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Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1–7)/Mas pathway in the
brain: the axis of good. Am J Physiol Regul Integr Comp Physiol 300: R804–R817,
2011. First published December 22, 2010; doi:10.1152/ajpregu.00222.2010.—The
last decade has seen the discovery of several new components of the renin-
angiotensin system (RAS). Among them, angiotensin converting enzyme-2 (ACE2)
and the Mas receptor have forced a reevaluation of the original cascade and led to
the emergence of a new arm of the RAS: the ACE2/ANG-(1–7)/Mas axis.
Accordingly, the new system is now seen as a balance between a provasoconstric-
tor, profibrotic, progrowth axis (ACE/ANG-II/AT1 receptor) and a provasodilatory,
antifibrotic, antigrowth arm (ACE2/ANG-(1–7)/Mas receptor). Already, this sim-
plistic vision is evolving and new components are branching out upstream [ANG-
(1–12) and (pro)renin receptor] and downstream (angiotensin-IV and other angio-
tensin peptides) of the classical cascade. In this review, we will summarize the role
of the ACE2/ANG-(1–7)/Mas receptor, focusing on the central nervous system with
respect to cardiovascular diseases such as hypertension, chronic heart failure, and
stroke, as well as neurological diseases. In addition, we will discuss the new
pharmacological (antagonists, agonists, activators) and genomic (knockout and
transgenic animals) tools that are currently available. Finally, we will review the
latest data regarding the various signaling pathways downstream of the Mas
receptor.

renin-angiotensin system

THE RENIN-ANGIOTENSIN SYSTEM (RAS) is a peptide hormone
system composed of various enzymes, inactive and active
peptides, which altogether play an important role in cardiovas-
cular physiology, by regulating blood pressure (BP) and vol-
ume homeostasis. Classically, angiotensinogen (AGT) pro-
duced in the liver, is hydrolyzed by renin from the juxtaglo-
merular cells of the kidney to produce the decapeptide ANG-I,
which is then converted by angiotensin converting enzyme
(ACE) into the biologically active octapeptide ANG II. AGT is
the protein precursor of the RAS main actor ANG II. Cleavage
of AGT by the rate-limiting enzyme renin produces an inactive
decapeptide, ANG I, acting mostly as a substrate for ANG II,
which is generated by the proteolytic ablation of the two
COOH-terminal amino acids of ANG I by the mainly endo-
thelium-associated ACE (137). Despite being discovered more
than 100 years ago, the RAS still represents a key target for the
treatment of various cardiovascular diseases. Originally, the
RAS was considered to be an endocrine system with circulat-
ing ANG II as its functional effector hormone. However, in the
recent decade with the advent of new molecular techniques
there have been significant changes in our view of this system,
and a new axis, ACE2/ANG-(1–7)/Mas receptor, was estab-
lished. In the year 2000, ACE2, a new member of the ACE
family, was identified by two independent groups. ACE2 can

cleave the decapeptide ANG I to generate the inactive ANG-
(1–9) peptide, which then can be converted to the vasodilatory
peptide ANG-(1–7) by ACE or other peptidases. ACE2 can
also directly metabolize ANG II to generate ANG-(1–7).
ANG-(1–7), the main product of ANG II degradation by
ACE2, has opposite properties to that of ANG II. By acting
through the receptor Mas, ANG-(1–7) promotes vasodilation,
antiproliferation, and antihypertrophy (43, 129). Accumulating
evidence indicates that by cleaving ANG II into ANG-(1–7),
ACE2 may play a pivotal role in counterbalancing the vaso-
constrictive actions of the ACE/ANG II/AT1 receptor axis and
may be beneficial for the cardiovascular system.

Some of the peripheral therapeutic effects of the novel
ACE2/ANG-(1–7)/Mas receptor axis were recently reviewed
by Ferreira et al. (45). In this review, we will focus on the role
of this system in the central nervous system (CNS) and its
participation in central BP regulation and various cardiovascu-
lar diseases linked to an overactive brain RAS.

Historical Perspective

Classical textbooks emphasize that there are two key pro-
ducing enzymes in the RAS: renin and ACE. Renin was the
first component of the RAS to be discovered following the
observation by Tigersted in 1898 that rabbit renal extracts had
a pressor activity (140). Further clarification of the mechanism
of action of renin was delayed by the difficulty in obtaining a
reliable model of renovascular hypertension. This was
achieved in 1934, when Goldblatt et al. (65) described an
increase in systolic BP following clipping of the renal arteries,
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thus opening the road for further characterization of renin
substrate and product. Two independent groups led by Dr.
Eduardo Braun-Menéndez in Argentina and Dr. Irving Page in
the United States reported the discovery of the renin product
that they respectively called “hypertensin” (11) and “ang-
iotonin” (104). Soon after, the nomenclature for the renin
substrate was changed to AGT (105), and an agreement was
later reached between the two groups for a common nomen-
clature of the renin product under the name “angiotensin” (12).

ACE was discovered in the plasma by Skeggs et al. in 1956.
The conversion of the inactive ANG I to the vasoconstrictor
ANG II was thought to take place in the plasma. However, in
1967, Ng and Vane showed that the plasma ACE was too slow
to account for the conversion of ANG I to ANG II in vivo and
that rapid conversion actually occurs through the pulmonary
circulation (100).

Several ANG II receptors have been cloned over the years
(21, 154). The ANG II receptor type I (AT1) is the primary
receptor that mediates most of the effects of ANG II, including
vasoconstriction, water intake, and aldosterone secretion. In
rodents, AT1 receptors are subdivided into AT1A and AT1B.
The latter has been suggested to regulate water intake (27),
while the AT1A subtype would be responsible for the other
main properties of ANG II. A type II (AT2) receptor was also
cloned (154) and is thought to play a major role in fetal
development, although recent data seem to contradict this
assumption (165). In addition, recent data on AT2 receptors
have suggested compensatory properties in the brain and other
tissues, such as decreasing the nocturnal arterial BP in rats
(59). Both type I and type II receptors bind to ANG II with
similar affinity but display different functions. Other receptors
include the AT4 subtype, which was originally discovered in
the brain as a binding site for ANG IV (71) and is involved in
memory processes and Alzheimer’s disease. More recently,
presence of a non-AT1/non-AT2 receptor was suggested within
the CNS (82). This new binding site displayed high affinity for
ANG I, II, and III, but lesser affinity for smaller angiotensin
fragments and other neuropeptides and therefore could be a
clearance receptor for degradation of ANG II from the extra-
cellular milieu in the brain (82).

