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Abstract. The efficient subdivision of a sensor network into uniform, mostly
non-overlapping clusters of physically close nodes is an important building block
in the design of efficient upper layer network functions such as routing, broadcast,
data aggregation, and query processing.
We present ACE, an algorithm that results in highly uniform cluster formation
that can achieve a packing efficiency close to hexagonal close-packing. By using
the self-organizing properties of three rounds of feedback between nodes, the al-
gorithm induces the emergent formation of clusters that are an efficient cover of
the network, with significantly less overlap than the clusters formed by existing
algorithms. The algorithm is scale-independent — it completes in time propor-
tional to the deployment density of the nodes regardless of the overall number
of nodes in the network. ACE requires no knowledge of geographic location and
requires only a small constant amount of communications overhead.

1 Introduction

Large-scale distributed sensor networks are becoming increasingly useful in a variety
of applications such as emergency response, real-time traffic monitoring, critical infras-
tructure surveillance, pollution monitoring, building safety monitoring, and battlefield
operations. Such networks typically consist of hundreds to tens of thousands of low cost
sensor nodes, deployed via individual installation or random scattering. The nodes are
usually highly power-constrained and have limited computation and memory resources.
They typically utilize intermittent wireless communication. The sensor network is usu-
ally organized around one or more base stations which connect the sensor network to
control and processing workstations or to an external communications network.

Clustering is a fundamental mechanism to design scalable sensor network proto-
cols. A clustering algorithm splits the network into disjoint sets of nodes each centering
around a chosen cluster-head. A good clustering imposes a regular, high-level structure
on the network. It is easier to design efficient protocols on this high-level structure than
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at the level of the individual nodes. Many efficient protocols rely on having a network
partitioned into clusters of uniform size. Some examples of these protocols include rout-
ing protocols [14, 23], protocols for reliable broadcast [19, 20], data aggregation [10,
26], and query processing [6]. We further discuss clustering in Section 3.

Conventional algorithms that use centralized control and global properties of the
sensor network have inherent difficulties in the properties of scalability and robustness,
which are two important design goals for protocols in large-scale sensor networks. Cen-
tralized, top-down algorithms often need to operate with knowledge of the conditions
and variables at every point of the network. In a very large network, the network traffic
and time delay induced by the collection of this large amount of data may be unde-
sirable. Finally, since some specific nodes, commands or data are usually of higher
importance in a centralized protocol, an error in transmission or a failure of a critical
node could potentially cause a serious protocol failure.

As an alternative to centralized algorithms, localized algorithms reduce the amount
of central coordination necessary and only require each node to interact with its local
neighbors [6]. While sometimes harder to design, these algorithms do not have the
limitations of centralized algorithms and are often highly scalable, fast and efficient.

A class of localized algorithms that are particularly promising are emergent algo-
rithms. Emergent algorithms have the additional characteristic that the individual agents
(i.e., the sensor nodes in the case of distributed sensor networks) only encode simple
local behaviors and do not explicitly coordinate on a global scale. Through repeated
interaction and feedback at the individual level, global properties emerge in the system
as a whole. Emergent behaviors are being studied extensively in biological, physical
and social systems — such systems are often collectively termed complex adaptive sys-
tems. Examples include ant colonies, ecosystems, and stock markets. It is possible that
emergent algorithms have the potential to be more flexible than non-emergent localized
algorithms, which are constrained by the fact that a complex global property may be
difficult to directly encode in a program that can act only upon local information.

In this paper, we provide an introduction to the definitions and motivations of local-
ized and emergent algorithms. To demonstrate the potential of emergent algorithms in
sensor networks, we present a new emergent protocol for node clustering called ACE
(for Algorithm for Cluster Establishment). ACE has high cluster packing efficiency ap-
proaching that of hexagonal close-packing, and only incurs a small constant amount of
communications overhead. ACE is scale-independent (it completes in constant time re-
gardless of the size of the network) and operates without needing geographic knowledge
of node positions or any kind of distance or direction estimation between nodes.

2 Localized protocols and emergent protocols

In this section we define localized and emergent protocols, and discuss the particular
benefits and trade offs of using these protocols in sensor networks.

