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Patients who died from COVID-19 o�en had comorbidities, such as hypertension, diabetes, and chronic obstructive lung disease. 

Although angiotensin-converting enzyme 2 (ACE2) is crucial for SARS-CoV-2 to bind and enter host cells, no study has system-

atically assessed the ACE2 expression in the lungs of patients with these diseases. Here, we analyzed over 700 lung transcriptome 

samples from patients with comorbidities associated with severe COVID-19 and found that ACE2 was highly expressed in these 

patients compared to control individuals. �is �nding suggests that patients with such comorbidities may have higher chances of 

developing severe COVID-19. Correlation and network analyses revealed many potential regulators of ACE2 in the human lung, in-

cluding genes related to histone modi�cations, such as HAT1, HDAC2, and KDM5B. Our systems biology approach o�ers a possible 

explanation for increased COVID-19 severity in patients with certain comorbidities.
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Recent studies of the epidemiological characteristics of corona-

virus disease 2019 (COVID-19) have revealed that severe infec-

tion is more likely in people with an existing chronic medical 

condition. Two independent studies of infected populations in 

Wuhan, China found that approximately half the subjects with 

COVID-19 had an existing comorbidity [1, 2]. In a study of 

1099 patients across mainland China, 38.7% of patients with 

comorbidities progressed to severe infection [3] and in a study 

of 52 inpatients in Wuhan, 67% of patients with comorbidities 

died [2]. The most common comorbidities reported in these 

studies were hypertension, diabetes, cerebrovascular disease, 

chronic obstructive lung disease, and coronary heart disease 

[1–3]. Other comorbidities such as carcinoma, chronic kidney 

disease, chronic liver disease, digestive system disease, and 

nervous system disease have also been reported in patients with 

COVID-19 [1, 2, 4]. A better understanding of the link between 

these conditions and COVID-19 infection is required to inform 

improved treatment and prevention interventions.

�e molecular mechanism responsible for the increased dis-

ease severity in patients with these comorbidities is not fully 

understood, but previous studies suggest a role for angiotensin-

converting enzyme 2 (ACE2) [5]. ACE2 is a membrane protein 

required for severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) to bind and enter cells [6–8]. A�er binding, 

viral entry is facilitated by activation of the viral spike glyco-

protein and cleavage of the C-terminal segment of ACE2 by 

proteases like TMPRSS2 and FURIN that are readily expressed 

in lung tissue [9–11]. ACE2 is only moderately expressed in 

healthy lung tissue compared to the heart, kidneys, and testes 

[12], but staining of lung tissue sections from adults with pul-

monary hypertension has revealed increased ACE2 protein in 

the endothelium of pulmonary arteries compared to healthy 

controls [13]. A comprehensive analysis of single-cell RNA se-

quence (RNA-seq) datasets revealed that ACE2 was coexpressed 

with TMPRSS2 within ileal absorptive enterocytes, nasal goblet 

secretory cells, and lung type 2 pneumocytes [14]. ACE2 

upregulation has also been observed in animal models of liver 

�brosis [15]. However, the reason for this upregulation remains 

unclear, and a link to other COVID-19 comorbidities has not 

been determined.

Here, we showed that expression of the gene encoding the 

ACE2 receptor in lung tissue is upregulated in diseases reported 

to be comorbidities associated with severe COVID-19. We also 

used systems biology approaches, including coexpression anal-

ysis, meta-analysis, and network analysis, to determine a po-

tential cause of the ACE2 upregulation. From this analysis, we 

found that ACE2 expression could be regulated by enzymes 

that modify histones, including KDM5B. �is identi�cation of 

a common molecular mechanism of increased COVID-19 se-

verity in patients with diverse comorbidities could direct the 

development of interventions to reduce the infection risk and 

disease severity in this population.
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METHODS

Literature Curation

Relevant scientific literature related to key COVID-19 

comorbidities was retrieved from PubMed on 16 March 2020 

using the query terms “pulmonary hypertension,” “chronic 

obstructive pulmonary disease,” “hypertension,” “smoking,” 

“pulmonary fibrosis,” and “asthma.” For terms returning 

more than 100  000 papers (“hypertension,” “smoking,” and 

“asthma”), only the most recent 100  000 papers were ana-

lyzed. Abstracts were annotated to identify all genes, dis-

eases, and species appearing in the title or abstract using the 

PubTator Central application programming interface [16]. 