Discovery and Evolution of the Brain RAS

Observations of normal or even lower plasma renin and
ACE activities in animal models of hypertension, combined
with clinical data showing beneficial effects of ACE inhibitors
in hypertensive patients with low plasma ANG II levels (99)
suggested the existence of a nonsystemic RAS. In the follow-
ing years, all the major components of this system were found
to coexist in several tissues, including the brain, heart, adipose
tissue, vasculature (106), kidney, and adrenal gland (72).

Long before this recognition, it was already known that
infusion of ANG II into the brain could increase BP (8) and
central injection of purified ANG II near the hypothalamus
resulted in a drinking response (37, 58), suggesting the pres-
ence of specific receptors in this tissue. More important was the
first evidence that renin is present within the brain, thereby
providing the enzymatic synthesis of local angiotensin produc-
tion within this tissue (49). At that time, the existence of the
brain RAS was first postulated when Ganten et al. (58) iden-
tified renin-like activity in the CNS.

The main feature of this system is its distinction from the
other local or tissue RAS, since it is physically separated from
the endocrine RAS by the presence of the blood-brain barrier,
thus preventing the diffusion of ANG II from the circulation
into the brain (130). However, the existence of areas lacking a
blood-brain barrier, called circumventricular organs (CVOs),
challenged this presumption and has been responsible for a
long debate surrounding the existence of the brain RAS.
Indeed, in mammals, there are eight of these CVOs, located in
the proximity of the 3rd and 4th ventricles: the vascular organ
of the lamina terminalis, the subfornical organ, the median
eminence, the intermediate and the posterior lobes of the
hypophysis, the subcommissural organ, the pineal gland, and
the area postrema (34, 80). Most of these CVOs have fenes-
trated capillaries allowing molecules of large molecular weight
to cross back and forth between the circulation and the cere-
brospinal fluid; therefore circulating ANG II may still produce
some effects inside the brain (136). The difficulty in detecting
significant amounts of renin in the CNS and the presence of the
CVOs has sparked some debate over the existence of ANG II
generation in the brain (57). Nevertheless, expression of local
ANG II was later found in the hypothalamic paraventricular
nucleus (PVN), supraoptic nucleus, CVOs, and nucleus of the
tractus solitarii (NTS) neuronal cell bodies (90). In addition,
AGT synthesis in astrocytes and its secretion into the intersti-
tial space and cerebrospinal fluid was shown to be the major
source of substrate for brain ANG II formation (29). The
controversy surrounding the existence of the brain RAS slowly
eroded with more evidence showing renin expression in the
CNS. It is now accepted that secreted prorenin and nonsecreted
renin are present in the brain of rodents and humans (86), and
their overexpression results in a hypertensive phenotype, con-
firming the pivotal role of this system in the regulation of BP
and the development of hypertension. Interestingly, recent data
have also confirmed the presence of intracellular renin in the
CNS, encoded by a different gene (i.e., renin-b) and function-
ally capable of increasing BP (85).

The ACE2/ANG-(1–7)/Mas Axis in the Brain

ANG-(1–7) synthesis and metabolism. The physiological
presence of ANG-(1–7) was first detected in human blood
(132) and later, in the dog (123) and rat brain (131). ANG-
(1–7) was shown to be present as an endogenous constituent of
the brain, in areas including the hypothalamus, medulla oblon-
gata, and amygdala, as well as in adrenal glands and plasma of
normal rats (19). However, the enzymatic cascades leading to
the generation of this peptide are learned later. We now know
of three different pathways to produce ANG-(1–7), as re-
viewed in details by Karamyan and Speth (82). First, directly
from ANG I by prolyl-endopeptidase or neutral endopeptidase
(neprilysin), which cleave the bond at residues Pro7-Phe8

(156); second, directly from ANG II by ACE2, prolyl-carboxy-
peptidase or prolyl-endopeptidase; and third, indirectly, ACE2
converts ANG I to ANG-(1–9). ANG-(1–7) is then produced
by ACE cleavage of the dipeptide phenylalanine-histamine
from ANG-(1–9) (145) or by neprilysin (118). Several other
enzymes can also participate in each of these three pathways
(82).

However, it has recently been shown that, in the hyperten-
sive rat heart, the majority of the ANG-(1–7) formed results
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from the degradation of ANG II by ACE2 (144). It is conceiv-
able that the other pathways might be activated or inhibited in
specific pathological conditions. It is likely that the synthesis of
ANG-(1–7) is taking place mostly in the extracellular space
since ACE2 is a transmembrane protein with its catalytic site
located outside the cell (70). However, because ACE2 con-
serves its activity following shedding by ADAM17, one can
speculate that endocytosis of the secreted enzyme could lead to
formation of the heptapeptide inside the cell. This hypothesis is
consistent with our observation of the enzyme in the cytoplasm
of neurons in the mouse brain (33) and the existence of an
intracellular RAS in neurons (66) (Fig. 1). After synthesis,
ANG-(1–7) can be metabolized into ANG-(1–5) by ACE (20)
or ANG-(1–4) by neprilysin (2). Interestingly, ANG-(1–7) can
inhibit the proteolytic function of ACE by binding with ACE at
the COOH-terminal domain, thus promoting bradykinin func-
tion (142).

ANG-(1–7) function. To our knowledge, the first study
involving ANG-(1–7) peptide in the CNS was from Fitzsimons
(50), showing that unlike ANG II, ANG-(1–7) has no dipso-
genic effect when injected into the rat brain. Immunocyto-
chemical studies have localized ANG-(1–7) in neuronal cell
bodies and fiber tracts of magnocellular nuclei in the rat
hypothalamus (9, 83). It is well recognized that blood vessels
are an important site for the formation and biological actions of
ANG-(1–7) (73). In endothelial cells, ANG-(1–7) stimulates
prostaglandin release (79), increases the release of nitric oxide
(NO) (111), augments the metabolic actions of bradykinin via
inhibition of ACE activity (1), and inhibits smooth muscle cell
growth (54). In vitro experiments have shown that ANG-(1–7)
has a potent vasopressin (AVP) and prostaglandin-releasing
activity and promotes neuronal activity in the hypothalamus
and medulla (52), although the effect on AVP release appears
to be much less compared with ANG II (113).

