.0015 0.002

X8-Nominal external diameter (mm) Real 1,000 2,000 1,499 500 1,000 1,000

X9-U-tube spacing Nominal 1 4 2.498 1.1189 3 2

X10-Temperature (°C) Real 10 20 14.997 3.1624 10 15

X11-Thermal conductivity Nominal 1 8 4.416 2.253 7 4

X12-Circulating liquid parameter Nominal 1 11 5.971 3.1683 10 6
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Seasonal factor item: trend extrapolation separation prediction method

Firstly, assuming that the time series contains no trend item, its model can be written as:

Y ¼ Sþ C þ I: (2)

Since the effect of periodical component C is subtle, it can be integrated into stochastic

error component I. When separating the seasonal factor item, the periodical item and

stochastic term can be viewed as a whole, and the stochastic error component is major.

Then, the monthly average of Y is calculated, and after subtraction, the seasonal factor item

S without stochastic error component is obtained.

Cycle item: periodogram method

Assuming that time series contains neither trend term nor seasonal term. Firstly, it is

decentralized as:

x0i ¼ xi �
1

N

X

N

i¼1

xi: (3)

Then it can be written in the forms of Fourier series. A
τ
, B

τ
denote Fourier coefficients, τ as

the period, and it is set that S2
s
¼ A2

s
þ B2

s
and there will be a periodical change in the data. The

concrete computation process is as follows: the variance s2
x of xi is calculated to investigate

that S2
s
is the largest value of the periodical vibration. Amplitude and phase are formulated as

Cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
s
þ B2

s

p

, f
s
¼ arctan As

Bs

. Therefore, the periodic vibration can be formulated

Ĉ1ðtÞ ¼ Ct sin
2pt
s
þ ft

� �

. Moreover, multiple period calculations can be performed.

Figure 1 Overall tendencies of Y1–Y4 (A–D). Full-size DOI: 10.7717/peerj-cs.482/fig-1
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Stochastic error item

After having separated trend item, seasonal factor item and cycle item from the series, what

is left is the stochastic error item.

Autoregressive model with working condition inputs

For an output variable Y, a time serie can be defined as yt; t ¼ 1; 2;…;Tf g, under a

working condition parameter x. T denotes the length of time series, and x denotes a

d-dimensional vector of working condition inputs. The aim is to construct the appropriate

model and to predict its future values by using historical data of Y as well as these working

condition parameters (X1–X12).

The predictive value ŷt for the moment t can be obtained by general form of

autoregressive (AR) model:

ŷt ¼ f ðyt�1; yt�2;…; yt�MÞ; (4)

whereM is a lagged term. Therefore (4) indicates that the historical data of Y can predict its

future values. Furthermore, these exogenous variables such as working condition

parameters to the autoregressive (AR) model is introduced, therefore

ŷt ¼ f ðx; yt�1; yt�2;…; yt�MÞ: (5)

Formula (5) indicates that the future values ŷt are predicted by not only the historical

data of Y but also the working condition parameters and this is autoregressive model with

working condition inputs.

The next step is to construct Random Forests according to the data of the working

conditions and time series. Random Forests are constituted by Classification And

Regression Tree (CART). Firstly, m attributes from all (d + 1) × M + d attributes are

randomly extracted and the optimal attributes should be selected from m attributes to

be split. Then the subtrees are generated iteratively until attributes cannot be split.

Ultimately, a regression tree is formed. The optimal split property selection is based on the

minimum variance of the two sub-nodes that the property is divided into. In terms of

attribute set A of a note, one of the attributes (a) is regarded as split attribute to split into

two nodes D1, D2, and the optimal split attribute is as follows:

a� ¼ argmin
a2A

½VðD1Þ þ VðD2Þ�; (6)

where V(D1), V(D2) are variances of D1, D2 respectively.

By using the method described above, K classification and regression trees are

generated, then the random forest is constructed. The average of regression K results is the

predicted value for the moment t.