This open source tool uses TaggerOne for disease annotations, 

GNormPlus for gene annotations, and SR4GN for species an-

notations [16]. The data were filtered to retain only papers 

containing a human species annotation. Annotation of the 

abstract text identified 6 relevant disease medical subject 

heading (MeSH) terms: “autoimmune diseases,” “cardiovas-

cular diseases,” “familial primary pulmonary hypertension,” 

“hypertension,” “hypertension, pulmonary,” and “renal insuf-

ficiency, chronic,” as shown in Figure 1. Next, every possible 

combination of gene and disease annotation within the title 

and abstract of each paper was generated. Only gene-disease 

associations supported by at least 4 documents, and those 

with a proximity less than or equal to the median sentence 

length of the paper section were retained.

Gene identi�ers (IDs) were converted to gene symbols using 

the biomaRt R package [17, 18], and disease IDs were converted 

to disease MeSH terms using the Entrez Programming Utilities 

to query the Entrez database provided by the National Center 

for Biotechnology Information. �e data were then further �l-

tered to retain disease MeSH terms relevant to reported clinical 

COVID-19 comorbidities [3]. Redundant terms were collapsed 

using fuzzy string matching. �e �nal gene-disease data set was 

used to generate a network utilizing Gephi so�ware where the 

nodes were genes and diseases, and the edge weight was deter-

mined by the number of analyzed papers containing the gene-

disease combination [19].

Meta-analysis

We manually curated Gene Expression Omnibus (GEO) repos-

itory (https://www.ncbi.nlm.nih.gov/geo/) on 16 March 2020 to 

find lung transcriptome datasets related to “pulmonary arterial 

hypertension” (PAH), “chronic obstructive pulmonary disease” 

(COPD), and “smoking.” Author-normalized expression values 

and metadata from these datasets were downloaded using the 

GEOquery package [20]. We performed differential expres-

sion analyses between patients with a disease and the control 
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Figure 1. Literature curation of genes associated with key COVID-19 comorbidities. A, Text-mining of 8727 abstracts identified 6 relevant disease medical subject heading 

(MeSH) terms associated with a total of 804 genes. The number of genes associated with each disease MeSH term in at least 4 abstracts is shown in the pie chart. B, The 

knowledge-based network of COVID-19 comorbidities. The network shows the diseases (red nodes) and genes (purple nodes) from (A). The edges represent an association 

between a disease and a gene. The size of the nodes is proportional to its degree. C, Genes associated with 4 or more COVID-19 comorbidities.
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individuals (Supplementary Table 1) using the limma package 

[21]. The gene symbol for each probe was obtained from the 

annotation file [22]. Probes that matched the same gene symbol 

were collapsed by taking the one with the lowest P value. 

Meta-analysis was performed with the MetaVolcanoR package 

[23] by combining the P values using the Fisher method. To 

adjusting for multiple comparisons, we calculated the false dis-

covery rate (FDR) to identify the differentially expressed genes 

(FDR < 0.05). For enrichment analyses, we utilized the EnrichR 

tool [24] with the GO Biological Process 2018 and BioPlanet 

2019 databases. We then selected pathways with a P value ad-

justed for multiple comparisons lower than 0.05. The network 

was created in Cytoscape [25].

Author-normalized fragments per kilobase of transcript per 

million mapped reads (FPKM) expression values of ACE2 gene 

in COPD patients and in subjects with normal spirometry were 

downloaded from GEO (accession ID, GSE57148). A  single 

t test was performed between COPD patients and controls 

(P = .000359).

Pearson correlation between the expression of ACE2 and 

all other genes in each of the 7 lung transcriptome studies was 

performed. �e P values were then combined using the Fisher 

method, and an FDR correction was applied to adjust for mul-

tiple comparisons.

For the epigenetics analysis, we run the EnrichR tool [24] with 

the ENCODE and ChEA consensus transcription factors from 

ChIP-X and Epigenomics Roadmap databases on the genes 

negatively or positively correlated with ACE2. Pathways with a 

P value adjusted for multiple comparisons lower than 10−10 were 

selected. We utilized the Encode Roadmap browser (http://www.

roadmapepigenomics.org/) from the Roadmap Epigenomics 

Project database [26] to identify the H3K27ac, H3K4m1, and 

H3K4m3 markers of histone acetylation and methylation with 

the corresponding P values in the Lung of ENCODE donor 

STL002 (Roadmap alias E096). 

Ethical approval was not applicable as we utilized publicly 

available data.

