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Abstract

Background: Insecticide resistance is a substantial problem in controlling agricultural and medical pests. Detecting

target site mutations is crucial to manage insecticide resistance. Though PCR-based methods have been widely used in

this field, they are time-consuming and inefficient, and typically have a high false positive rate. Acetylcholinesterases

(Ace) is the neural target of the widely used organophosphate (OP) and carbamate insecticides. However, there is not

any software available to detect insecticide resistance associated mutations in RNA-Seq data at present.

Results: A computational pipeline ACE was developed to detect resistance mutations of ace in insect RNA-Seq data.

Known ace resistance mutations were collected and used as a reference. We constructed a Web server for ACE, and

the standalone software in both Linux and Windows versions is available for download. ACE was used to analyse 971

RNA-Seq data from 136 studies in 7 insect pests. The mutation frequency of each RNA-Seq dataset was calculated. The

results indicated that the resistance frequency was 30%–44% in an eastern Ugandan Anopheles population, thus

suggesting this resistance-conferring mutation has reached high frequency in these mosquitoes in Uganda. Analyses of

RNA-Seq data from the diamondback moth Plutella xylostella indicated that the G227A mutation was positively related

with resistance levels to organophosphate or carbamate insecticides. The wasp Nasonia vitripennis had a low frequency

of resistant reads (<5%), but the agricultural pests Chilo suppressalis and Bemisia tabaci had a high resistance frequency.

All ace reads in the 30 B. tabaci RNA-Seq data were resistant reads, suggesting that insecticide resistance has spread to

very high frequency in B. tabaci.

Conclusions: To the best of our knowledge, the ACE pipeline is the first tool to detect resistance mutations from RNA-

Seq data, and it facilitates the full utilization of large-scale genetic data obtained by using next-generation sequencing.
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Background

Insect pests are closely connected to human affairs, and

they damage approximately one third of the agricultural,

forestry and livestock production worldwide and con-

sume tens of billions of dollars annually [1]. Although

several alternative strategies such as transgenic crops

and biological control measures have recently been

implemented in pest control, the use of chemical insecti-

cides remains the most efficient and economic approach.

However, use of insecticides has led to resistance, which

is one of the best examples of rapid micro-evolution and

has challenged the application of insecticides [2, 3]. The

study of insecticide resistance is important because of its

relevance to food safety, ecological safety and environ-

mental pollution.

Target insensitivity is one of the main mechanisms

conferring insecticide resistance. Because of long-term

selection by insecticides, mutations are introduced into

the active sites of genes that encode proteins that are the
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targets of insecticides. Given that the mutation fre-

quency in the field population is a reliable indicator of

the resistance level, monitoring resistance mutations in a

field population of insect pests is highly important [4].

PCR-based methods such as PCR amplification of spe-

cific alleles (PASA) [5] and PCR-RFLP [6] are classical

approaches that have been widely used. However, PCR-

based methods have some disadvantages such as they

are time-consuming and inefficient [7–10].

Acetylcholinesterases (ace, EC 3.1.1.7) are the target of

OP and carbamate insecticides, which have been used to

control nearly all notorious agricultural and medical

pests such as rice stem borers, Colorado potato beetles,

mosquitoes and houseflies. Two ace which encoding dif-

ferent ACHE proteins have been found in all insects ex-

cept the Cyclorrhapha suborder of Diptera [11]. The

mutation of ace to an insensitive form has been demon-

strated as an important mechanism for insecticide resist-

ance in many pests. In Drosophila melanogaster, 4 point

mutations (F115S, I199V, G303A, and F368Y) have been

identified to confer insecticide resistance [12]. Five mu-

tations (V180 L, G262A, G262 V, F327Y, and G365A) in

the ace of the housefly, Musca domestica, either singly

or in combination, confer different levels of insecticide

resistance [13]. The G119S mutation, which lies within

the active “gorge” in ace-1 of Anopheles gambiae and

Culex pipiens, results in resistance to propoxur [14].

Many resistance-associated mutations have also been

identified in other insect pests [15–17].

