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The rapidly evolving pandemic of severe acute respiratory syndrome coronavirus

(SARS-CoV-2) infection worldwide cost many lives. The angiotensin converting enzyme-2

(ACE-2) has been identified as the receptor for the SARS-CoV-2 viral entry. As such, it

is now receiving renewed attention as a potential target for anti-viral therapeutics. We

review the physiological functions of ACE2 in the cardiovascular system and the lungs,

and how the activation of ACE2/MAS/G protein coupled receptor contributes in reducing

acute injury and inhibiting fibrogenesis of the lungs and protecting the cardiovascular

system. In this perspective, we predominantly focus on the impact of SARS-CoV-2

infection on ACE2 and dysregulation of the protective effect of ACE2/MAS/G protein

pathway vs. the deleterious effect of Renin/Angiotensin/Aldosterone. We discuss the

potential effect of invasion of SARS-CoV-2 on the function of ACE2 and the loss of the

protective effect of the ACE2/MAS pathway in alveolar epithelial cells and how this may

amplify systemic deleterious effect of renin-angiotensin aldosterone system (RAS) in the

host. Furthermore, we speculate the potential of exploiting the modulation of ACE2/MAS

pathway as a natural protection of lung injury by modulation of ACE2/MAS axis or by

developing targeted drugs to inhibit proteases required for viral entry.
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INTRODUCTION

Severe acute respiratory syndrome virus 2 (SARS-CoV-2) causes a respiratory disease that led
to the fatal Coronavirus disease 2019 (COVID-19) pandemic. In late 2019, the SARS-CoV-2
outbreak was first reported in Wuhan, China that later led to a true crisis worldwide (Huang
et al., 2020). Coronaviruses (CoVs) are large enveloped non-segmented positive-sense RNA viruses.
They generally cause mild enteric and respiratory diseases in animals and humans (Glass et al.,
2004). Most human CoVs, such as hCoV-229E, OC43, NL63, and HKU1 usually cause only mild
respiratory diseases (Fouchier et al., 2004). SARS-CoV-2 causes acute, highly lethal pneumonia
with clinical symptoms similar to those reported for SARS-CoV and MERS-CoV-2 (Fouchier
et al., 2004). In contrast to SARS-CoV, SARS-CoV-2-infected patients rarely show prominent
upper respiratory tract signs and symptoms. On presentation, most infected individuals exhibit
dry cough (83–99%), and dyspnea (59.4–82%) with findings of bilateral ground-glass opacities on
radiographic images (Guo et al., 2020; Huang et al., 2020). In most severe cases the characteristic
symptom is respiratory distress (∼55%) Grasselli et al.

The reported mortality varies based on race, sex, age, and comorbid conditions (Baud et al.;
Porcheddu et al., 2020). Currently the true mortality still is not well-established, as the mortality
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may occur up to 30 days post infection. Based on current
literature, most severe SARS-CoV-2 cases progressed within 14–
21 days after disease onset. Various laboratory abnormalities
have been observed even preceding the significant respiratory
dysfunction (Lu et al., 2020). Mortality related to SARS-CoV-
2 in China as reported by the WHO is about 3.4% (Guo
et al., 2020; Sohrabi et al., 2020). The most severe cases
have been predominantly reported in elderly or subjects with
preexisting conditions, predominantly cardiovascular diseases
such as hypertension and congestive heart failure (Zhou
et al., 2020). Interestingly, these risk factors are similar
to the reported risk factors (diabetes, hypertension, obesity)
associated with MERS-CoV related mortality, although MERS-
CoV respiratory disease occurred in younger individuals (Assiri
et al., 2013; World Health Organization, 2013). These clinical
and epidemiological observations may provide some direction
on the mechanism of disease. Recent reports indicate that a
significant portion of SARS-CoV-2 related hospitalization in
the USA are below the age of 50 years. Given the fact of
a higher prevalence of metabolic diseases, including obesity,
hypertension, cardiovascular diseases and diabetes in the US
population (Moore et al., 2017), this infection may cause
higher mortality. The virus gains entrance into its host cell
via the ACE2 receptor. How the known epidemiological and
clinical manifestation of SARS-CoV-2 infectionmay be explained
by perturbations of physiological functions of the ACE2
receptor due to receptor virus interaction will be discussed in
this manuscript.