ŷt ¼
1

K

X

K

k¼1

fkðx; yt�1; yt�2;…; yt�MÞ; (7)

where fk(·) denotes the regression result of a regression tree k.
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EXPERIMENTAL TESTS
In this section, seasonal factor decomposition and autoregressive model with working

condition inputs (introduced in “Methodology”) are used to conduct the experiments on

the data of solar-assisted GCHP system (introduced in “Data”). In particular, the sensitive

parameter of autoregressive model with working condition inputs is the only lagged

term M. Since our data characteristics are approximately annual periodic changes, the

value of M is related to the period obtained by the seasonal factor decomposition.

Error measurements

Three error indicators including Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE) and Root Mean Square Error (RMSE) are used in this paper to measure the

prediction accuracy. N donates the number of time series and T denotes the length of a

time series predicted. ŷ
ðiÞ
t and y

ðiÞ
t donates the predicted value and the observed value for

the moment t of the i-th time series, respectively.

MAE ¼
1

TN

X

T

t¼1

X

N

i¼1

jŷ
ðiÞ
t � y

ðiÞ
t j (8)

MAPE ¼
100

TN

X

T

t¼1

X

N

i¼1

ŷ
ðiÞ
t � y

ðiÞ
t

y
ðiÞ
t

�

�

�

�

�

�

�

�

�

�

(9)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

TN

X

T

t¼1

X

N

i¼1

ðŷ
ðiÞ
t � y

ðiÞ
t Þ

2

v

u

u

t (10)

MAE, which is the rate of absolute value of difference between predicted value and

observed value and the number of predicted data, reflects the average distance of predicted

value’s deviation. MAPE is another accuracy measurement in statistics and indicates the

proportion of predicted value in observed value, reflecting the relative error. RMSE is

square root of ratio, which can be calculated by square sum of difference between predicted

value and observed value and the number of predicted data. RMSE indicates the extent

of deviation and is sensitive to particularly large or particularly small errors in

predicted values.

Seasonal factor decomposition results and analysis

The trend item, seasonal factor itemcycle item and stochastic error item for Y1–Y4 are

given in Figs. 2–5. As for Y1, the trend item shows a considerably downward trend during

the period. From seasonal items it has obvious seasonal characteristic. In practical terms,

the power consumption of heat pump drops year by year, while the working state of it

changes with different seasons. The cycle item of implies that the time series is periodical

and it can be seen that its value is small and its influence is weak. Stochastic error item

reflects some uncertain factors of series. It has a small amount of fluctuation with 0, and
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the effect is very small. Y2, Y3 and Y4 have similar features with Y1. The periods of Y1, Y2,

Y3 and Y4 are all 12 months.

Time series analysis results and analysis

In time series analysis, there are 5,000 series in Y1, Y2, Y3 and Y4 respectively and each

series consists of 360-month data, which means 5,000 × 360 dimensions. For the

prediction of the value in future 60 months, the model is trained by the historical data of

the first 300 months. We trained our model i.e. autoregressive model with working

condition inputs (ARX for short) at each time step by using random-forest library in

Matlab. It is note that we utilize the earlier predicting results as known data to predict later

values at test stage. Combined with the results of seasonal decomposition of output data in

“Seasonal Factor Decomposition Results and Analysis”, the lagged term in regression

model should be set to an integral multiple of one period. If the setting is too small (i.e., one

period (12 month)), the regular pattern of time series is not clearly caught. On the

contrary, if the setting is too large, the number of random trees participating in the

calculation will increase, which makes the model more complex. Therefore, the value of the

lagged termM should be more than one period, and we tested two smaller values (M = 24,

andM =3 6) in the ARX model. Table 2 lists the MAE results. The lower MAEs are obtains

under M = 24. So the lagged term in regression model is set as 24 months. The sliding

window is same as lagged term which is 24. We compare several time series analysis

methods, including Exponential Smoothing (ES), Autoregressive Model (AR),

Autoregressive Moving Average Model (ARMA) and Auto-regressive Integrated Moving

Figure 2 Seasonal factor decomposition of Y1. (A) Trend item; (B) Seasonal factor; (C) Cyber item;