RESULTS

To identify the genes highly associated with key comorbidities 

of severe COVID-19 [1, 3], we mined all relevant scientific liter-

ature of these human diseases. Specifically, over 8000 abstracts 

were gathered from PubMed by querying titles and abstracts 

for the terms “pulmonary hypertension,” “chronic obstructive 

pulmonary disease,” “hypertension,” “smoking,” “pulmonary fi-

brosis,” or “asthma” (Figure  1A). Several relevant terms, such 

as “autoimmune diseases” and “cardiovascular diseases” were 

excluded from the PubMed query because of the breadth of lit-

erature published in these fields. Annotation of the abstract text 

identified 6 relevant disease MeSH terms: “autoimmune dis-

eases,” “cardiovascular diseases,” “familial primary pulmonary 

hypertension,” “hypertension,” “hypertension, pulmonary,” and 

“renal insufficiency, chronic” [3] (Figure 1A). Our text-mining 

analysis revealed 804 genes highly associated with 1 or more 

COVID-19 comorbidities (Figure 1B). Among those genes, 26 

were associated with 4 or more diseases (Figure 1C). Although 

ACE2 was known to be related to “cardiovascular diseases,” “fa-

milial primary pulmonary hypertension,” “hypertension, pul-

monary,” and “hypertension,” none of the articles containing 

this gene-disease association studied how ACE2 expression was 

altered in the lungs of patients with these diseases.

Based on the list of key comorbidities of severe COVID-19 

[1, 3], we searched for lung transcriptome datasets available at 

the GEO repository. We identi�ed 7 lung transcriptome studies 

of patients with either COPD or PAH, as well as smoking volun-

teers compared to nonsmoking volunteers, which were down-

loaded and used in our meta-analysis (Supplementary Table 1). 

For each study, we performed di�erential expression analysis 

between patients and control individuals (Supplementary Table 

1). By combining the P values obtained in all the 7 compari-

sons, we were able to identify 1740 and 938 genes that were, 

respectively, up- and downregulated in the disease (Figure 2A). 

Enrichment analysis using these di�erentially expressed genes 

revealed several pathways associated with in�ammatory pro-

cesses, metabolism, and endoplasmic reticulum stress. Among 

the pathways enriched with downregulated genes, were the 

“vasculogenesis” and “regulation of Notch signaling pathway” 

(Figure 2B). �e “viral life cycle” pathway, which describes the 

processes utilized by viruses to ensure survival and to attach 

and enter the host cells, was enriched with upregulated genes 

(Figure 2B). ACE2 was included in this pathway, as well as 25 

other genes (Figure 2C), including RAB1A. Rab GTPases are in-

volved in the replication of many viruses infecting humans [27] 

but have not been associated with SARS-CoV-2 life cycle yet. 

Genes encoding both TMPRSS2, which is required for SARS-

CoV-2 S protein priming [5], and FURIN, which cleaves SARS-

CoV-2 spike glycoprotein [28], were not di�erentially expressed 

in most of the lung transcriptome. However, both genes were 

highly expressed in lung (data not shown), suggesting that the 

levels of ACE2 may be the limiting factor for viral infection.

We then investigated whether the gene encoding the ACE2 

receptor was speci�cally upregulated in the lungs of patients 

having one of these morbidities (Figure 3A). In a lung RNA-seq 

dataset (Supplementary Table 1), we compared ACE2 expres-

sion between patients with COPD and subjects with normal spi-

rometry [29]. Again, the expression of ACE2 was signi�cantly 

upregulated in the disease compared to controls (Figure  3B). 

In fact, ACE2 was signi�cantly upregulated in 6 of 7 lung tran-

scriptome studies (Figure  3C), suggesting that patients who 

have COPD or PAH, and even people who smoke, may have 

higher chances of developing severe COVID-19.

Coexpression analyses can provide useful insights about 

the functional role of genes and their regulatory mechan-

isms [30]. We performed Pearson correlation between the 
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expression of ACE2 and all other genes in each of the 7 lung 

transcriptome studies (Supplementary Table 1), combined 

the P values using the Fisher method, and applied an FDR 

correction (Figure 4A). �is approach identi�ed 544 and 173 

genes with positive and negative correlation with ACE2, re-

spectively (Figure  4A). Several of these genes were related 

to histone modi�cations, such as HAT1, HDAC2, KDM5B, 

among others (Figure  4A). Among the positively correlated 

genes, we identi�ed ADAM10, which regulates ACE2 cleavage 

in human airway epithelia [31], and TLR3, which plays a key 

role in the innate response to SARS-CoV and MERS-CoV in-

fection [32].

Pathway enrichment analysis revealed that several of 

the genes positively associated with ACE2 were regulated 

by KDM5B, and by specific histone acetylation (H3K27ac) 

and histone methylation (H3K4me1 and H3K4me3) 

(Figure  4B). In fact, KMD5B demethylates lysine 4 of his-

tone H3 (ie, H3K4) and is involved in transcriptional reg-

ulation and DNA repair [33]. We then checked in the 

Roadmap Epigenomics Project database [26] to see whether 

the ACE2 locus contained ChIP-seq information for these 

histone markers. In the human lung, peaks for H3K4me1 

and H3K4me3, as well as H3K27ac, were identified in the 

ACE2 locus (Figure 4C), suggesting that ACE2 may be epi-

genetically regulated in the lung.