SARS-CoV-2 HOST INTERACTION

SARS-CoV-2 is single-stranded positive-sense RNA virus,
containing ∼26–32 kilobase (kb) genome. The viral envelope
consists of a lipid bilayer, where the viral membrane (M),
envelope (E), and spike (S) structural proteins are anchored.
Unlike other corona viruses, SARS-CoV-2 does not use
aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4)
as a receptor (Raj et al., 2013). Similar to SARS-CoV, SARS-
CoV-2 utilizes a novel metallocarboxyl peptidase angiotensin
receptor (ACE) 2 to gain entry into human cells (Donoghue
et al., 2000; Turner et al., 2002; Li et al., 2003). Similar to other
CoV, during viral entry into the host cell, the spike proteins
(S) on the envelope of SARS-CoV-2 are cleaved into S1 and S2
subunits (Kirchdoerfer et al., 2016). S2 does not interact with
the receptor but it harbors the functional elements required
for membrane fusion of the virion. The S1 protein/receptor
interaction is the pivotal determinant for SARS-CoV-2 to infect
a host species. S1 contains the receptor binding domain (RBD)
and directly binds to the peptidase domain (PD) of ACE 2 to
gain entry into host cells (Turner et al., 2002; Li et al., 2003;
Yan et al., 2020). Despite high similarity between the RBD of
SARS-CoV and SARS-CoV-2, several amino acid variations are
observed in the middle of the binding domain of SARS-CoV-
2, which provide an increased affinity to bind to ACE2 more
effectively (Wang Q. et al., 2020; Yan et al., 2020). Peptidase
activity of ACE2 is critical for the virion to gain access into the

host cytosol. Similar to SARS-CoV, proteolytic cleavage of S1
containing the receptor binding domain (RBD) at the C-terminus
of S1 protein of SARS-CoV-2 is required to initiate interaction
with PD of the ACE2 receptor (Li et al., 2005; Yan et al., 2020).
Cleavage of S1 protein is achieved by acid-dependent proteolytic
cleavage by one or several host proteases, including cathepsins,
transmembrane protease serine protease (TMPRSS)2, TMPRSS4,
or human airway trypsin-like protease (Hoffmann et al., 2020).
The exact protease has not been identified. Proteolytic cleavage
is followed by fusion of the viral and cellular membranes.
Furthermore, it has been shown that S protein cleavage occurs
at two different sites within the S2 portion of the protein, with
the first cleavage important for separating the RBD and fusion
domains of the S protein and the second for exposing the fusion
peptide (cleavage at S2′) (Belouzard et al., 2009). Binding of
S1 to the ACE2 receptor triggers the cleavage of ACE2 by a
disintegrin and metallopeptidase domain 17 (ADAM17)/tumor
necrosis factor-converting enzyme (TACE) at the ectodomain
sites (Lambert et al., 2005; Heurich et al., 2014; Oarhe et al.,
2015). Additionally, TMPRSS2 cleaves ACE2 at the intracellular
C-terminal domain (Heurich et al., 2014; Hoffmann et al., 2020).
Both cleavages (ectodomain and endodomain) by ADAM17 and
TMPRSS2 facilitate effective cellular viral entry. It appears that
this process leads to shedding of host ACE2 receptor (Belouzard
et al., 2009) that may contribute to the loss of ACE2 function and
systemic release of S1/ACE2 complex.

Generally fusion with the host plasma membrane occurs
within acidified endosomes that requires cleavage at S2′ exposing
a fusion peptide that inserts into the membrane. The potential
beneficial effect of chloroquine on SARS-CoV-2 is due to
its effect on the endosomal uptake and acidification. The
process of fusion with the host membrane is followed by
the formation of a funnel like structure built by two heptad
repeats in the S2 protein in an antiparallel six-helix bundle
facilitating the fusion and release of the viral genome into
the cytoplasm. The viral replication genome of CoVs contains
a variable number (World Health Organization, 2013; Lu
et al., 2020; Porcheddu et al., 2020; Sohrabi et al., 2020;
Zhou et al., 2020; Baud et al.) of open reading frames
(ORFs). Two-thirds of viral RNA, mainly located in the first
ORF (ORF1a/b) translates two polyproteins, pp1a and pp1ab,
and this encodes 16 non-structural proteins (NSP), while
the remaining ORFs encode accessory and structural proteins
(Fehr and Perlman, 2015). The rest of the virus genome
encodes four essential structural proteins, including spike (S)
glycoprotein, small envelope (E) protein, matrix (M) protein,
and nucleocapsid (N) protein (Fehr and Perlman, 2015). After
replication and subgenomic RNA synthesis, the viral structural
proteins, S, E, and M are translated and inserted into the
endoplasmic reticulum (ER), followed by movement along
the secretory pathway into the endoplasmic reticulum-Golgi
intermediate (Krijnse-Locker et al., 1994; Fehr and Perlman,
2015). The M protein directs most protein-protein interactions.
For assembly of virus, the interaction of M protein with
E protein is required to form Virus-Like Particles (VLPs),
suggesting these two proteins function together to produce
coronavirus envelopes.
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MECHANISM OF DISEASE