2.1 Localized protocols

Estrin et al. [6] offer a broad definition of a localized protocol:

Definition 1. A localized protocol for a sensor network is a protocol in which each
sensor node only communicates with a small set of other sensor nodes within close
proximity in order to achieve a desired global objective.
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In this paper, we use a narrower definition of localized algorithms that better con-
veys the intuition of localized algorithms being free from centralized control:

Definition 2. A strictly localized protocol for a sensor network is a localized protocol
in which all information processed by a node is either: (a) local in nature (i.e. they are
properties of the node’s neighbors or itself); or (b) global in nature (i.e. they are prop-
erties of the sensor network as a whole), but obtainable immediately (in short constant
time) by querying only the node’s neighbors or itself.

This narrower definition captures the notion that in a good localized protocol, each
node should be capable of independent simultaneous operation in the protocol at any
period. For example, consider a protocol that involves building a spanning tree in time
proportional to the diameter of the network by doing a distributed breadth-first search
involving only local communication (e.g. the Bannerjee and Khuller clustering algo-
rithm [3]). Such a protocol would be a localized protocol by the first definition but not a
strictly localized protocol by the second definition since a spanning tree is a global data
structure and the entire network must be traversed before it can be computed.

In this paper, when we mention “localized protocols” or “localized algorithms”, we
will be referring to strictly localized protocols and algorithms.

Localized protocols have the following benefits:

– Scalability. Localized protocols can enable nodes to act independently and simul-
taneously in various parts of the network. Hence, localized protocols often exhibit
better scalability in large networks than centrally controlled protocols, which may
have to wait for information to propagate across the network.

– Robustness. When information use is purely local and no centralized control in-
frastructure is needed, the chances for protocol failure due to transmission errors
and node failure are reduced. It is also more likely for performance to degrade
gracefully under communication error rather than simply fail or end up in an erro-
neous state. This is because if all information is local, then the impact of any datum
of information is most likely also locally limited. For example, if no critical control
messages need to be routed across the entire network in a localized algorithm, then
if a node fails then it will most likely induce a failure of the protocol at most only
within its own vicinity.

2.2 Emergent protocols

In this paper, we make use of the definition of an emergent algorithm as outlined by
Fisher and Lipson [7]:

Definition 3. An emergent algorithm is any computation that achieves formally or
stochastically predictable global effects, by communicating directly with only a bounded
number of immediate neighbors and without the use of central control or global visibil-
ity.

Hence, an emergent protocol for a sensor network is a localized protocol in which
the desired global property is neither explicitly encoded in the protocol nor organized
by a central authority, but emerges as a result of repeated local interaction and feedback
between the nodes.
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One of the main distinguishing characteristics of emergent protocols over other lo-
calized protocols is the existence of feedback during protocol operation. Feedback oc-
curs when some node A affects some node B, which then directly or indirectly affects
node A again. Due to the reliance on repeated feedback, emergent protocols are com-
monly iterative in nature, requiring several rounds of communication between a node
and its neighbors before the network as a whole converges on the desired global prop-
erty.

The main advantages of emergent protocols are:

– Sophisticated applications. Emergent algorithms have the potential for more eas-
ily expressing complex global properties than localized algorithms. Iterated feed-
back allows the algorithm to sidestep the explicit coordination and calculation re-
quired for such tasks as efficient cluster formation and pattern formation.

– Increased robustness against transient faults. The iterated nature of emergent
protocols further improves robustness against transient node failure, since a small
number of missing or incorrect interactions are unlikely to have a large effect due to
the fact that all interactions are repeated several times. This may allow the protocol
to tolerate some error in consistency and synchronization between nodes.

Emergent protocols are often harder to design effectively than localized algorithms,
since the repeated feedback can create complex interactions that are difficult to ana-
lyze. However, their increased expressive power and robustness make them an impor-
tant class of algorithms, particularly in large-scale distributed sensor networks.

3 Overview of sensor node clustering and applications

Efficiently organizing sensor nodes into clusters is an important application in sensor
networks. Many proposed protocols for both sensor networks and ad-hoc networks rely
on the creation of clusters of nodes to establish a regular logical structure on top of
which efficient functions can be performed. For example, clustering can be used to
perform data aggregation to reduce communications energy overhead [10, 26]; or to
facilitate queries on the sensor network [6]; clusters can be used to form an infrastruc-
ture for scalable routing [14, 23]; clustering also can be used for efficient network-wide
broadcast [19, 20]. Single-level clustering is sufficient for many applications; for others,
multi-level hierarchical clustering can be performed (by creating clusters of clusters,
and so on).