RNA sequencing (RNA-Seq) provides the whole tran-

scriptome of a biological sample at a given time by using

a shotgun strategy with next-generation sequencing

(NGS) techniques. The raw reads of the RNA-Seq data

contain information on transcript abundance, alternative

splicing and single nucleotide polymorphisms (SNP)/

mutations [18, 19]. RNA-Seq data are useful in studying

insecticide resistance, but unfortunately are not fully uti-

lized at present. Most RNA-Seq data are used as a re-

source to obtain gene sequences. Here, to fully use

RNA-Seq data to study insecticide resistance, we devel-

oped a pipeline, ACE, to detect resistance-associated

mutations in ace genes from RNA-Seq data and applied

this pipeline to estimate the mutation frequencies in 7

important insect pests.

Results
Evolution analysis of two ace genes in insects

By searching against the GenBank database and using

BLASTP against the InsectBase database with 15 known

ACHE protein sequences, we collected 62 ace1 from 62

species and 70 ace2 from 70 species. These ace genes

were from 9 orders, including Siphonaptera, Diptera,

Hymenoptera, Hemiptera, Coleoptera, Phthiraptera, Pso-

coptera, Blattodea and Lepidoptera (Additional file 1:

Table S1). To the best of our knowledge, this is the most

comprehensive list of insect ace to date. Phylogenetic

analysis using the neighbour-joining method indicated

that most insects have two aces, except for the Cyclor-

rhapha suborder of Diptera (Fig. 1), suggesting that sug-

gesting two ace were present before the diversification of

insects. The loss of ace1 occurred in some Diptera

insects.

Insecticide resistance-associated mutations of ace

We performed reference mining from 440 references to

obtain a full list of insecticide resistance mutations of

the ace in insects. Insect ACHEs were aligned with Tor-

pedo californica ACHE (PDB ID code 1EA5), and the

corresponding position of each mutation in T. califor-

nica ace was determined. In total, 14 mutations were

found at 10 positions in ace1, and 22 mutations were

found at 18 positions in ace2 (Fig. 2, Additional file 2:

Table S2). Although there were several resistance muta-

tions in both ace, most of the mutations occurred at 5

positions, 119, 201, 227, 290 and 331. These positions

fall within the active gorge of ACHE, thus demonstrating

a common mechanism conferring insecticide resistance.

ACE pipeline to detect resistance mutations of ace genes

We developed a pipeline, named ACE, to detect insecti-

cide resistance mutations from RNA-Seq data (Fig. 3).

First, the clean reads of the RNA-Seq data (Base-calling

quality, Q30 ≥ 85%) in standard Fastq format were

mapped against the ace1 or ace2 of the species of interest

by using Bowtie 2 with the default parameters [20]. This

step identified all reads corresponding to ace. Second, we

constructed a mutation site profile of ace for each insect,

which consisted of susceptible and resistant fragments (11

nucleotides in length) covering each mutation site. We de-

termined the cutoff of 11 bp based on a pilot survey. If we

use a long segment of >13 bp, some reads will be lost.

However, if we used a short segment <9 bp, it will be

mapped to other non-ace transcripts. Third, the reads that

mapped to ace were used to scan for susceptible and re-

sistant fragments with a customized Perl script. The reads

containing susceptible fragments were treated as suscep-

tible reads, and those containing resistant fragments were

resistant reads. The percentages of susceptible or resistant

reads were then calculated.

Resistance frequency ¼
Count of resistant reads

count of resistant reads

þcount of susceptible reads

Implementation

We developed a standalone software and a Web server

for the ACE pipeline. The standalone software is
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Fig. 2 Resistance mutation profile of insect acetylcholinesterases. The mutations were collected from 440 published references. Insect AChEs were

aligned with Torpedo californica AChE (PDB ID code 1EA5) and the corresponding position of each mutation in Torpedo AChE was determined

Fig. 1 Evolution analysis of two ace genes in insects. The amino acid sequences were used for the phylogenetic analysis. The sequence accession

numbers are given in Table S1. The neighbour-joining method was used with 1000 replicates. The evolution tree indicated that most insects have

two ace genes, except for the Cyclorrhapha suborder of Diptera
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available for download. The Web server can be accessed

at http://genome.zju.edu.cn/software/ace/. The Apache

HTTP server was deployed in a Red Hat 6.5 Linux oper-

ating system. The Web pages were written by using

HTML and Cascading Style Sheets (CSS). We also used

Asynchronous JavaScript and XML (AJAX) to achieve

some of the dynamic parts of the Web pages. The PHP

script calls the ACE program, which runs online when

the HTTP server receives the request from a Web client.