Soon after the identification of ANG-(1–7) in the brain
(123, 131), the peptide was reported to produce depressor

responses when administered in the NTS and dorsal motor
nucleus of the vagus nerve (15). The NTS serves as the first
brain relay for the information originating from the barore-
ceptors located in the carotid arteries and the aortic arch,
while the dorsal motor nucleus of the vagus nerve is one of
the nuclei controlling parasympathetic tone (18). Unlike in the
brain stem, administration of ANG-(1–7) in the lateral ventri-
cles failed to alter mean arterial BP or heart rate (HR) but
resulted in an increase in cardiac baroreflex sensitivity (16). A
similar response was also observed following peripheral infu-
sion of ANG-(1–7) in spontaneously hypertensive (SH) rats (7)
or when low doses of the peptide were combined with low
doses of bradykinin (10), suggesting a synergistic effect be-
tween the two peptides. Simultaneous infusion of ANG-(1–7)
and bradykinin at subeffective rates into the brain resulted in a
significant increase in baroreflex sensitivity, suggesting that
centrally these two peptides can interact to modulate baroreflex
control of HR. Interestingly, the ANG-(1–7) permissive effect
is only targeting the bradycardic component of the reflex (16),
when BP rises following administration of the pressor agent
and activation of the central regions results in the increase of
vagal tone. It has also been suggested that the opposing actions
of endogenous ANG II and ANG-(1–7) in the NTS contribute
to baroreflex function in response to increases in mean arterial
BP in young rats (120). The mechanism by which ANG-(1–7)
regulates baroreflex sensitivity maybe derived from its ability
to reduce sympathetic tone and modulate the local effects of
norepinephrine (NE) in the brain. Treatment with ANG-(1–7)
inhibited ANG I- and ANG II-mediated facilitation of NE
release in isolated kidneys of SH stroke-prone and Wistar-
Kyoto rats (138). Gironacci et al. have shown that, while the
heptapeptide had no effect on NE uptake and catabolism (60),
it could decrease NE release (62) and ANG II-mediated NE
release (63). Moreover, this mechanism was mediated by NO
and blocked by both AT2 and bradykinin B2 receptor antago-
nists. Very recently, these authors extended their findings by

Fig. 1. Endogenous angiotensin converting enzyme 2
(ACE2) and Mas receptor immunostaining in mouse
brain sections and neuronal cell cultures. Mouse subfor-
nical organ (A) and rostral ventrolateral medulla (B)
double stained for ACE2 (red) and a neuronal marker
(NeuN; green) are shown. Yellow staining is indicative
of the presence of ACE2 in neurons. Neuro2A cells
(mouse neuroblastoma) were stained for endogenous
ACE2 (C) and the Mas receptor (D) confirming the
presence of these renin-angiotensin system (RAS) com-
ponents in neurons.
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showing that ANG-(1–7) induces a decrease in tyrosine hy-
droxylase expression, the rate-limiting enzyme in catechol-
amine biosynthesis. This decrease was also blocked by an AT2

receptor antagonist and not by an AT1 or Mas receptor antag-
onist (91). This observation reveals that ANG-(1–7) downregu-
lation of tyrosine hydroxylase activity and expression centrally
may decrease brain catecholaminergic activity; however, fail-
ure of the Mas antagonist to block this decrease suggests that
ANG-(1–7) may bind with another receptor (52, 119).

While ANG-(1–7) and ANG II have opposite effects on
baroreflex function following injection into the dorsal medulla,
both peptides have similar responses when injected in the
rostral (RVLM) or caudal (CVLM) ventrolateral medulla sug-
gesting differential effects in certain brain areas (31). Admin-
istration of ANG II into the RVLM has been shown to activate
neurons in vitro (88) and to increase BP in anesthetized and
conscious rats (51, 52). However, the activated RVLM neurons
are different from the pacemaker noradrenergic presympathetic
cells described in this region (88). Similarly, ANG-(1–7) pro-
duces a pressor response, generally associated with a tachycar-
dia, that can be blocked by the selective antagonist D-Ala7-
ANG-(1–7) (A-779) (51) and which is enhanced by hemor-
rhage (89). When injected in the CVLM, both ANG II and
ANG-(1–7) produce a decrease in mean arterial BP, although
the signaling pathways activated seem to be different. In
Wistar rats, the ANG-(1–7)-mediated BP reduction is attenu-
ated by L-nitro-arginine methyl ester (L-NAME) and neuronal
NO synthase blockers, while they are ineffective on ANG II
responses (3). In addition, the heptapeptide increases L-gluta-
mate levels in the CVLM, while taurine release is reduced
(152). Furthermore, although CVLM injection of ANG-(1–7)
depresses both femoral and renal vascular resistances, ANG II
only affects the kidneys’ vascular bed (47). Microinjection of
ANG II and ANG-(1–7) into the CVLM produces similar
decreases in BP in rats with renovascular hypertension (2K1C)
and in sham animals. Importantly, the weak reflex bradycardia
observed in 2K1C rats can be improved following microinjec-
tion of A-779 into the CVLM, while losartan does not enhance
the baroreflex sensitivity, suggesting that ANG-(1–7) at the
CVLM may contribute to the low sensitivity of the baroreflex
control of HR in hypertensive rats (17).

Additional effects of brain ANG-(1–7) include modulation
of the BP and HR circadian rhythms (133) and enhancement of
long-term potentiation in the CA1 region of the hippocampus
(74). Central administration of ANG-(1–7) increases cerebral
blood flow (121), bradykinin levels (93), NO release, and
endothelial NO synthase expression (166), which is beneficial
in cerebrovascular diseases. In a recent study, central admin-
istration of ANG-(1–7) reduced neurological deficits and in-
farct size in a rat model of ischemic stroke, demonstrating
cerebroprotective properties of this peptide during ischemic
stroke (95).

Agonists and Antagonists

Potent peptidic antagonists of the ANG-(1–7) receptor have
been generated by substituting the C-proline with a D-alanine,
to form D-Ala7-ANG-(1–7), also called A-779 (4, 124), or with
a D-proline, to obtain D-Pro7-ANG-(1–7) (128). Utilization of
these antagonists has been useful in unmasking specific effects
of ANG-(1–7). Indeed, although chronic infusion of ANG-

(1–7) failed to modify the development of Goldblatt’s 2K1C
hypertension and renal function, chronic infusion of A-779
resulted in a higher increase in mean arterial BP and a reduc-
tion in renal plasma flow (13). Moreover, A-779 was critical in
establishing that ANG-(1–7) acts through a specific binding
site, independent of the AT1 and AT2 receptors (5, 6, 52, 107,
124, 134). Interestingly, blockade of ANG-(1–7) receptors in
the PVN by A-779 uncovered an unusual role for the hepta-
peptide in the maintenance of sympathetic nerve activity.
Indeed, microinjection of ANG-(1–7) into the PVN increases
renal sympathetic nerve activity, showing an excitatory action
for the heptapeptide on PVN neurons, and this effect can be
blocked by its selective antagonist A-779 (134).