The clustering problem is defined as follows. At the end of the clustering algorithm,
the nodes should be organized into disjoint sets (clusters). Each cluster consists of a
cluster-head (cluster leader) and several cluster followers, all of which should be within
one communication radius of the cluster-head, thus causing the overall shape of the
cluster to be roughly a circle of one communication radius, centered on the cluster-head.
Each node belongs to exactly one cluster (i.e., every node chooses only one leader, even
if there may be several leaders within range). Given these constraints, our goal is to
select the smallest set of cluster heads such that all nodes in the network belong to a
cluster. The problem is similar to the minimum dominating set problem in graph theory.
We note that if every node is in exactly one cluster, then maximizing the average cluster
sizes while maintaining full coverage is exactly equivalent to minimizing the number of
clusterheads while maintaining full coverage. The purpose of minimising the number
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of cluster heads is to provide an efficient cover of the network in order to minimize
cluster overlap. This reduces the amount of channel contention between clusters, and
also improves the efficiency of algorithms (such as routing and data aggregation) that
execute at the level of the cluster-heads.

For brevity, we have defined the clustering problem as obtaining a single-level clus-
tering. We note that, assuming that clusterheads can establish multiple-hop communi-
cations to neighboring clusterheads of the same hierarchy level, it is possible to gen-
eralize any single-level clustering protocol to multi-level hierarchical clustering by re-
peatedly executing the clustering protocol on the cluster-heads of each level to generate
the cluster-heads of the next level, and so on.

We summarize in brief a few simple examples of efficient protocols that rely on the
effective solution of the single-level clustering problem. A straightforward example is
in data aggregation. In an unclustered network, if an aggregate query of sensors over
a given sub-area is desired, the query needs to be forwarded to every sensor in the
sub-area, each of which then needs to individually send its reply to the base station. In
contrast, in a clustered network, a query of sensors over a given sub-area needs only be
forwarded to the relevant cluster-head which will then query its followers and send a
single aggregated reply.

As an example of the importance of highly uniform clustering with low overlap,
consider the clustered broadcast protocol described by by Ni et al.[19]. In this protocol,
the broadcast message is relayed from cluster-head to cluster-head, which then broad-
cast the message to their followers. In a clustering with few clusterheads and large
cluster sizes, the clusters have minimal overlap and provide the best coverage of the
network with the fewest clusters. Hence, the number of repeated broadcast transmis-
sions over any area will be small, thus reducing the amount of transmission collisions
and channel contention, allowing communications to become faster, more efficient and
more reliable. On the other hand, a poor clustering with much cluster overlap and many
cluster-heads loses much of the benefits of clustering as transmissions will be repeated
in areas of overlap with significant channel contention.

4 ACE — Algorithm for Cluster Establishment

In this section, we present ACE (the Algorithm for Cluster Establishment), an emergent
cluster formation algorithm. The algorithm consists of two logical parts — the first
controls how clusters can spawn (by having a node elect itself to be leader) and the
second controls how clusters migrate dynamically to reduce overlap. In general, clusters
are only created when the overlap of the new cluster with existing clusters is small. After
creation, clusters will move apart from each other to minimize the amount of mutual
overlap, thus yielding a near-optimal packing in very few iterations.

4.1 Overview of the ACE protocol

We first present a high level overview of the protocol. ACE has two logical parts:
the spawning of new clusters and the migration of existing clusters. New clusters are
spawned in a self-elective process — when a node decides to become a cluster head,
it will broadcast a RECRUIT message to its neighbors, who will become followers of
the new cluster. A node can be a follower of more than one cluster while the protocol
is running (it picks a single cluster for membership only at the end of the protocol).
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Migration of an existing cluster is controlled by the cluster head. Each cluster head will
periodically POLL all its followers (i.e., all its neighbors) to determine which is the best
candidate to become the new leader of the cluster. The best candidate is the node which,
if it were to become cluster head, would have the greatest number of nodes as followers
while minimizing the amount of overlap with existing clusters. Once the best candidate
is determined by the current cluster head, it will PROMOTE the best candidate as the
new cluster head and ABDICATE its position as the old cluster head. Thus, the position
of the cluster will appear to migrate in the direction of the new cluster head as some
of the former followers of the old cluster-head are no longer part of the cluster, while
some new nodes near the new cluster head become new followers of the cluster.