DISCUSSION

We showed here that patients with comorbidities that have very 

distinct mechanisms have increased expression of ACE2 in the 

lungs. Although our findings did not include COVID-19 infec-

tion data, we suggest that the higher expression of ACE2 in the 

lungs is associated with higher chances of developing the severe 

form of COVID-19, by facilitating the SARS-CoV-2 entry into 

lung cells during the infection. In fact, COVID-19 patients clas-

sified as severe cases displayed higher viral loads in nasopha-

ryngeal swab samples during the early stages of disease onset 

compared to mild patients [34].

�e current diabetes pandemic [35] could be worsening 

the SARS-CoV-2 pandemic by increasing the comorbidities 

associated with severe COVID-19. As we did not �nd 

lung transcriptome samples from patients with type 2 dia-

betes, we could not directly test whether ACE2 expression 
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Figure 2. Meta-analysis of lung transcriptomes of patients with COVID-19 comorbidities. A, Meta-analysis of 7 differential expression analyses. MetaVolcano tool was 
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is increased in patients with diabetes compared to healthy 

controls. However, our text-mining approach revealed that 

interleukin-6 (IL-6) and INS genes were associated with all 

the diseases we searched. �e INS gene encodes the insulin 

hormone, and insulin is associated with the NAD-dependent 

histone deacetylase sirtuin 1 (SIRT1) [36]. We found that 

SIRT1 was upregulated in the lung of patients with severe 

COVID-19 comorbidities in 4 of 7 studies (data not shown). 

Clarke et  al [37] have demonstrated that, under conditions 

of cell energy stress, SIRT1 can epigenetically regulate ACE2. 

Others too have shown that nonsteroidal anti-in�ammatory 

drugs may inhibit the SIRT1 deacetylase activity [38], which 

in turn could impact ACE2 expression.

�e “viral life cycle” pathway that was enriched with 

upregulated genes in patients with severe COVID-19 

comorbidities contains several genes in addition to ACE2 that 

could be potentially important for SARS-CoV-2 cell cycle 

and invasion/attachment. �ese include RAB1A gene, whose 

product promotes the replication of vaccinia virus [39]. Also, 

RAB1A is important for herpes simplex virus 1 secondary en-

velopment [40] and is required for assembly of classical swine 

fever virus particles [41]. It is possible that SARS-CoV-2 utilizes 

RAB1A as well.

�e fact that ACE2 gene is located in the X chromosome, 

and initial �ndings show that older men with comorbidities are 

more likely to be have severe COVID-19 compared to women 

[1], indicate that ACE2 expression in the lung may be sex bi-

ased. Although no signi�cant sex di�erence was found in the 

activity of ACE2 in mouse lung [42], in rats, the levels of ACE2 

were dramatically reduced with aging in both sexes, but with 

signi�cantly higher ACE2 expression in old female rats than 

male [43].

Although the mechanisms by which ACE2 is upregulated 

in patients with severe COVID-19 comorbidities were not 

addressed, our analysis may shed some light on the subject. 

Among the genes whose expression was positively correlated 

with ACE2, we detected genes associated with epigenetic reg-

ulation of gene transcription. For instance, HAT and HDAC 

modulate chromatin and DNA condensation by changing his-

tone acetylation status, thus permitting gene transcription. �is 

could occur in lung tissue, facilitating ACE2 expression, as ob-

served during lung cancer and COPD.

KDM5B is associated with hepatitis B virus infection [44]. 

In breast cancer cells, blockage of KDM5 triggers a robust in-

terferon response that results in resistance to infection by 

DNA and RNA viruses [45]. �is �nding suggests that KDM5 

demethylases are potential targets for preventing SARS-CoV-2 

infection.

COVID-19 may kill between 5.6% and 15.2% of people in-

fected with SARS-CoV-2 [46]. Drug treatments that lower this 

mortality rate may save many thousands of lives. Our systems 

biology approach o�ers putative gene targets for treating and 

preventing severe COVID-19 cases.

Supplementary Data

Supplementary materials are available at �e Journal of 

Infectious Diseases online. Consisting of data provided by 

the authors to bene�t the reader, the posted materials are 

not copyedited and are the sole responsibility of the authors, 
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so questions or comments should be addressed to the 

corresponding author.
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