Recently, the use of the D-Pro7-ANG-(1–7) antagonist has
led to the identification of a new binding site for ANG-(1–7) in
the rat aorta, which could not be blocked by A-779 (135). The
existence of this second receptor for ANG-(1–7) remains to be
confirmed.

The first nonpeptidic and orally active agonist of ANG-(1–7)
(5-formyl-4-methoxy-2-phenyl-1-{(4-[2-ethyl-aminocarbonyl-
sulfonamido-5-isobutyl-3-thienyl]-phenyl)-methyl}-imidi-
azole, also known as AVE0991) was generated by Dr. Holger
Heitsch’s group at Aventis Pharmaceuticals, to clarify the role
of ANG-(1–7) in potentiating bradykinin responses (155). Like
ANG-(1–7), this compound is capable of producing NO release
(155), thus improving endothelial function (38) and is a ligand
for the Mas receptor (87, 110). While the central effects of this
compound have not been investigated, Wessel et al. (153)
reported that SH rats treated with this compound have a
significantly lower increase in BP during the night when the
animals are active. In addition, while AVE0991 did not affect
the baroreflex gain, the activation of this compensatory mech-
anism was less (153), suggesting that in ANG-(1–7) agonist-
treated SH rats, baroreceptors were less stimulated than in
control hypertensive animals.

Transgenic Models

TGR(A1–7) 3292 transgenic rats, exhibiting chronic produc-
tion of ANG-(1–7), were engineered by using a fusion protein
methodology. Although the transgene is driven by a cytomeg-
alovirus promoter, its expression appears restricted to the testes
(127). In this model, the male gonads are functioning like a
biological infusion pump, as evidenced by the �2.5-fold in-
crease in systemic ANG-(1–7) levels, and therefore could
modify the activity of local RAS in various organs. While these
rats are less sensitive to induction of cardiac hypertrophy by
isoproterenol (127) and show a decrease in vascular resistance
for several organs, including the brain, there has been no study
addressing the central implications of ANG-(1–7) overexpres-
sion in this model. Santos et al. (127) reported a significant
increase in HR for which they speculated a potential interaction
of the peptide at the CVO level. It would be particularly
interesting to see whether these animals show signs of altered
sympathetic drive and baroreflex function in normal and patho-
physiologic conditions.

ACE2 Gene and Protein

While the existence of angiotensin peptides resulting from
the degradation of ANG II was already known 40 years ago,
the importance of these peptides has been debated for decades,
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in part due to the incertitude regarding the enzyme responsible
for their formation. Despite the numerous observations show-
ing its benefits on baroreceptor reflex, cardiac, and vascular
functions, the role of ANG-(1–7) remained underappreciated
until the discovery in 2000 of a new carboxypeptidase respon-
sible for the conversion of ANG II into the vasodilatory
heptapeptide (32, 141). The discovery of this new enzyme,
named ACE2, due to its homology with ACE (40% identity
and 61% similarity), from human heart failure ventricle (32)
and human lymphoma cDNA libraries (141), was followed in
2003 by the identification of a specific receptor (i.e., Mas) for
ANG-(1–7) (129). Together, these critical findings gave a new
impetus for the understanding of the role of this new arm of the
RAS, which is now known as the ACE2/ANG-(1–7)/Mas
receptor axis.

ACE2 is a glycoprotein of 120 kDa, expressed as a trans-
membrane protein but also exists in a soluble, truncated form,
lacking the transmembrane and cytosolic domains, but con-
serving its activity (141). This metalloprotease contains a
single zinc-binding domain and conserves other critical resi-
dues typical of the ACE family. The protein sequence consists
of 805 amino acids, including a potential 17-amino acid NH2-
terminal signal peptide sequence and a putative COOH-termi-
nal membrane anchor. Functionally, ACE2 acts as a carboxy-
peptidase to cleave the COOH-terminal leucyl residue from
ANG I, thus producing Ang-(1–9). However, so far there has
been no confirmation that this reaction takes place and is
physiologically relevant in vivo. More importantly, the enzyme
is also able to hydrolyze ANG II to produce ANG-(1–7) and
release phenylalanine (141). ACE2 shows 400-fold higher
affinity for ANG II than for ANG I (147), making it the main
substrate of the enzyme. In vitro, ACE2 has also been reported
to cleave des-Arg-bradykinin, apelin fragments, and neuroten-
sin but not bradykinin or any of the 15 other vasoactive and
hormonal peptides tested (147).

Regulation of ACE2 Expression

Originally, immunohistochemistry showed ACE2 protein
predominantly in the endothelium of various vessels in the
heart and kidney and in renal tubular epithelium (32). In
addition, expression of ACE2 mRNA was found in colon,
small intestine, ovary, testis, prostate, heart, placenta, liver,
skeletal muscle, and pancreas with the highest levels of ex-
pression in lung and kidney (141), and it is now evident that
most tissues express this carboxypeptidase.

In the brain, ACE2 was reported to be widely distributed, in
the cytoplasm of neuronal cell bodies but not in glial cells (33,
81). This is actually surprising since it is thought to be a
transmembrane protein with most of its structure on the extra-
cellular side. This observation suggests that a significant pool
of ACE2 might be stored inside cytoplasmic vesicles. Whether
the cytoplasmic ACE2 might play a role within the intracellular
RAS remains to be determined. In vitro, other groups have also
observed ACE2 expression in astroglial cells (55). Brain ACE2
activity was also reported to be the highest in the hypothalamus
of C57BL/6 mice (36). In the subfornical organ, an area
lacking the blood-brain barrier and sensitive to blood-borne
ANG II, ACE2 immunostaining was significantly increased in
the brain of transgenic mice overexpressing neuron-specific
AT1A receptors (NSE-AT1A) and chronically hypertensive

mice overexpressing human AGT and renin genes (R�A�)
(33). This increase was not present in other hypothalamic
regions, such as the PVN, suggesting a nucleus-specific regu-
lation of the enzyme. Furthermore, in the RVLM, Yamazato et
al. (162) observed a significant reduction of ACE2 protein
levels in SH rats, while in R�A�, the enzyme activity, but not
expression (158), was impaired. In both cases, ACE2 gene
therapy was associated with a decrease in BP. In neonatal rat
cerebellar or medullary astrocytes, ANG II reduced ACE2
mRNA and protein expression, and this inhibition could be
prevented by an AT1 receptor antagonist but not by an AT2