Effect of SARS-CoV-2 Infection on
Renin/Angiotensin System
Because of the central role of ACE2 receptor as the viral
entry point, the understanding of the functional role of
ACE/angiotensin receptor (AT) and ACE2/MAS receptor is
critical for the understanding of the pathophysiological changes
due to SARS-CoV-2 infection. Understanding of the molecular
downstream effects of angiotensin (Ang) on cellular signaling
may explain the observed clinical picture of severe respiratory
distress, myocardial injury, renal failure, and increased mortality
due to SARS-CoV-2 infection among the aging population and
subjects with cardiovascular and metabolic diseases (Zhou et al.,
2020; Zhu et al., 2020).

ACE Genes
Sequence analysis suggests that ACE and ACE2 exhibit 42%
amino acid homology and ACE2 has evolved through gene
duplication (Donoghue et al., 2000). ACE2 maps to chromosome
Xp22, spans 39.98 kb of genomic DNA, and contains 20 introns
and 18 exons (Turner et al., 2002). The ACE2 gene encodes
a type I membrane-bound glycoprotein composed of 805
amino acids (Marian, 2013). Functional domains include a C-
terminal transmembrane anchoring region (carboxy-terminal
domain), N-terminal signal peptide region and an HEXXH
zinc binding metalloprotease motif (catalytic domain) (Li
et al., 2003; Cerdà-Costa and Xavier Gomis-Rüth, 2014). ACE
receptors are expressed in almost all tissues, while ACE2 is
expressed on alveolar epithelial cells and capillary endothelial
cells. ACE2 is highly expressed in capillary rich organs such
as lungs and kidneys but also in the gut and brain (Hamming
et al., 2004; Tikellis and Thomas, 2012; Roca-Ho et al., 2017).
Genetic polymorphisms of ACE and ACE2 are associated
with hypertension, cardiovascular disease, stroke, and diabetes
(Crackower et al., 2002; Ramachandran et al., 2008; Jang andKim,
2012; Fehr and Perlman, 2015). Despite the structural homology
between ACE and ACE2, they have divergent physiological
function. ACE regulates the Renin Angiotensin Aldesterone
system (RAS). ACE2 counterbalances the deleterious effect of the
ACE/RAS pathway through its downstream ACE2/Angiotensin
(1-7)/MAS axis. The critical role of RAS has been shown in
the pathogenesis of metabolic inflammatory diseases (de Kloet
et al., 2010). Classical activation of angiotensin II depends on
renin and ACE activity. Prorenin (a 46KD protein) is the inactive
precursor of renin. Upon activation of the juxtaglomerular
apparatus (JG) of the afferent arterioles of the kidneys, specialized
proteases cleave prorenin to renin. Once renin is released into
the blood, it cleaves angiotensinogen into angiotensin (Ang)
I. Ang I is physiologically inactive, but acts as a precursor of
Ang II. The conversion of Ang I to Ang II is catalyzed by
ACE. ACE is expressed primarily in the vascular endothelium
of the lungs and kidneys (Wakahara et al., 2007), but also on
the epithelium of the lungs and upper respiratory system. After
Ang I is converted to Ang II, it binds to angiotensin II type
I (AT) and type II receptors in the kidney, adrenal cortex,
arterioles, and the brain (Figure 1A). Ang II acts on the adrenal