(D) Stochastic error item. Full-size DOI: 10.7717/peerj-cs.482/fig-2
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Figure 3 Seasonal factor decomposition of Y2. (A) Trend item; (B) Seasonal factor; (C) Cyber item;

(D) Stochastic error item. Full-size DOI: 10.7717/peerj-cs.482/fig-3

Figure 4 Seasonal factor decomposition of Y3. (A) Trend item; (B) Seasonal factor; (C) Cyber item;

(D) Stochastic error item. Full-size DOI: 10.7717/peerj-cs.482/fig-4
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Average Model (ARIMA). Exponential Smoothing (ES) is one of moving average methods

which is characterized by applying different weights to the observed values of the past.

The weight of short-term observed value is greater than the long-term. The basic idea is

that predicted value is a weighted sum of the observed values with different weights (new

data with greater weight). ARIMA regards the data series formed by forecasting object

with the change of time as the random series and sets certain model to approximately

describe this series. Once the model is recognized, the time series’ past value and present

value can be applied to forecast its future value. Similarly, AR and ARMA can be set

according to ARIMA. In detail, the values of both difference and moving average are 0 in

AR, while only the value of difference is 0 in ARMA. The smoothing factor of ES is 0.1.

For ARIMA, the auto-regressive p, the integrated term (differential order) d and the

moving average lag q are set as 12, 1 and 12, respectively. And the parameters of the others

methods is same with ARIMA, i.e., AR (p = 12) and ARMA (p = 12, q = 12).

Figure 5 Seasonal factor decomposition of Y4. (A) Trend item; (B) Seasonal factor; (C) Cyber item;

(D) Stochastic error item. Full-size DOI: 10.7717/peerj-cs.482/fig-5

Table 2 Prediction Results (average ± std.) of ARX under different values of the lagged term M.

M 24 36

Y1 1.4563 ± 1.0675 1.4948 ± 1.0972

Y2 1.5841 ± 1.0675 1.6478 ± 1.3396

Y3 0.0005 ± 0.0004 0.0007 ± 0.0005

Y4 0.0004 ± 0.0002 0.0006 ± 0.0003
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In order to measure overview errors of the predicted 60-month value, we average

60-month errors of Y1, Y2, Y3 and Y4 respectively (Table 3). Compared with ES, AR,

ARMA, ARIMA, Autoregressive model with working condition inputs (ARX) has

prominent advantage with smallest mean absolute error, mean absolute percentage error

and root mean square error. In “Seasonal Factor Decomposition Results and Analysis”,

according to decomposition of seasonality, four outputs are stationary time series.

Therefore, the large error can be witnessed in moving average method, which is the reason

of low precision in ES. ARX added 12 working condition parameters to predict values,

which lack in traditional time series analysis. The results of experiment show that adding

working parameters can improve the predicted precision of time series. This is because that

four output variables including the power consumption of heat pump, the power

consumption of system, the ratios of the heating capacity (or the refrigerating capacity) of

heat pump to the operating powers of heat pump and to the total system, respectively show

different tendencies under various working parameters. In other words, it is limited to

simply use historical data to predict the future values and ignore the influence of system

parameters, such as hole, u-tube and collector. In practical working situation, working

states of the system are definitely different with different parameters. The prediction of

ignoring these parameters is only general and does not take the particularity of different

systems into account. In terms of model, the introduction of these additional parameters

has a similar effect on the prediction model with a window limit. Prediction result cannot

deviate from its output restrictions of particular parameters. Ultimately, the prediction

curve will be adjusted in a better direction.

In order to prove the positive effects of our prediction model, we draw the error graphs

of Y1, Y2, Y3 and Y4 in 60 months with using MAE as an example respectively (see Fig. 6).