antagonist. On the other hand, ANG-(1–7) did not affect ACE2
mRNA, but prevented the ANG II-mediated reduction in
ACE2 mRNA. Restoration of the inhibitory effect was
achieved by addition of A779, confirming the involvement of
the heptatpeptide (55). More recently, Kar et al. (81) showed
that in chronic heart-failure rabbits, ACE2 expression was
reduced in the RVLM, while ACE was upregulated, a situation
that could be reversed by exercise training. The observation
that ACE2 can be downregulated by ANG II or AT1 receptors
(55, 81, 158) constitutes a novel positive feed-forward system
within the brain, and clearly more work is needed to under-
stand the various mechanisms leading to the alteration of
ACE2 gene expression. Alternatively, ACE2 could also affect
the expression of angiotensin receptors. Our group previously
showed that, both in vitro and in vivo, ACE2 overexpression
led to a downregulation of AT1 receptors in a neuronal cell line
and in the subfornical organ of normotensive C57BL/6 mice
(40). These data were recently confirmed in hypertensive mice
and extended by the observations of a concomitant increase in
both AT2-to-AT1 and Mas-to-AT1 receptor ratios in the dorsal
and ventral medulla (39). Therefore, not only ACE2 expression
can be modulated by the classical RAS, but the enzyme can
also alter the system, suggesting the existence of a mutual
regulation between the two arms of the RAS. The main
challenge is now to determine the ideal conditions for which
ACE2 would exert its maximal inhibitory effect on the classi-
cal RAS.

ACE2 Inhibitors and Agonists

Only a small number of antagonists have been generated to
target the carboxypeptidase, probably due to the overwhelming
reports showing that ACE2 expression might be beneficial in
various diseases, thus limiting the therapeutic interest of an
enzyme inhibitor. Originally, these antagonists were designed
to reduce the binding of the severe acute respiratory syndrome
(SARS) coronavirus, known to use ACE2 as a functional
receptor, with the enzyme and prevent the infection of pulmo-
nary cells and neurons (143). However, the consensus has
changed, and it now appears that ACE2 might also be benefi-
cial in preventing the progression of SARS into acute respira-
tory distress syndrome (78). Accordingly, the focus has
shifted toward identifying compounds that may stimulate
ACE2 activity or mimic the effects of endogenous ACE2.
While the following compounds have been extensively used
to increase ACE2 expression in peripheral tissues, very
limited data are available regarding their ability to alter
ACE2 activity in the brain.

The first antagonist generated, MLN-4760 (renamed GL-
1001), allowed inhibition of ACE2 in the picomolar range,
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while conserving a very good selectivity vs. ACE and carboxy-
peptidase A, as confirmed by X-ray crystallography (26). It
was later shown that this antagonist binds with the active site
of the enzyme and as such, modulates catalysis and substrate
(143). While numerous groups have used this antagonist at the
periphery, there has been only one study evaluating its effects
in the brain. Following administration into the NTS of anes-
thetized Sprague-Dawley rats, MLN-4760 was reported to
produce a long-lasting reduction in mean arterial BP, while not
affecting HR (30). Moreover, the ACE2 antagonist impaired
the reflex bradycardia resulting from the systemic administra-
tion of phenylephrine, consistent with the detrimental and
beneficial effects on baroreflex sensitivity of ANG II and
ANG-(1–7), respectively. Finally, in anesthetized C57BL/6
mice, we also observed that intracerebroventricular adminis-
tration of MLN-4760 (4–20 �g) produced a dose-dependent
increase in mean BP (Lazartigues E, unpublished data), sug-
gesting that ACE2 and ANG-(1–7) might be involved in the
maintenance of basal BP.

Using an in silico molecular docking approach, another com-
pound, N-(2-aminoethyl)-1 aziridine-ethanamine, was identified
among �140,000 small molecules, as a potential ACE2 inhibitor
with an IC50 in the micromolar range. This compound was shown
to be effective in blocking the SARS coronavirus spike protein-
mediated cell fusion (77), but its effects in the CNS have not been
investigated.

The only peptidic and commercially available antagonist,
DX600, was identified through selection of constrained peptide
libraries by phage display (76). The synthesized peptide is a
potent inhibitor of ACE2 activity, with a Ki of 2.8 nM. It has
been widely used for in vitro studies aimed at clarifying the
signaling pathways activated by ACE2, but its effects in the
brain remain to be determined. In a comparative study, it was
used in conjunction with SELDI-TOF mass spectrometry to
highlight a predominant role of ACE2 activity in the hypothal-
amus (36).

Following virtual screening of chemical libraries, based on
the crystal structure of ACE2, two compounds were identified,
a xanthenone and resorcinolnaphthalein, as potential activators
of ACE2 (75). Interestingly, the xanthenone was effective in
reducing BP following both acute and chronic peripheral ad-
ministration in SH rats. Additional experiments in the setting
of pulmonary hypertension also revealed that xanthenone ex-
hibits properties beyond the activation of ACE2, notably the
ability to increase both ACE2 and Mas mRNA expressions
(46). However, it is not clear whether xanthenone is active only
locally or whether it can affect ACE2 activity in multiple
tissues. It would be most interesting to determine its impact on
baroreflex and autonomic function following peripheral or
central administration. In a recent study, intravenous adminis-
tration of diminizene aceturate, a known antiprotozoal drug
used in humans, caused a transient and dose-dependent de-
crease in mean arterial BP in Wistar-Kyoto and SH rats (64).
Although diminizene aceturate decreased BP in both strains of
rats, it was shown that its efficacy was significantly higher in
SH rats. Further studies are needed to understand the role of
this drug on the hypertensive response.

More recently, a soluble and highly glycosylated recombi-
nant human ACE2 was developed and shown to be effective in
preventing ANG II-dependent hypertension and diabetic ne-
phropathy (103, 157). However, ANG-(1–7) was not found to

be necessary for the reduction of hypertension using recombi-
nant human ACE2 and which appeared to be only mediated by
a reduction in ANG II levels (157). Of interest was also the
lack of increased ACE2 activity in cardiac and renal tissues
while it was enhanced in the plasma. This raises the question of
whether this approach is only beneficial for hypertensive pa-
tients presenting elevated ANG II plasma levels. Additional
studies are clearly needed to determine whether patients with
neurogenic hypertension might benefit from this novel thera-
peutic approach.