4.2 Detailed description of the ACE protocol

In ACE, time synchronization is not required — the nodes may in fact start the protocol
at slightly different times due to network delay or clock discrepancies. During the pro-
tocol, nodes respond immediately to communications from other nodes, but will only
initiate actions at random intervals to avoid collisions. Each time that an action can be
initiated for a node is called a node’s iteration. The iterations of different nodes do not
need to be synchronized. The duration of the random time interval between iterations
(the iteration interval) is uniformly random distributed.

We now describe the operation of ACE is described in detail. A node can have three
possible states: it can be unclustered (not a follower of any cluster), clustered (a follower
of one or more clusters) or it may be a cluster-head. In the beginning of the protocol,
all nodes are unclustered. Each node waits for its next iteration (i.e., by waiting for a
random iteration interval) before deciding on what action to take on that iteration, if
any. When a node’s iteration arrives, its available choice of actions depends on what
state it is currently in.

If a node A is unclustered when its next iteration arrives, it assesses its surroundings
and counts the number l of loyal followers it would receive if it declared itself a cluster-
head of a new cluster. A loyal follower is a follower of only one cluster. Hence, in
this case, this number is the same as the number of unclustered neighbors that A has. A
knows how long it has been since it started the protocol; call this time t. It then computes
the spawning threshold function fmin(t) (the design of fmin will be described later). If
l ≥ fmin(t) then A will spawn a new cluster. It does so by generating a random (unique
with high probability) cluster ID and broadcasting a RECRUIT message. A’s neighbors
will receive this message and become followers of the new cluster.

If a node A is a cluster-head when its next iteration arrives, it prepares to migrate its
cluster. It POLLs all of its neighbors to find the best candidate for the new cluster-head.
The best candidate leader for a cluster is the node with the largest potential number of
loyal followers in its neighbor set (recall that a loyal follower is a member of only one
cluster). Hence, the best candidate for the new cluster-head is the node which has the
largest number of nodes in its neighbor set which are either unclustered or have A’s
cluster as their only cluster. By counting only loyal followers and not counting nodes
that lie on the overlap of two or more clusters, the best candidate node is generally in the
direction of least overlap with other clusters. This generates a repulsion effect between
clusters which leads to good packing efficiency. If the best candidate for cluster-head is
A itself, then A does nothing. Otherwise, suppose the best candidate is some node B.
A will now MIGRATE the cluster onto the new cluster-head B. It does so by issuing a
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PROMOTE message to B. On receiving the PROMOTE message, B will issue a RECRUIT

message with A’s cluster ID. This is similar to spawning a new cluster except that an
existing cluster ID is used instead of generating a new one. The effect of this is that the
neighbors of B that were not in the cluster will now be added to the cluster (with B
as the cluster-head), while the existing members of the cluster that are B’s neighbors
will realize that B is being promoted and thus update B as their new cluster-head.
Once A observes B’s RECRUIT message, it will then issue an ABDICATE message to its
neighbors. The effect of this will be that common neighbors of A and B will have seen
B’s RECRUIT message beforehand and thus ignore the message; neighbors of A who
are not neighbors of B will leave the cluster. The net effect of this sequence of actions
is that leadership passes from A to B and the cluster as a whole migrates from being
centered around A to being centered around B.

If a node is clustered (i.e., it is a follower in one or more clusters), then it does noth-
ing during its iteration. It merely waits a random iteration interval for its next iteration
to arrive.

Each node needs to be able to efficiently find out the number of loyal followers
it may gain. This state can be efficiently maintained by having all nodes keep track
of the list of clusters that each neighbor is in. Hence, whenever a node becomes a
follower in a new cluster or leaves an existing cluster, it broadcasts an update locally
to its neighbors. The overhead of this updating is low because clusters generally do not
make drastic shifts in position during migration, hence the cluster sets of most nodes
change only slowly with time. By keeping track of these periodic updates, each node
can immediately compute how many loyal followers it can gain without needing to
query its neighbors.