First of all, obvious periodicity can be witnessed in MAE, periodic value of which is

12 (1 year), meeting the periodical requirement of practical system. In addition to the ES

Table 3 Prediction results (average ± std).

ES AR ARMA ARIMA ARX

Y1 MAE 3.2474 ± 3.6914 4.4499 ± 4.0379 4.0180 ± 4.4986 1.6077 ± 1.9051 1.4563 ± 1.0675

MAPE 0.0201 ± 0.0197 0.0409 ± 0.0396 0.0263 ± 0.0235 0.0136 ± 0.0121 0.0134 ± 0.0105

RMSE 4.6730 11.2387 6.2574 5.9016 3.3524

Y2 MAE 3.6285 ± 3.0647 4.8445 ± 4.0373 4.1315 ± 4.1888 3.8640 ± 3.9055 1.5841 ± 1.0675

MAPE 0.0218 ± 0.0203 0.0323 ± 0.0309 0.0232 ± 0.0219 0.0209 ± 0.0197 0.0105 ± 0.0094

RMSE 4.4828 11.7774 6.7255 5.2054 3.5126

Y3 MAE 0.0022 ± 0.0011 0.0016 ± 0.0012 0.0022 ± 0.0009 0.0022 ± 0.0007 0.0005 ± 0.0004

MAPE 0.0530 ± 0.0516 0.0409 ± 0.0379 0.0530 ± 0.0492 0.0503 ± 0.0482 0.0134 ± 0.0122

RMSE 0.0026 0.0035 0.0026 0.0026 0.0011

Y4 MAE 0.0021 ± 0.0004 0.0011 ± 0.0005 0.0020 ± 0.0005 0.0020 ± 0.0004 0.0004 ± 0.0002

MAPE 0.0750 ± 0.0732 0.0425 ± 0.0417 0.0727 ± 0.0716 0.0727 ± 0.0715 0.0138 ± 0.0131

RMSE 0.0026 0.0024 0.0025 0.0025 0.0008

Note:
Best results are in bold.
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method, prediction accuracy shows a downward trend because the model predictions

of heat pump and system’s electricity consumption become inaccurate as time goes on.

As for this problem, the Autoregressive model with working condition inputs model well

embodies the adjustment function of the external parameters, though not completely

eliminate the accuracy decreasing trend, but the performance is much better. Taking

seasonality into consideration, we find that the working state of heat pump in every month

is regular. Therefore, between-year is used to predict, which means the prediction of a

month is based on the data of the same month over the past years. In practice, the system is

closed in April and October without electricity consumption. The predictions of these

2 months are not 0 in ARIMA, so the model is unrealistic. Nevertheless, Autoregressive

model with working condition inputs has no prediction error in these months is in

accordance with the practical circumstances. In spite of introducing extra parameters, the

between-year-based model avoids deviating prediction from practical situation.

CONCLUSION
Ground-coupled heat pump system (GCHP) uses surficial energy storage to provides

different kinds of structures with efficient heating, cooling and hot water supply so as to

Figure 6 Prediction accuracies of different methods (A–D).

Full-size DOI: 10.7717/peerj-cs.482/fig-6
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reduce the consumption of electric and gas. GCHP, a kind of alternative energy in

heating and cooling, plays a significant role in residence and commerce. The thermal

energy conversion of GCHP is predicted by Autoregressive model with working

condition inputs. Experimental results show that working parameters can improve

prediction accuracy of four output variables, including the power consumption of heat

pump Y1, the power consumption of system Y2, the ratio of the heating capacity (or

the refrigerating capacity) of heat pump to the operating powers of heat pump Y3 and the

ratio of the heating capacity (or the refrigerating capacity) of heat pump to to the

total system Y4. In comparison to traditional time series model (such as AR), we can not

only take full advantage of given working condition inputs information, but also can

set specific model in a time series with certain parameters because different time

series has different working parameters. In the future, the measure based on time

series analysis can be combined with learning algorithms (such as Gradient Boost,

metric learning).
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