cortex to stimulate the release of aldosterone (Xue et al., 2011),
leading to sodium and water retention. While the effects of
Ang II are rapid, the effects of aldosterone are retarted due
to slower effects on downstream targeted gene transcription.
The overall physiological net effects of RAS activation is an
increase in total body sodium, total body water, and increased
vascular tone. Furthermore, the binding of Ang II to AT receptors
results in vasoconstriction (Gustafsson and Holstein-Rathlou,
1999), endothelial injury (Watanabe et al., 2005), endovascular
thrombosis (Tay and Lip, 2008) and increase blood volume.
Increased Ang II is associated with hypertension and accelerated
thrombosis in arterioles by activating the coagulation cascade
(both thrombin and platelets) (Senchenkova et al., 2010; Singh
and Karnik, 2016). Interestingly, the thrombogenic effects of
AngII on the platelets was not reversible by application of aspirin
(Jagroop andMikhailidis, 2000). At the cellular level, angiotensin
II induces various signaling pathways, including serine/threonine
kinase, ERK, JNK/MAPK as well as PKC (Malhotra et al., 2001).
Studies have shown that Ang II effectively induces IL-6 and TNF-
α, possibly through serine tyrosine kinases, ERK/JNK MAPK
activation, G protein coupled receptor activation or through
interaction with mineralocorticoid receptors (Funakoshi et al.,
1999; Han et al., 1999; Ruiz-Ortega et al., 2002; Luther et al.,
2006). Ang II is a potent activator of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase and hence an inducer
of reactive oxygen species (ROS) production (Garrido and
Griendling, 2009). Furthermore, Ang II activates neutrophils
and macrophages flux to the affected tissues and inhibits the
production of nitric oxide and hence promotes vascular injury
(Kato et al., 1996; Nabah et al., 2004). These considerations
provide new visions to develop targeted therapies, as Ang II
functions as a pluripotent mediator to enhance cytokines (IL-6,
TNFα, and others), oxidative injury by ROS, endothelial injury
by inhibiting NO synthesis and vasoconstriction. Therefore,
inhibition of only one of its targets for instance IL-6 may
not provide significant therapeutic benefit in these patients.
Currently, there is an ongoing clinical trial to study the effect of
monoclonal antibodies against IL-6 receptor (ClinicalTrials.gov
Identifier: NCT04317092).

It is very important to note, especially in the context of
SARS-CoV-2 infection, that besides the classical RAS/ACE
mediated Ang II formation, formation of Ang II can occur
through alternative pathways by various proteases. These include
tryptensin, cathepsin G, tonin, kallikrein, neutral endopeptidase,
and chymase (Figure 1A). These proteases can cleave Ang I to
form Ang II (Kramkowski et al., 2006; Lorenz, 2010; Becari et al.,
2011; Uehara et al., 2013). Most of these proteases are localized in
specific tissues (lungs, myocardium, arterioles, kidney, or brain)
and are not sensitive to ACE inhibitors. Interestingly, targeted
inhibition of ACE using ACE inhibitors, only decreased Ang II
levels for a short period of time, and Ang II levels return to
baseline 1 week after treatment with ACE inhibitors (Mento and
Wilkes, 1987). Furthermore, it has been shown that application
of ACE and Ang II receptor blocker (ARB) inhibitors in animal
models leads to an increase in the expression of ACE2 (Ishiyama
et al., 2004). Part of protective function of ACE and ARBs is
considered to be due to upregulation of ACE2. Therefore, it is
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FIGURE 1 | Dysregulation of Ang II and Ang (1-7) by loss of protective function of ACE2 receptor. (A) under physiological condition there is a balance in ACE and

ACE2 receptor activity. ACE regulates the Renin Angiotensin Aldosterone system (RAS) and cleaves Ang I to produce Ang II. Ang II is a potent vasoconstrictor and

detrimental for endothelial and epithelial function through activating AT1 and AT2 receptors. The counterbalance of the RAS/Ang II output is regulated by ACE2 and

Mas/G protein coupled receptor activity. ACE2 cleaves Ang I and Ang II into Ang-1-9 and Ang1-7, respectively, thereby it activates MAS/G protein coupled receptor

that protect cell death. (B) SARS-CoV-2 binds to ACE2 to gain entry to epithelial cells of the lungs. Cleavage of spike proteins by a protease such as trypsin/cathepsin