Each node runs the protocol for at least a time cI where c is the desired average
number of iterations per node and I is the expected length of the iteration interval.
After a node has completed its iteration, if it still has not passed time cI counting from
when it started running the protocol, then it will wait another random iteration interval
until its next iteration.

After a node has passed time cI since it started running the protocol, it is ready
to terminate the protocol. If the node is a cluster-head, it terminates immediately and
informs its neighbors that it is done. If the node is a clustered node, it waits until all its
cluster-heads have terminated before choosing one at random to become its final cluster-
head (it does not need to notify its neighbors that it has terminated). After termination,
the node will respond with “N/A” to leadership polls from clusters that have migrated
into its range to indicate its unwillingness to return to the protocol.

Parameter selection. In the protocol, an unclustered node will spawn a new cluster
by declaring itself a cluster head whenever it finds that it can gain at least fmin loyal
followers if it were to become a cluster head. The function fmin is called the spawning
threshold function and is dependent on the time that has passed since the protocol was
initiated for that node. In general, fmin should decrease as the algorithm proceeds. This
causes fewer clusters to form near the beginning of the algorithm. Fewer clusters in the
beginning means that the clusters have more room to maneuver themselves apart from
each other, in order to form the basis for an efficient clustering. As time advances, the
algorithm then causes the gaps between the clusters to be filled in by spawning new
clusters more and more aggressively. We observe that the unclustered gaps between
clusters decrease roughly exponentially in size when cluster migration is taking place.
Hence, in our implementation, we used an exponentially decreasing function for fmin:
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fmin = (e−k1
t

cI − k2)d

In this formula, t is the time passed since the protocol began and cI is the duration
of the protocol as described earlier. d is the estimated average degree (number of neigh-
bours) of a node in the network, and is pre-calculated prior to deployment. k1 and k2

are chosen constants that determine the shape of the exponential graph.
In practice, we have empirically found that k1 = 2.3 and k2 = 0.1 have produced

good results. In this case, fmin starts at 0.9d at the beginning of the protocol and reduces
to 0 by the final iteration. This ensures that any node left unclustered at the end of the
protocol will declare itself a cluster head. A node A may (rarely) find itself unclustered
at the end of the protocol if its cluster-head migrates away from A after A has completed
its last iteration. To cover this case, an additional “clean-up” iteration should be run after
the algorithm has completed for every node. During this final clean-up iteration, cluster
migration is disabled, and any node that is still unclustered should declare itself as a
cluster-head. This will ensure that evey node in the network is covered by a cluster.

An alternative parameter setting is k1 = 2.3 as before, but setting k2 = 0. In this
case the function starts near d when the protocol commences and reduces to 0.1d at
the end of the protocol. Since 0.1d > 1 if d > 10, it is possible that there will be
a small number of nodes that will not be within one hop radius of any cluster-head
at the end of the algorithm. This means that this algorithm would not strictly satisfy
the problem statement described in Section 3. However, this setting still has practical
relevance because the number of unclustered nodes at the end of the algorithm is small.
We observed in simulation that the number of nodes not within one-hop radius of a
cluster-head is, on average, less than 4% of the total number of nodes in low node
deployment densities, and around 2% for moderate to high node deployment densities
(20 or more neighbors per node). These nodes that are not within one hop radius of any
cluster-head can simply pick a clustered neighbor to act as their bridge to the cluster-
head, thus becoming two-hop followers (because they take 2 hops to communicate with
the cluster-head, instead of the usual 1 hop).

It remains to determine c, the number of iterations the algorithm should execute.
Figure 1 reflects how the performance of ACE changes as it is given a longer num-
ber of iterations to operate. ACE was simulated in a 2D area with a uniform random
distribution with an average deployment density d of 50 nodes per circle of one com-
munication radius. Results for the simulation with k1 = 2.3 and k2 = 0.1 are shown
(results for k2 = 0 have similar characteristics). We note that increasing the number
of iterations above 3 yielded only very slight improvements in average cluster size. In
our simulations, the total number of iterations did not significantly affect the standard
deviation in cluster sizes, which was between 6 and 10 for all iterations > 1. Based on
these results, we choose c = 3 as a number of iterations for ACE that provides a good
tradeoff between communication overhead and cluster size.