Knockout and Transgenic Animal Models

At least four different ACE2 knockout mouse models have
been generated by gene targeting on both C57BL/6 and 129/
SvEv backgrounds (24, 68, 102, 161). While the 129/SvEv
background did not show any alteration of cardiovascular
function, controversial data have been reported on the
C57BL/6 background, with evidence for severe cardiac con-
tractility defects (24), cardiac dysfunction following pressure
overload (161), and elevated baseline BP (68). For a detailed
analysis of the various phenotypes, see Ref. 69. Despite these
discrepancies, all models exhibited exacerbated responses to
ANG II.

The mechanism(s) by which hypertension develops in ACE2
gene deficiency may be derived from peripheral endothelial
dysfunction and/or alteration of central neuronal regulation. In
the periphery, it was reported that ACE2-deficient mice exhibit
impaired endothelium-dependent relaxation (92), while cen-
trally, ACE2 gene deletion resulted in impaired baroreflex and
autonomic functions (Fig. 2) (159).

To understand the role of ACE2 in the central regulation of
BP and the development of hypertension, we previously de-
veloped several transgenic mouse models overexpressing this
enzyme specifically in the CNS (39, 158, 159). Targeting
ACE2 expression selectively on neurons by using a synapsin
promoter in syn-hACE2 transgenic mice did not affect baseline
hemodynamic parameters but altered the balance between
ANG II and ANG-(1–7) levels in the brain, in favor of the
vasodilatory peptide (39). However, expression of the enzyme
throughout the brain was able to abate the development of
neurogenic hypertension after 2 wk of peripheral infusion of a
subpressor dose of ANG II. Indeed, while control littermates
exhibited ANG II-mediated impairments in baroreflex function
and vagal tone, syn-hACE2 mice remained protected, partly
through enhanced expression of NO synthases in the brain and
modulation of ANG receptors. Interestingly, neurogenic hy-
pertension could be achieved in syn-hACE2 following con-
comitant infusion of ANG II and the A-779 antagonist, sup-
porting a pivotal role for ANG-(1–7). To address the potential
benefits of ACE2 gene therapy in the maintenance of hyper-
tension, we used a double transgenic mouse (R�A�) overex-
pressing both human renin and AGT genes (97). In these
chronically hypertensive R�A� mice, we observed a signifi-
cant reduction of ACE2 activity in the brain and impaired
baroreflex sensitivity (158). Breeding of the syn-hACE2 onto
the R�A� background allowed us to generate a triple trans-
genic mouse (SARA) in which we could assess the effects of
ACE2 reintroduction. Interestingly, these SARA mice, al-
though still hypertensive, showed a reduced BP level and
improved baroreflex and autonomic functions. Others have
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shown that a similar reduction in BP could also be achieved in
SH rats following RVLM administration of a lentivirus encod-
ing ACE2 (162). In SARA mice, the persistence of some
degree of hypertension can be explained by the high systemic
ANG II levels that could not be corrected by central overex-
pression of ACE2. However, the enhanced water intake ob-
served in R�A� could be normalized in SARA mice, illustrat-
ing the powerful therapeutic potential of ACE2 gene therapy.

Finally, a similar transgenic model was also generated by
overexpressing ACE2 selectively on vascular smooth muscle
cells in a stroke-prone SH rat (117). These animals also
showed a reduction of hypertension as well as improvement of
endothelial function. While the specific effects of ACE2 over-
expression on the brain vessels has not yet been investigated in
these rats, it would be interesting to determine the impact on
central BP regulatory mechanisms, but also in other patholo-
gies such as chronic heart failure and stroke.

Mas Receptor

Mas was originally described as a protooncogene, due to its
ability to induce tumorigenicity in nude mice (164). The
human Mas gene was mapped to chromosome 6 (6q24–6q27),
within a region frequently rearranged in malignant cells (115).
The protein has seven hydrophobic transmembrane domains,
while the NH2- and COOH-terminal ends are hydrophilic. It
shares a strong sequence similarity with the G protein-coupled
receptor subfamily of hormone-receptor proteins (112). In

2003, Santos et al. (129) identified ANG-(1–7) as a ligand for
the Mas receptor, establishing the ACE2/ANG-(1–7)/Mas axis
as a new arm of the RAS.

Mas expression in mice was found in the heart, kidney, lung,
liver, spleen, tongue, and skeletal muscle (98, 148). In the
heart, low levels of Mas transcripts were detected in cardio-
myocytes and much more in the endothelium of coronaries.
Similarly, Mas expression was also observed in brain endothe-
lial cells derived from rat cerebral resistance vessels (84).
While Mas mRNA expression was originally thought to be
restricted to the hippocampus, cortex, and olfactory bulb (98,
163), later development of specific antibodies extended these
observations to other brain structures. A dense Mas immuno-
reactive staining was observed in cardiovascular-related areas,
from the medulla to the forebrain, such as the NTS, RVLM,
CVLM, inferior olive, parvo- and magnocellular portions of
the PVN, supraoptic nucleus, and lateral preoptic area, shown
in several previous studies as sites for the action of ANG-(1–7)
in the brain (125). Moreover, at the cellular level, Mas was
predominantly present in neurons, as evidenced by colocaliza-
tion of immunostaining for the neuronal marker, Neu-N, and
the Mas receptor antibody (6). However, it was recently re-
ported that astrocytes located in the RVLM of Wistar rats could
respond to ANG-(1–7) stimulation, leading to increases in
intracellular Ca2�, while neurons were nonresponsive to the
heptapeptide (67). Interestingly, this response was prevented
by administration of A-779, suggesting the participation of
Mas receptors. While an impairment of intracellular Ca2�

increases was also evidenced in SH rats, suggesting a potential
role in hypertension, it is unknown how activation of Mas
signaling in astrocytes could affect sympathetic tone and mod-
ulate BP regulation.

Mas Knockout Mice

Targeted deletion of the genomic region coding for the first
253 amino acids of Mas, including six transmembrane do-
mains, led to a loss of Mas expression (150). The homozygous
Mas-deficient mice on the mixed 129xC57BL/6 genetic back-
ground are healthy, grow normally, and show no alteration of
baseline BP and HR in both genders. However, significant
differences appear on both HR variability and BP variability,
two relevant predictors of arterial hypertension and cardiovas-
cular diseases in humans. Mas-deficient females show a strong
reduction of HR variability, while an increase in BP variability
is observed in males, thus shifting the autonomic balance
toward increased sympathetic tone in both sexes (151).