G and or ADAM17 on ectodomain and TMPRSS2 of endodomain sites facilitate viral entry into the cells. This process leads to shedding of host ACE2 receptors and

loss of its protective function. Loss of function of ACE2 activity prevents production of Ang 1-9 and Ang1-7. Lack of Ang1-7 diminishes the activity of MAS/G receptor,

leading to the loss of its protective functions including vasodilatation, cell protection both at the epithelial and endothelial sites. Loss of ACE2 function leads to an

imbalance and unchecked effects of Ang II and upregulation of RAS/Ang II pathway. Upregulation of Ang II leads to vasoconstriction, thrombophilia, microthrombosis,

alveolar epithelial injury and respiratory failure. Therefore, inhibiting the proteolytic function of trypsin/cathepsin and ADAM17 or TMPRSS2 and or direct activation of

MAS/G receptor by enhancing Ang-(1-7) can overcome the loss of function ACE2 and are viable targets to prevent tissue damage to the host.

possible that upregulation of ACE2 may provide more available
receptors for viral entry and hence a higher viral load associated
with poor prognosis (Chu et al., 2004). This also suggests that in
subjects, who are on ACE inhibitors, the activation of alternative
pathways may play a significant role in the formation of Ang
II (Diaz, 2020). Currently, a clinical trial is ongoing to assess
the effect of ACE/ARB inhibitors (ClinicalTrials.gov Identifier:
NCT04330300) on SARS-CoV-2 infection. If the alternative
pathways in the formation of Ang II are important, it is highly
unlikely that the ACE/ARB inhibitors play a role on the clinical
course of SARS-CoV-2 infection.

ACE2 acts as a ligand through its recently identified MAS1
receptor, which is a G-protein–coupled receptor (Donoghue
et al., 2000; Santos et al., 2003). ACE2 is amonocarboxypeptidase,
which cleaves Ang I into a non-apeptide, Ang 1-9 and Ang II into
a heptapeptide, Ang 1-7 (Santos et al., 2003; Marian, 2013). Both
peptides have vasodilatory and antiproliferative and protective
functions by activating the MAS/G receptor. The ACE2/Ang
1-7/MAS1 axis provides an endogenous counter-regulatory
mechanism within the renin–angiotensin system (RAS) that
balances the deleterious effects of the ACE/Ang II/AT1 receptor
axis (Santos et al., 2003). Mice deficient in MAS1 or ACE2
receptors exhibit cardiac systolic dysfunction, increased blood

pressure, myocardial interstitial fibrosis, endothelial dysfunction,
and exhibit increased susceptibility to intravascular thrombosis,
chronic kidney disease, metabolic abnormalities, and various
other biological abnormalities that regulate the cardiovascular
system (Yamamoto et al., 2006; Tikellis and Thomas, 2012).
ACE2 activation prevents the deleterious effects of Ang II on
the cells and organisms, such as cell death, fibrosis, angiogenesis,
and thrombosis formation (Fraga-Silva et al., 2010; Tikellis
and Thomas, 2012). Recent autopsy results on SARS-CoV-2
infected humans showed diffuse alveolar damage with massive
capillary congestion accompanied by microthrombi in vascular
beds but a paucity of inflammatory infiltrates (Menter et al.,
2020). However, pathological examination on autopsies have not
investigated if SARS-CoV-2 infection leads to total destruction
of ACE2 receptors on the alveolar epithelial and endothelial
cells. Interestingly, in an animal model of SARS-CoV, Oudit
et al. found a marked decreased ACE2 expression in the heart
of infected mice (Oudit et al., 2009). The key product of ACE2
activity is Ang-(1-7), which is considered a biologically active
member of the RAS. By binding to MAS, it induces many
beneficial actions, such as vasodilation, inhibition of cell growth,
and protection from alveolar epithelial cell injury. In addition, it
has antifibrotic, anti-thrombotic, and antiarrhythmogenic effects

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 June 2020 | Volume 10 | Article 317

https://www.ClinicalTrials.gov
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Samavati and Uhal SARS-CoV-2 and Angiotensin Modulation

(le Tran and Forster, 1997; Schindler et al., 2007; Li et al., 2008).
It has been shown that the ACE2-Ang-(1-7)-MAS axis has a
protective effect on the brain and prevents ischemic stroke (Jiang
et al., 2013).