Figure 2 illustrates the ACE algorithm operating in simulation (with k1 = 2.3 and
k2 = 0). The little circles represent nodes. Cluster-heads are highlighted in black, and
their range is indicated with a large black circle (nodes within the circle are in that
cluster). The clusters migrate away from each other in successive iterations to produce
a highly efficient cover of the area. Clusters tend to center over areas where nodes are
dense. The clusters overlap minimally, and when they do overlap, they tend to overlap
in areas where nodes are sparse. Figure 2d provides a qualitative visual comparison of
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Fig. 1. Performance of ACE at various maximum iterations, d = 50, k1 = 2.3, k2 = 0.1

the Node ID algorithm with ACE. It can be observed that ACE provides a packing with
significantly less cluster overlap than Node ID.

5 Performance evaluation of ACE

To assess ACE’s performance, ACE was simulated and its performance was compared
with a well-known 2D packing (hexagonal close packing) as well as two other clustering
algorithms, the Node ID algorithm and the Node Degree algorithm. In our simulations
we simulated both ACE with full coverage (k1 = 2.3, k2 = 0.1), which we called
ACE-1 and also ACE with parameters that leaves a small fraction of nodes uncovered
(k1 = 2.3, k2 = 0), which we call ACE-2.

Hexagonal close-packing (HCP) is the well-known honeycomb packing that mini-
mizes overlap between uniform circular clusters while ensuring full coverage. In gen-
eral this packing is difficult to achieve unless nodes have very specific information about
their geographic locations, e.g. as assumed Zhang and Arora [27], and even then a cen-
tralized algorithm needs to be used to coordinate the honeycomb structure, which leads
to lower scalability. The Node ID algorithm is a generic name for the class of algorithms
related to LCA (Linked Cluster Architecture) [2, 5]. In this algorithm, the node with the
highest ID elects itself as a cluster-head, followed by the node with the next highest ID
that is not already a follower, and so on until all the nodes have been covered. The basic
concept has been revisited in various architectures such as those described by Lin et al.
and Gerla et al. [9, 17]. Amis et al. [1] improved the algorithm for multi-hop clusters by
adding a second pass in which clusters with low node IDs are expanded to better balance
cluster size; however this improvement has no effect on 1-hop clusters hence we do not
simulate it here. Nagpal and Coore propose a variation of the Node ID algorithm where
the nodes generate a random number and start counting down from it; when the counter
reaches zero and the node is not already a follower in some cluster then the node elects
itself as cluster-head [18]. This algorithm is similar to the Node ID algorithm with the
benefit that it can be repeated for re-clustering on successive epochs. Using the degree
of connectivity instead of node ID as a metric for which nodes to elect as cluster-heads
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(a) After 1 iteration (b) After 2 iterations

(c) After 3 iterations (d) The Node ID algorithm
(for comparison)

Fig. 2. The ACE algorithm (with k1 = 2.3 and k2 = 0)

has been proposed Basagni [4] and Gerla et al. [9]. This causes nodes in denser areas to
become cluster-heads first. We model this algorithm as the Node Degree algorithm.

The various algorithms were simulated on various deployments of 2500 nodes in a
square area where each node’s coordinates were uniformly random. In our simulation,
we assume that the communication links were bi-directional and that the communica-
tion range of all the nodes is uniform. 500 simulations per algorithm were run for each
of the node densities (expected number of neighbors in a circle of one communication
radius) of d = 10, 20, 50, 100.

Figure 3 shows the relative distributions of cluster sizes for the various algorithms
under the various node densities simulated. Figure 4 compares the average cluster sizes
of the various algorithms as d varies.
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Algorithm 5.1 ACE

procedure SCALE ONE ITERATION()
if myTime > 3× EXPECTED ITERATION LENGTH then

if myState = CLUSTER-HEAD then
return DONE

else if myState = CLUSTERED then
wait for my cluster-heads to terminate, then pick one as my cluster-head
return DONE

else if myState = UNCLUSTERED then
pick a random clustered node to act as my proxy after it terminates
wait for it to terminate, then return DONE

end if
else if myState = UNCLUSTERED

and numLoyalFollowers() ≥ fmin(myTime) then
myClusterID← generate New Random ID()
locally broadcast(RECRUIT, myID, myClusterID)