The standalone version was built on the ultrafast short

read mapping program Bowtie 2 [21]. All parameters

were set as the default except using “–no-unal” as an

additional parameter. Both Linux and Windows versions

of the ACE standalone software are available. ACE is

rapid and took only 5 min to process the 5 Gb RNA-Seq

data on a Red Hat server (Dell X3250, Red Hat 6.5 Linux

64 bits, 3.1 GHz 4 CPU each with 4 cores, 32 G

memory).

Application of ACE to analysis of RNA-Seq data in 7 insect

pests

We used the ACE pipeline to analyse the RNA-Seq data

of 7 insect pests, including An. gambiae, C. floridanus,

N. vitripennis, C. suppressalis, P. xylostella, N. lugens

and B. tabaci (Additional file 3: Table S3). In An. gam-

biae, the major vector of Plasmodium falciparum mal-

aria, we obtained RNA-Seq data from 468 samples, of

which 20 were from an eastern Ugandan population.

Since the G119S mutation of ace1 has been reported to

confer insecticide resistance, we identified resistant reads

from all 468 RNA-Seq data of An. gambiae by using the

ACE pipeline. The results indicated that the resistance

frequency was 30%–44% in the eastern Ugandan popula-

tion, suggesting that the resistance in the Ugandan

Anopheles population has reached very high frequency

(Fig. 4). There were no significant differences between

male and female An. gambiae (t-test, P-values = 0.566,

Fig. 5). Surprisingly, we found significant differences

among different developmental stages of the Pimperena

strain of An. gambiae. The resistance frequency was sig-

nificantly higher in late larvae and pupae than in the

embryo and adult stages (One-way ANOVA test,

F = 27.621, p-value = 8.186E-7, Fig. 6). The high resist-

ance frequency in the late larvae and pupae stages en-

ables mosquitoes to survive the insecticide treatment.

However, mutations often incur high fitness costs such

as low fecundity. Our results showed that the mosquito

population had a low resistance frequency at the adult

Fig. 3 The principles of the ACE pipeline. Raw reads were mapped with insect ace gene sequences by using Bowtie 2. Then, the resistant fragment

(11 nt) and susceptible fragment (11 nt) flanking the mutation sites were used to scan the reads mapped with the insect ace gene. The scanned reads

were divided into two types: resistant reads and susceptible reads

Fig. 4 The resistance frequency of four samples of a Ugandan

population of Anopheles gambiae. The control was an untreated

population which has high resistance to pyrethroids. The other two

groups were treated with deltamethrin at 2 h or 48 h post treatment.

The G119S mutation of ace1 was detected. The results indicated that

the resistance level in this Ugandan Anopheles population was very high
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stage, thus enabling the mosquitoes to produce offspring

with a relatively high fitness. The detail mechanism is

worthy of further investigation.

Analyses of the P. xylostella RNA-Seq data indicated

that the G227A mutation was positively related with re-

sistance levels to organophosphate or carbamate insecti-

cides (F-test, p < 0.0.5), whereas the A201S mutation

was only a minor contributor (F-test, p > 0.0.5, Fig. 7).

The wasp N. vitripennis and ant Camponotus floridanus

had a low frequency of resistant reads (<5%, Table 1).

However, the agricultural pests C. suppressalis and B.

tabaci had a high resistance frequency. Approximately

70% of C. suppressalis ace reads were resistant (Table 1),

and most of the B. tabaci RNA-Seq data had >90% re-

sistant ace reads. All ace reads in the 30 B. tabaci RNA-

Seq data were resistant reads, suggesting that B. tabaci

has developed extremely high resistance to insecticides

(Additional file 4: Table S4).

Discussion

Insecticide resistance is a major problem in agriculture.