Direct Protective Actions of ACE2 on Lung
Alveolar Epithelial Cells
In addition to its protective role in the cardiovascular system,
ACE2 has a direct protective role in alveolar epithelial cells. In the
lungs ACE2 has numerous physiological functions, most of which
are protective against lung injury. Similar to the endothelial
site, ACE2 degrades the octapeptide Ang II by removing a
single amino acid from the C-terminal end of the peptide to
generate the heptapeptide Ang1-7. Our laboratory and others
have shown that ACE2 protects against lung injury by: (a)
degrading Ang II, which is vasoconstrictive and proapoptotic
for lung epithelial cells (Wang et al., 1999) and profibrotic (Li
et al., 2008; Uhal et al., 2011), and (b) by producing the peptide
Ang1-7, which inhibits the actions of Ang II through binding
to the MAS receptor (Gopallawa and Uhal, 2014). In support
of this protective role for ACE2, pharmaceutical preparations of
recombinant ACE2, when administered to experimental animals,
protect against lung cell death, inhibit acute lung injury and
prevent lung fibrosis after chronic injury to the lungs (Li et al.,
2008; Rey-Parra et al., 2012). As further evidence, the application
of a specific competitive inhibitor of ACE2, DX600, to primary
cultures of isolated ACEs increases the level of Ang II released
into the serum-free culture medium by autocrine mechanisms,
reduces the amount of released Ang1-7 and, importantly, induces
apoptosis inhibitable by the AT1 receptor blocker (Menter et al.,
2020). Thus, functional ACE2 normally expressed by alveolar
epithelial cells can be viewed as a critical survival factor for
these lung cells. In addition, the enzymatic product of ACE2, the
Ang1-7, itself protects against lung cells death by antagonizing
that actions of Ang II (le Tran and Forster, 1997). If Ang1-7 is
applied to cultures of lung epithelial cells, it can prevent lung
cell death in response to either Ang II or the ER stress inducer
MG132 (Nguyen and Uhal, 2016). The Ang1-7 receptor MAS
and the JNK-selective phosphatase MKP-2 appear to be critical
in this protective action of Ang1-7 response, becauses iRNAs
or antisense knockdowns of MAS or MKP-2 can eliminate the
ability of Ang1-7 to prevent lung cell death (Gopallawa and Uhal,
2016). Indeed, Ang1-7 itself and congeners of the peptide, such
as cyclic Ang1-7 (Gopallawa and Uhal, 2016), have already been
shown to protect the lungs in preclinical models of acute lung
injury (Simoes e Silva et al., 2013; Gopallawa and Uhal, 2014).

Therapeutic Strategies for SARS-CoV-2
Infection
Currently, there are no targeted drugs specifically against SARS-
CoV-2. Recent efforts have been put forward of drug repurposing
by screening of various available antiviral agents with the
aim to identify possible treatments. Among those, lopinavir,
originally used for treatment of human immunodeficiency
virus, was identified to have potential antiviral activity against

SARS-CoV-2. Unfortunately, a randomized-controlled, open-
label trial involving hospitalized adult patients with confirmed
SARS-CoV-2 infection showed no benefit of lopanavir (Cao
et al., 2020). Other studies suggested that remdesivir (GS5734)
an inhibitor of RNA polymerase, originally developed to
treat Ebola infections, has in vitro activity against multiple
RNA viruses, including SARS-CoV-2 (Mulangu et al., 2019).
Experimental data suggested that at micromolar concentration
of remdesivir and chloroquine potentially blocked virus infection
(Wang M. et al., 2020). Current clinical trials are ongoing
to assess the efficacy of remdesivir treatment alone or in
conjunction with chloroquine in SARS-CoV-2 infection. Because
hydroxychloroquine and chloroquine are considered inhibitors
of endosomal trafficking of SARS-CoV-2, these drugs are used
as potential therapeutics. Both drugs are antimalarial drugs that
are also used as antiinflammatory drugs in various autoimmune
diseases, including rheumatoid arthritis, Lupus erythematosus,
and respiratory diseases such as sarcoidosis (Martin et al.,
2009; Talreja et al., 2019). Despite the high media coverage,
currently, there are no randomized clinical trials to support
their efficacy against SARS-CoV-2 infection. However, it is
conceivable that their efficacy may vary in different stages of
virion life cycle and virus interaction with the host. These
drugs may be beneficial in early stages of the infection,
when the virus requires endosomal uptake. In fact, during
the preparation of this manuscript, several non-randomized
clinical trials have suggested a lack of significant efficacy of
antimalarial drugs in the treatment of SARS-CoV-2 infection
(Magagnoli et al., 2020).