else if myState = CLUSTER-HEAD then
bestLeader← myID
bestFollowerCount← numLoyalFollowers
for all n where n is a potential new cluster-head do

followerCount = Poll For Num Loyal Followers(n, myClusterID)
if followerCount > bestFollowerCount then

bestLeader← n

bestFollowerCount← followerCount
end if

end for
if bestLeader is not myID then

send(bestLeader, PROMOTE, myClusterID)
wait for bestLeader to broadcast it’s RECRUIT message
locally broadcast(ABDICATE, myID, myClusterID)

end if
end if

end procedure

It is clear that ACE exhibits superior packing efficiency to either the Node ID or
Node Degree algorithms. ACE-1 exhibits consistent performance of around 0.7d aver-
age cluster size for all node densities. ACE-2 exhibits performance around 0.8d average
cluster sizes. For reference, the average cluster size for the ideal 2D packing of HCP is
0.83d. ACE sometimes exceeds the ratio for HCP because it intelligently forms clusters
around areas where nodes are most densely distributed, while choosing areas of overlap
where the nodes are least densely distributed. In comparison, both Node ID and Node
Degree converge towards only 0.5d for large d and never perform better than 0.7d even
at low node densities.

Figure 3 shows that the variance in cluster sizes for ACE is small and only slightly
larger than the baseline variance of the number of nodes in a given area (this is reflected
in the variance of cluster sizes for HCP). The low variance and high average cluster
sizes reflect that the ACE algorithm produces good packing efficiency.
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Fig. 3. Distribution of cluster sizes for various clusterings

We investigated the performance of the various algorithms under conditions of
packet loss. Various deployments of d = 50 were simulated with packet loss rates rang-
ing from 0 to 20%. Packet loss was simulated by having the simulated nodes ignore an
incoming message with a probability corresponding to the packet loss rate. Figure 4b
reflects the results. The performance of each protocol degrades gracefully under packet
loss. ACE-2 maintains its large advantage over Node ID and Node Degree even un-
der conditions of heavy packet loss. ACE-1 degrades at a higher rate and approaches
the performance of Node ID and Node Degree under conditions of high packet loss, but
never actually performs worse than either algorithm under the simulated conditions. We
note further that since the ACE algorithm is localized and require no central direction,
it is highly resistant to transmission errors and random node failure. For example, a
centralized algorithm utilizing a BFS tree (e.g. Bannerjee and Khuller’s algorithm [3])
could suffer the loss of an entire subtree if one of the nodes high in the tree suffers a
failure, thus leading to failure of the protocol. In our protocols, in the worst case, the
loss of a cluster-head node would leave at most one cluster of nodes unclustered. If a
cluster-head node fails while executing the protocol, and the failure is detected by the
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Fig. 4. Average cluster sizes of various schemes

d 10 20 50 100
ACE-1 6.68 6.80 7.07 7.32
ACE-2 5.41 4.96 4.47 4.56

Node ID 1.17 1.09 1.04 1.02
Node Deg. 1.17 1.09 1.04 1.02

Fig. 5. Average communications overhead (per node per epoch)

followers, they can reset their own states to “unclustered”, thus allowing neighboring
clusters to migrate into the new vacant space or allowing a new clusterhead to spawn a
cluster within the vacant space. Hence, the protocol has an innate self-stabilization prop-
erty. These additional adaptations for unreliable communications were not simulated;
if they were implemented they would likely further improve the protocol’s resilience
towards random node failures and communication errors.

We also measured the communications overhead of the various algorithms. Each
transmission was considered one unit of communication, and the final cluster handshake
where all nodes confirm membership with their cluster-heads was also considered an
additional unit of communication. The results are tabulated in Figure 5. Because of
the low number of iterations needed by ACE (only 3 iterations), the communications
overhead is small, only averaging around 4 to 8 communications per node per epoch.
Each communication is brief (at most a message identifier, a node and cluster identifier,
and a number). Hence the overall communications overhead is small compared with the
normal communications load for the sensor network.

ACE exhibits scale independence (perfect scalability). The protocol takes a fixed
amount of time, O(d), to complete regardless of the total number of the nodes in the
network. This is because it is a strictly localized algorithm (see definition in Section 2),
where each node is capable of operating immediately and independently on local infor-
mation without needing any global information to be computed by the network. As a
result, both running time and per-node communications overhead of ACE are indepen-
dent of the total size of the network.