Target insensitivity induced by mutations has been well

studied. In past decades, several target site mutations

have been identified in the insect ace gene. PCR-based

Fig. 5 Detection of the G119S mutation in the different sexes of A. gambiae. There were no significant differences in the resistance frequency

between males and females (t-test, P = 0.566). The sequencing depths were different in various samples, the read counts were varied. We

recommend using the mutation frequency

Fig. 6 Detection of the G119S mutation in the different developmental stages of A. gambiae. The late 4th instar larvae and pupae stages had

higher resistance frequencies than the embryo and adult stages (One-way ANOVA test, p < 0.01)
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methods have been developed to detect resistance muta-

tions [3, 4, 21]. Recently, RNA-Seq data obtained by

using NGS techniques provide a valuable means to study

insecticide resistance. Millions of raw reads can be ob-

tained in a single run, thus enabling detection of low fre-

quency mutations. Here, we developed a pipeline, ACE,

to identify resistance-associated mutations by using

RNA-Seq data. ACE has a high sensitivity and can detect

resistant reads at low frequency. It should be noted that

very low frequencies of resistant reads should be inter-

preted with caution due to the possibility of genotyping

errors. Owing to the rapid development of NGS tech-

niques, the cost of RNA-Seq has significantly decreased.

This pipeline is useful for monitoring resistance-

associated mutation(s) in field population by using

RNA-Seq data. ACE is also applicable for detecting re-

sistance mutations from the genome re-sequencing data.

The ACE pipeline was used to analyse RNA-Seq data

from 7 insect pests. The results proved that the ACE

pipeline can successfully detect resistance mutations

from millions of reads. Calculating the resistance fre-

quency from the RNA-Seq data of these insect pests

Fig. 7 The frequencies of the G227A and A201S mutations in the different samples of Plutella xylostella. The G227A mutation was positively associated

with resistance to OP or carbamate insecticides, whereas the A201S mutation was not a major contributor

Table 1 The resistance frequencies of predicted from RNA-Seq data by ACE

Species SRA accession
number

Resistance frequency (%) References

G118S
ace2

A201S
ace1

A201S
ace1

G227A
ace1

F290 V
ace1

F330S
ace1

F331H
ace1

S332 L
ace1

Nasonia vitripennis SRR1262367 1.9 1.4 (Hoedjes, et al., 2015) [43]

SRR1262372 3.6 2.1

SRR1262376 3.7

SRR1262379 2.4

SRR940321 1 1.2 (Os, et al., 2013) [44]

SRR940323 66.7 2.7 0.9

SRR1566027 4.8 (Wang, et al., 2015) [45]

Camponotus floridanus SRR1609918 2.5 (Gupta, et al., 2015) [46]

SRR330970 3.8 (Bonasio, et al., 2012) [47]

SRR490202 0.9 (Simola, et al., 2013) [48]

Chilo suppresssalis SRR651040 73.5 (Wu, et al., 2013) [49]

SRR2015503 70.8 (Xu, et al., 2015) [50]

SRR1200447 (Cao, et al., 2014) [51]
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confirmed the importance of target site mutations in

conferring insecticide resistance. Large-scale level ana-

lyses also provided new insights into the evolution of

and changes in resistance mutations. We found that the

resistance mutation frequency changed during insect de-

velopment. This change has not been previously re-

ported and is worthy of further investigation.

As a tool to detect resistance-associated mutations

from RNA-Seq data, we plan to develop additional inte-

grated applications for ACE to address the following

areas. First, development of insecticide resistance is a

complex system. Different insecticides have various tar-

gets: organophosphate and carbamate insecticides target

AChE; pyrethroids insecticides target sodium channels;

neonicotinoid insecticides target nicotinic acetylcholine

receptors (nAChR); and diamide insecticides target rya-

nodine receptors (RyR). We wish to broaden the scope

of ACE to detect resistance mutations in all target genes.

Second, increased metabolism of insecticides, owing to

overexpression of detoxification enzymes, is another im-

portant mechanism of insecticide resistance. We wish to

develop ACE to examine the abundance of P450, GST

and esterase genes, which have been reported to have

important roles in conferring resistance [22, 23]. Third,

cross-resistance provides important information to im-

prove the prediction efficiency [24–27], which has been

well studied in human [28, 29], we wish to integrate this

information in the future. Last, it has been reported that

multiple alterations of gene sequences, such as alterna-

tive splicing and RNA editing, are also involved in in-

secticide resistance. We plan to develop ACE to detect

novel SNPs and other types of sequence changes.