Corticosteroids are the most conventional
immunosuppressant drugs used to suppress inflammatory
responses (Cinatl et al., 2005). Although the WHO cautions of
their use, they have been widely used despite lack of scientific
data. Furthermore, because of the high incidence of arterial
hypertension, diabetes, and congestive heart failure in subjects
with COVID-19, corticosteroids should be used with caution.
It is well-described that corticosteroids potentiate the effect of
Ang II and RAS (Ullian et al., 1996), hence it is less likely that
corticosteroids provide any significant clinical benefit in this
clinical scenario.

Manipulation of ACE2/Ang(1-7) and
Protease Activity as Novel Therapeutic
Targets
Considering the significant SARS-CoV-2 related risk factors for
hospitalization and mortality among patients with metabolic
diseases, including obesity, arterial hypertension, cardiovascular
diseases, and diabetes that may reflect overall activation
of the RAS system, modulation of RAS activation through
the ACE2/(Ang1-7)/MAS pathway should be considered for
treatment of this disease. Furthermore, our clinical observation
and published clinical data suggest a unique clinical presentation
of SARS-CoV-2 patients: most patients present with relatively
preserved hemodynamics and lack of lactic acidosis. But they
have respiratory distress, appear to be in a hypercoagulable
state (Liu et al., 2020; Menter et al., 2020), exhibit progressive
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renal failure (Cheng et al., 2020), have stroke like features and
myocardial injury (Zhou et al., 2020). Clinical observational
studies indicate that in most cases the respiratory distress
occurs many days (in general about 14 days) after the infection,
suggesting that this may not be a direct effect of the initial
viral infection but rather the hosts reaction to the loss of
function of ACE2 and dysregulation of Ang II/ACE2 pathways
as well activation of host proteases. Our central hypothesis is
that the binding of the coronavirus spike protein to ACE2
leads to shedding of ACE2 receptors by various proteases,
which in turn leads to the loss of protective function of the
ACE2/MAS axis in the lungs and other organs (Figure 1B).
In addition to the loss of protective function of ACE2/MAS,
activation of classical pathway (ACE/RAS/Ang II) and alternative
pathways through tissue specific proteases, including cathepsins,
chymase-like proteases, leads to an excessive production of
Ang II at the tissue level. This process may further shift the
balance of protective Ang (1-7)/MAS and ACE2 function to
the detrimental effects of increased Ang II contributing to lung
epithelial and endovascular injury. Therefore, induction of the
downstream pathway of ACE2, by activating the ACE2/Ang1-
7/MAS axis may prove a useful strategy in preventing
lung and cardiovascular damage associated with SARS-CoV-
2 infections. Because decreased ACE2/MAS activity augments
the Ang II/AT1R activity and its hazardous consequence on
increased pulmonary vascular endothelial/epithelial injury and
lung pathology. Inhibiting the activity of proteases necessary
for cleavage of viral spike proteins: for instance inhibition of
enzymatic activity of ADAM17 and TMPRSS2 could serve as
other novel therapeutic targets. This could potentially block
viral interaction with the receptor and its entry into the cells.
Identification of specific proteases and development of inhibitors
targeting proteases necessary for cleavage of spike proteins may
prove to be viable. In addition, exploiting the protective effect
of Ang1-7 or its analogs, such as AVE0991 AVE0991 (Pinheiro
et al., 2004) against deleterious effect of increased Ang II is
feasible and might be effective for the symptomatic treatment of
these patients.

CONCLUDING REMARKS

Based on the importance of ACE2 as a counterbalance to the
deleterious effects of Ang II, the loss of ACE2 and Ang(1-7)
may be detrimental to the organism. Surprisingly, little is known
about the effect of SARS-CoV-2 virus binding to ACE2 and
how the viral binding on this receptor may modulate the ACE2
enzymatic activity impact its role as a “survival factor.” Critical
questions that are yet to be answered include: (1)What effect does
SARS-CoV-2 binding to ACE2 have on its enzymatic activity,
and on its protective actions toward lung epithelial cells and
lung injury? (2) What effect(s) does SARS-CoV-2 infection of
lung epithelial cells/endothelial cells have on ACE2 expression
in the lungs and other organs? (3) Do known inhibitors or
activators of ACE2 have any effect(s) on the binding of SARS-
CoV-2 to the ACE2 receptor and/or infection of lung epithelial
cells? Regardless, these are questions of fundamental importance
to our understanding of SARS-CoV-2 biology that need to be
answered soon.
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