14 Haowen Chan and Adrian Perrig

6 Related Work

In this section, we review related work in localized and emergent algorithms in sensor
networks, as well as clustering algorithms in general.

Currently, few practical emergent algorithms have been developed for use in sen-
sor networks. Henderson suggests using Turing’s reaction-diffusion equations [24] for
forming patterns in sensor networks [11]. These approaches are promising and indica-
tive of the future potential of emergent algorithms.

We now discuss related work in clustering. Many clustering protocols currently
known are self-elective protocols, where a node creates a new cluster by declaring it-
self as a cluster-head. They differ in the heuristic used to select the nodes which will
declare themselves. The node ID and node degree heuristics have been discussed in Sec-
tion 5. Examples of node ID based clustering protocols include [1, 2, 5, 9, 17].Basagni
proposes a node degree based clustering protocols [4]. Some researchers propose us-
ing a random number as a heuristic for cluster-head selection [8, 12, 18, 25]. Estin et al.
propose using the remaining energy level of a node as another heuristic for cluster-head
selection [6].

Ramanathan and Steenstrup [21], and Krishnan, Ramanathan, and Steenstrup [15]
propose a clustering algorithm that controls the size of each cluster and the number of
hierarchical levels. Their clustering approach follows the node ID approach. In general,
these self-elective protocols all suffer from the same problem of being unable to pre-
vent two nodes which are just over one cluster radius apart from simultaneously electing
themselves as cluster-heads, thus leading to a large overlap in their clusters. Such over-
lap occurs sufficiently frequently to make the resultant cluster packing inefficient, as
can be seen in our evaluation in Section 5.

The minimum dominating set (MDS) problem in graph theory has been addressed
by several algorithms. The clustering problem is a special case of the MDS problem
applied to random geometric graphs. While these algorithms have provable theoretical
asymptotic bounds on performance on arbitrary graphs, their actual average perfor-
mance on a random geometric graph is undetermined. We implemented in simulation
two algorithms described by Jia et al. [13] and Kuhn et al. [16], however neither of
them had comparable performance to even the simple Node-degree or Node-ID algo-
rithms under our particular simulation conditions. We speculate that the relatively poor
performance of these algorithms in simulation may be due to the fact that they are
designed for arbitrary graphs while dedicated clustering algorithms are optimized for
random geometric graphs. Hence, we did not run full simulation comparisons against
these algorithms.

Many centralized (non-localized) clustering algorithms are known, which deal with
the topology of the entire network as a whole. This class of algorithms often uses
graph-theoretic properties for clustering. In general, such algorithms are not as robust
or scalable as localized algorithms, eventually requiring significant communications or
computation overhead for very large networks. For example, Krishna et al. [14] pro-
poses a technique where each cluster forms a clique, however their approach has O(d3)
overhead. Some researchers proposed tree-based constructions for network partitioning.
Thaler and Ravishankar propose to construct a top-down hierarchy, based on an initial
root node [22]. Banerjee and Khuller also propose a tree-based clustering algorithm [3].
A drawback for using their algorithm in sensor networks is that only one node needs to
initiate the clustering, and that the protocol still requires O(n) time in linear networks.
Zhang and Arora present a centralized scheme to produce an approximate hexagonal
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close packing [27]. However, they assume that each node knows its precise location,
which may be difficult to achieve in sensor networks. In general, besides scalability is-
sues, most these nonlocalized algorithms also suffer from increased vulnerability of the
protocol to node failure in certain key parts of the network (usually near the root of the
tree, or near the base station).

7 Conclusion

We present ACE, the Algorithm for Cluster Establishment. ACE is an emergent algo-
rithm that uses just three rounds of feedback to induce the formation of a highly efficient
cover of uniform clusters over the network. This efficiency of coverage approaches that
of hexagonal close-packing. ACE is fast, robust against packet loss and node failure,
and efficient in terms of communications. It completes in constant time regardless of
the size of the network and uses only local communications between nodes. The al-
gorithm does not require geographic location information or any kind of distance or
directional estimation between nodes. Besides its practical usefulness, ACE is a good
demonstration of the power and flexibility of emergent algorithms in large-scale dis-
tributed systems.
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