Like for the ACE2 knockout mice (69), the genetic back-
ground is known to dramatically influence the phenotype.
Following backcrossing on a FVBN background, for seven
generations, Mas-deficient mice exhibit signs of mild hyper-
tension (160). In addition, Mas-deficient mice on a mixed
FVBN and C57BL/6 background have impaired endothelial
function and decreased NO production (114). ANG-(1–7)-
mediated relaxation of isolated mesenteric arteries is equally
impaired in both wild-type mice pretreated with A-779 and
Mas-deficient mice (108). Moreover, the response to the en-
dothelium-dependent vasorelaxant, bradykinin and acetylcho-
line, is similarly inhibited.

It is not clear whether any of these phenotypic alterations are
mediated by the brain RAS since there has been no study

Fig. 2. Impaired spontaneous baroreflex sensitivity (SBRS) and autonomic
function in ACE2�/y knockout (KO) mice. SBRS (A) was significantly de-
creased in KO mice compared with the wild-type (WT) littermates. Mean-
while, sympathetic tone (B; left) was significantly increased and parasympa-
thetic tone (B; right) was significantly decreased in the ACE2-deficient
mice compared with WT, as evidenced by the bradycardic and tachycardic
responses to propranolol and atropine, respectively. HR, heart rate; bpm,
beats/min. *P � 0.05 vs. WT.
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focusing in BP regulation and CNS in this model. The only
data available are related to learning, memory, behavior, and
synaptic plasticity. In an early study, Walther et al. (150)
showed that Mas knockout mice exhibited enhanced long-term
potentiation in the dentate gyrus, and elevated anxiety as
evidenced by an increase in swimming speed when placed in a
Morris water maze. More recently, the same group showed that
ANG-(1–7) enhanced long-term potentiation when injected in
the hippocampus and that this response was similarly impaired
by A-779 and in Mas-deficient mice (74). Although these two
studies may seem contradictory at first glance, it appears that
the nuance is in the methodology used to achieve synaptic
plasticity. Similarly, in the amygdala, ANG II was shown to
increase the amplitude of field potentials in wild-type mice,
while they were decreased by the same peptide in Mas knock-
out mice (149). Interestingly, these data suggest an interaction
between both Mas and the AT1 receptor to form functional
heterodimers, a concept recently reviewed by Lyngsø et al.
(94). An interaction between AT1 and Mas receptors is also
supported by observations in the kidney and vascular smooth
muscle cells that ANG-(1–7) reduces AT1 receptors (22, 23).

Agonists

The Mas agonists are one of the latest sets of tools developed
to study the ACE2/ANG-(1–7)/Mas receptor axis, and no data
are currently available regarding the potential effects of these
drugs on CNS functions.

AVE0991 was the first nonpeptidic and orally active analog
of ANG-(1–7) developed (155). It was demonstrated to be

efficient in improving endothelial function (38), promoting
cardioprotection (35, 44), and reducing hypertension (153) in
rats. In the latter study, the authors reported a reduction of the
nocturnal rise in BP, characteristic of rodents, and a significant
reduction in baroreflex activation. However, the gain of the
reflex was not altered, suggesting that the improvement might
be related to a peripheral effect on BP and/or endothelial
function rather than a central effect on baroreflex controlling
centers.

More recently, using a computerized method aimed at iden-
tifying ligands for G protein-coupled receptors, two new com-
pounds, CGEN-856 and CGEN-857, were identified as ago-
nists of the Mas receptor. According to the data released by the
company manufacturing these compounds, the lead peptide,
CGEN-856, would induce relaxation of rodent aortas via Mas
receptor activation and through a NO-mediated pathway. Ad-
ditional information suggests a beneficial role in vivo on
cardiac remodeling antihypertensive effects as well as cardiac
and renal antifibrotic properties.

ACE2/ANG-(1–7)/Mas Downstream Signaling

Classical RAS signaling pathways (i.e., ANG II-mediated)
in the brain have been well studied (for review see Refs. 25 and
146). The downstream signaling pathways of ACE2/ANG-(1–
7)/Mas axis within the CNS involves intrinsic signaling mol-
ecules to induce vasoprotective actions by counterregulating
the ACE/ANG II/AT1 receptor axis (Fig. 3). We now know that
binding of ANG II to the AT1 receptor results in the activation
of Gq-mediated phosphoinositide hydrolysis, which in turn

Fig. 3. Proposed ACE2/ANG-(1–7)/Mas signaling pathways in the central nervous system. ANG II is produced by ACE from ANG I and cleaved by ACE2 to
form ANG-(1–7). ANG II binding to AT1 receptors activate MAPK kinase, p38, Erk1/2, and this effect can be attenuated by ANG-(1–7) activation of the Mas
receptor. STAT3 can be stimulated by both ANG II and ANG-(1–7). Following activation by the Mas receptor, Src homology 2-containing protein-tyrosine
phosphatase-1 (SHP-1) inhibits MAP kinases activity. Kinases and phosphatases signaling exert a mutual inhibitory effect on each other. In the central nervous
system, kinase activity determines neuronal firing, norepinephrine (NE) release, and sympathetic outflow. AT1 receptor-mediated activation of NADPH oxidase
leads to the formation of superoxide (O2

·�) acting with nitric oxide (NO) to form peroxynitrite (ONOO�). NO release can result from the activation of both Mas
and B2 receptors via Akt phosphorylation (pAkt). Several agonists (green arrows) and antagonists (red lines) have been developed for the various components
of this system. ARB, angiotensin type 1 receptor blocker; MLN-4760, antagonist GL-1001; NAAE, N-(2-aminoethyl)-1 aziridine-ethanamine; XNT, xanthenone;
DIZE, diminazene aceturate; CGEN-856 and CGEN-857, agonists of the Mas receptor; BK, large-conductance Ca2�-activated K� channel; NOS, nitric oxide
(NO) synthase. Solid arrows, stimulation pathways; dashed lines, inhibitory pathways.
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increases intracellular Ca2� preceding the activation of protein
kinase C (PKC) and Ca2�/calmodulin-dependent protein ki-
nase II (CaMKII). These signaling proteins are responsible for
the inhibition of K� currents and activation of Ca2� currents,
ultimately leading to increased neuronal firing, which could
lead to increased sympathetic outflow. Additionally, PKC can
also activate the NAD(P)H oxidase, resulting in the formation
of reactive oxygen species that have been involved in the
development and maintenance of hypertension (169). In par-
allel, phospholipase C is activating a Ras/Raf/MAPK pathway
responsible for the phosphorylation of c-jun and c-fos tran-
scription factors, promoting the upregulation of genes involved
in the synthesis and transport of NE in neurons.