Conclusions
A computational tool was developed to detect insecti-

cide resistance-associated mutation of AChE from insect

RNA-Seq data. Both the standalone software and the

Web server of ACE were provided. Analyses of 971

RNA-Seq data from 136 studies in 7 insect pests pro-

vided new insights into insecticide resistance, suggesting

that insecticide resistance mutation might be associate

with development stage of insects. Large-scale detection

of insecticide resistance mutation using ACE demon-

strated that the insecticide resistance of the eastern

Ugandan mosquito population and whitefly B. tabaci

has reached extremely high level.

Methods

Data sources

The ace sequences were retrieved from GenBank of the

National Centre for Biotechnology Information (NCBI)

[30]. We selected the ace genes of 8 insects as the se-

quence references. These ace were confirmed by using

PCR and gene function analysis in the published reports

of other groups, including ace2 in D. melanogaster

(NP_476953), ace1 and ace2 in Culex tritaeniorhynchus

(BAD06210, BAD06209), ace1 and ace2 in Plutella xylos-

tella (AAY34743, AAL33820), ace1 and ace2 in Chilo sup-

pressalis (ABO38111, ABR24230), ace1 and ace2 in

Tribolium castaneum (ADU33189, ADU33190), ace1 and

ace2 in Rhopalosiphum padi (AAT76530, AAU11285),

ace1 and ace2 in Aphis gossypii (AAM94376, AAM94375),

and ace1 and ace2 in Liposcelis bostrychophila

(ACN78619, ABO31937). The amino acid sequences of

these 15 ACHE were used as the query sequences in

BLASTP against the official gene set (OGS) in InsectBase

(E-value = 1e–30). The best BLASTP hit was treated as

the candidate ace. To ensure reliability, sequences less

than 1800 bp were removed. All identified ACHEs were

confirmed to have two conserved motifs (WIY(F)GGG

and FGESAE). These steps yielded 62 ace1 from 62 species

and 70 ace2 from 70 species (Additional file 1: Table S1).

A total of 971 RNA-Seq data from 136 studies in 7 in-

sect pests (An. gambiae, C. floridanus, N. vitripennis, C.

suppressalis, P. xylostella, N. lugens and B. tabaci) were

downloaded from the Sequence Read Archive database

(SRA) of NCBI [31]. The SRA accession numbers are

given in Additional file 2: Table S2.

Phylogenetic analysis

The amino acid sequences of AChE were aligned using

MUSCLE [32]. The phylogenetic relationships were in-

ferred using the neighbour-joining method [33] with

1000 replicates. The bootstrap values are shown next to

the branches [34]. The evolutionary distances were com-

puted using the Kimura 2-parameter method [35] and

expressed as the number of base substitutions per site.

The analysis involved 132 nucleotide sequences. All po-

sitions containing gaps and missing data were elimi-

nated. There were 1239 positions in the final dataset. A

phylogenetic tree was constructed by MEGA 7 [36]. A

consensus tree was displayed and edited with iTOL [37].

The tree was drawn to scale, with branch lengths in the

same units as those of the evolutionary distances used to

infer the phylogenetic tree.

Collecting known ace resistance-associated mutations

To collect the known ace resistance-associated mutations,

we downloaded the references from NCBI PubMed by

searching with the keywords (“insecticide resistance” [Ab-

stract] AND acetylcholinesterase [Abstract]), yielding 440

references. Among these references, only 5 used transcrip-

tome methods to determine ace sequences [38–42], and

only one reference used raw reads to call SNPs by using

SOAPsnp [39]. We manually extracted ace mutations

conferring insecticide resistance, which yielded 14

mutations at 10 positions in ace1 and 22 mutations

at 18 positions in ace2.
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Additional files

Additional file 1: Table S1. The NCBI accession numbers of insect ace-1

and ace-2 genes

Additional file 2: Table S2. Resistance mutations in ace-1 and ace-2 of

insects

Additional file 3: Table S3. The SRA accession numbers of 971 RNA-Seq

data used for detecting mutations

Additional file 4: Table S4. The resistance frequency of mutation S331 W

in different RNA-Seq data of Bemisia tabaci
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