Although signaling pathways downstream of the ANG-(1–7)
receptor are not well characterized, the heptapeptide is gener-
ally thought to oppose the ANG II-mediated cascades (116).
Among differences between the two peptides, ANG-(1–7) is
not able to induce Ca2� release (42, 73) and does not produce
a dipsogenic effect (50). However, ANG-(1–7) is also capable
of activating its own set of signaling molecules (41, 126).

The major downstream effector resulting from ANG-(1–7)
receptor activation is NO. In the brain, the first evidence of a
link between ANG-(1–7) and NO was from the observation of
colocalization of the heptapeptide with NO synthase in neurons
of the supraoptic nucleus and PVN (14). Focusing on the same
brain region, Gironacci et al. (62) showed that NE release was
impaired in hypothalamic preparations following administra-
tion of ANG-(1–7) and this effect could be reversed by L-
NAME. Interestingly, the authors reported that the inhibitory
effect on NE release could be blocked by both A-779 and an
AT2 receptor blocker, suggesting that several receptors are
involved in this regulation. They later extended these results by
showing that the bradykinin B2 receptor was also involved and
activated a cGMP/PKG pathway leading to NO release (61).
Because NO is a diffusible gas, its presence in the brain could
originate from different cell types, including neurons, endothe-
lium, vascular smooth muscle cells, platelets, astrocytes, and
glia. The ANG-(1–7)-induced NO release could be blocked by
A-779, although not always completely (73), in various cell
types and prevented in cells lacking Mas (39, 53, 62, 122),
leaving no doubt for the critical role of this receptor. In human
endothelial cells, constitutively expressing the Mas receptor,
ANG-(1–7) activation of a PI3 kinase/Akt/protein kinase B
pathway leads to long-lasting endothelial NO synthase (eNOS)
phosphorylation of Ser1177 (122). In vivo, ANG-(1–7) stimu-
lated NO release and upregulated eNOS expression in ischemic
tissues following focal cerebral ischemia/reperfusion in rat
models (166). Similarly, we reported that ACE2 overexpres-
sion resulted in increased NOS (both endothelial and neuronal)
and NO levels in the cerebrospinal fluid of mice (39). Increased
ACE2 expression on neurons resulted in enhanced eNOS
phosphorylation of Ser1177, while phosphorylation of Thr495,
representing inactive eNOS, was reduced. Moreover, brain
AT2-to-AT1 and Mas-to-AT1 receptor ratios were significantly
increased in transgenic mice, suggesting that both AT2 and
Mas receptors may mediate the NO release.

It is well known that ANG II stimulates multiple kinases
pathways (96). Treatment of vascular smooth muscle cells with
ANG II increases MAPK p38 and Erk1/2 activities, and these
responses could be reduced by pretreatment with ANG-(1–7)
(56). Moreover, ANG-(1–7) also blocked ANG II-mediated

reduction in ACE2 mRNA, supporting the concept of a recip-
rocal inhibition between the two RAS axes. Furthermore, the
beneficial effects of ANG-(1–7) could be prevented by sodium
vanadate and okadaic acid, suggesting that tyrosine phospha-
tases and serine-threonine phosphatases are activated by the
vasodilatory peptide (56).

On the other hand, in mouse bone marrow-derived dendritic
cells, ANG-(1–7) alone induced Erk1/2 phosphorylation, and
an even greater response was observed when ANG II was
coincubated (101). This synergistic effect was blocked by
A-779, suggesting that the ANG-(1–7) receptor played a major
part in this response. However, whether the ANG-(1–7)-medi-
ated Erk1/2 phosphorylation is dependent on this particular cell
type remains to be determined.

Several studies have reported that NO can react with locally
produced superoxide (O2

·�) to form the cytotoxic peroxyni-
trite. While ANG II has been demonstrated to be a major player
in the formation of O2

·� in the brain and to participate in the
development and maintenance of hypertension (168, 169),
ANG-(1–7) itself can produce low levels of O2

·� (73). How-
ever, the consensus is that the ANG-(1–7) NO/O2

·�-releasing
profile might preserve endothelial function.

In addition, ACE2, either by reducing ANG II levels or by
promoting ANG-(1–7)-mediated activation of downstream sig-
naling, has also been shown to reduce oxidative stress in
human endothelial cells (167). Particularly, in this study, the
authors showed that ACE2 overexpression could prevent the
ANG II-mediated upregulation of p22phox, a major subunit of
NAD(P)H oxidase.

A close and complex relationship has been described be-
tween ANG-(1–7) and bradykinin (for review see Ref. 126).
For instance, the heptapeptide is known to inhibit ACE activity
and thus favor an increase in bradykinin levels (28). As
mentioned previously, bradykinin B2 receptors are involved in
the ANG-(1–7) inhibitory effect on NE release in the hypo-
thalamus (62). Moreover, subeffective doses of ANG-(1–7)
and bradykinin produced a synergistic effect on baroreflex
sensitivity, while higher doses of each individual peptide were
required to induce similar increases in gain (10). More re-
cently, in rats undergoing medial cerebral artery occlusion to
produce cerebral ischemia, ANG-(1–7) infusion was shown to
markedly enhance bradykinin levels and to increase B2 recep-
tor mRNA and protein expression (93).

Several other signaling molecules and peptides have been
reported to be affected by ANG-(1–7), including arachidonic
acid, prostaglandins, AVP, and endothelium-derived hyperpo-
larizing factor (41, 126).

Perspectives and Significance

Far from the rigid and simplistic structure presented in
textbooks, our present view of the RAS incorporating the
ACE2/ANG-(1–7)/Mas axis is only part of the big picture, and
it should only be considered as a temporary view, mostly
dependent on our ability and determination to identify addi-
tional components. Already, data have emerged showing that
additional elements play critical roles upstream and down-
stream of ANG II. Emphasizing the therapeutic importance of
these new RAS members, phase I clinical trials have been
completed (109), and the pharmaceutical industry has em-
barked on developing compounds targeting the nontraditional
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components of the RAS (recombinant human ACE2, ANG-
(1–7) agonists, prorenin receptor blockers). ANG-(1–7) is not
the end of the story. Indeed, its cleavage by aminopeptidase A
leads to ANG-(3–7), which has been shown to promote dopa-
mine and GABA release in the striatum (139) and increase BP
in the RVLM (48), and both observations could be important in
the treatment of Parkinson’s disease and hypertension, respec-
tively. In the brain, like in the periphery, the RAS is involved
in physiological functions beyond our current understanding,
and keeping an open mind is our better chance to find cures and
treatments for cardiovascular and other pathologies.
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