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Abstract 

The current SARS covid-19 epidemic spread appears to be influenced by ethnical, geographical and 

sex-related factors that may involve genetic susceptibility to diseases. Similar to SARS-CoV, 

SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells, 

notably type II alveolar epithelial cells. Importantly, ACE2 gene is highly polymorphic. Here we 

have used in silico tools to analyze the possible impact of ACE2 single-nucleotide polymorphisms 

(SNPs) on the interaction with SARS-CoV-2 spike glycoprotein. We found that S19P (common in 

African people) and K26R (common in European people) were, among the most diffused SNPs 

worldwide, the only two SNPs that were able to potentially affect the interaction of ACE2 with 

SARS-CoV-2 spike. FireDock simulations demonstrated that while S19P may decrease, K26R 

might increase the ACE2 affinity for SARS-CoV-2 Spike. This finding suggests that the S19P may 

genetically protect, and K26R may predispose to more severe SARS-CoV-2 disease. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.23.057042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.23.057042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 

In principle, any new infectious agent that challenges a totally susceptible population with little or 

no immunity against it is able to totally infect the population causing pandemics. Pandemics rapidly 

spread affecting a large part of people causing plenty of deaths with significant social disruption 

and economic loss. However, if we look at the even worst pandemics in the human history we can 

realize that ethnic and geographical differences in the susceptibility to disease actually exist, in spite 

of the infectious sources and transmission routes that are the same for all individuals1. The current 

SARS covid-19 (a shortened form of “coronavirus disease of 2019”) epidemic spread appears to be 

similarly influenced by ethnical and geographical factors. After its initial spread in China, the 

pandemic is now progressing at an accelerating rate in Western Europe and the United States of 

America2. In these regions, the causative agent, the severe acute respiratory syndrome corona virus 

-2 (SARS-CoV-2) is spreading incredibly quickly between people, due to its newness – no one on 

earth has immunity to SARS Covid-19 – and transmission route. Yet, in the other regions of the 

world, the kinetics of diffusion and mortality seem less impressive, although the world has become 

highly interconnected as a result of a huge growth in trades and travels2. 

A multitude of factors may concur to explain the ethnic and geographical differences in 

pandemic progression and severity, including cultural, social and economic inequality, as well as 

health care system organization, and climate also. Mostly, considerable individual differences in 

genetic susceptibility to diseases may be involved3. Genomic predisposition is a major concept in 

modern medicine, and understanding of molecular bases of genetic predisposition can help to find 

prevention and treatment strategies for the corresponding diseases3. In the SARS Covid-19, even 

subtle inter-individual genetic differences may affect both the SARS-CoV-2 viral life cycle and the 

host innate and acquired immune response. 

SARS-CoV-2 is an enveloped positive-stranded RNA virus that replicates in the cytoplasm, and 

uses envelope spike projections as a key to enter human airway cells4. In coronaviruses spike 

glycoproteins, which forms homotrimers protruding from the viral surface, are a primary 

determinant of cell tropism, pathogenesis, and host interspecies transmission. Spike glycoproteins 

comprise two major functional domains: an N-terminal domain (S1) for binding to the host cell 

receptor, and a C-terminal domain (S2) that is responsible for fusion of the viral and cellular 

membranes5. 

Following the interaction with the host receptor, internalization of viral particles into the host 

cells is accomplished by complex mechanisms that culminate with the activation of fusogenic 

activity of spike, as a consequence of major conformational changes that, in general, may be 

triggered by receptor binding, low pH exposure and proteolytic activation5. 
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In some coronaviruses spike glycoproteins are cleaved by furin, a Golgi-resident protease, at the 

boundary between S1 and S2 domains, and the resulting S1 and S2 subunits remain non-covalently 

bound in the prefusion conformation with important consequences on fusogenicity5. Notably, at 

variance with SARS-CoV and other SARS-like CoV Spike glycoproteins, SARS-CoV-2 Spike 

glycoprotein contain a furin cleavage site at the S1/S2 boundary, which is cleaved during viral 

biogenesis 6, and may affect the major entry route of viruses into the host cell5. 

Productive entry of coronaviruses that harbor non-cleaved Spike glycoproteins (such as SARS-

CoV) rely on endosomal proteases suggesting that this entry is accomplished by hijacking the host 

endocytic machinery5. Indeed, it has been reported that SARS-CoV infection is inhibited by 

lysomotropic agents because of the inhibition of the low-pH-activated protease cathepsin L7. 

However, SARS-CoV is also able to fuse directly to the cell membrane in the presence of relevant 

exogenous proteases, and this entry route is believed to be much more efficient compared to the 

endocytic route8. In fact, proteases from the respiratory tract such as those belonging to the 

transmembrane protease/serine subfamily (TMPRSS), TMPRSS2 or HAT (TMPRSS11d) are able 

to induce SARS-CoV spike glycoprotein fusogenic activity9,10,11,12. The first cleavage at the S1-S2 

boundary (R667) facilitates the second cleavage at position R797 releasing the fusogenic S2’ sub-

domain5. On the other hand, there is also evidence that cleavage of the ACE2 C-terminal segment 

by TMPRSS2 can enhance spike glycoprotein-driven viral entry13. Notably, it has been very 

recently demonstrated that also SARS-CoV-2 cell entry depends on TMPRSS2, and is blocked by 

protease inhibitors14. 

SARS-CoV-2 and respiratory syndrome corona virus (SARS-CoV) Spike proteins share very 

high phylogenetic similarities (99%), and, indeed, both viruses exploit the same human cell receptor 

namely angiotensin-converting enzyme 2 (ACE2), a transmembrane enzyme whose expression 

dominates on lung alveolar epithelial cells6,15,16. This receptor is an 805-amino acid long captopril-

insensitive carboxypeptidase with a 17-amino acids N-terminal signal peptide and a C-terminal 

membrane anchor. It catalyzes the cleavage of angiotensin I into angiotensin 1-9, and of angiotensin 

II into the vasodilator angiotensin 1-7, thus playing a key role in systemic blood pressure 

homeostasis, counterbalancing the vasoconstrictive action of angiotensin II, which is generated by 

cleavage of angiotensin I catalyzed by ACE17Although ACE2 mRNA is expressed ubiquitously, 

ACE2 protein expression dominates on lung alveolar epithelial cells, enterocytes, arterial and 

venous endothelial cells, and arterial smooth muscle cells18. 

There is evidence that ACE2 may serve as a chaperone for membrane trafficking of an amino 

acid transporter B0AT1 (also known as SLC6A19), which mediates the uptake of neutral amino 
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acids into intestinal cells in a sodium dependent manner19. Recently, 2.9 Å resolution cryo-EM 

structure of full-length human ACE2 in complex with B0AT1 was presented, and structural 

modelling suggests that the ACE2-B0AT1 can bind two spike glycoproteins simultaneously20,21. It 

has been hypothesized that the presence of B0AT1 may block the access of TMPRSS2 to the 

cutting site on ACE220,21. B0AT1 (also known as SLC6A19) is expressed with high variability in 

normal human lung tissues, as shown by analysis of data available in Oncomine from the work by 

Weiss et al22. 

Notably, a wide range of genetic polymorphic variation characterizes the ACE2 gene, which 

maps on the X chromosome, and some polymorphisms have been significantly associated with the 

occurrence of arterial hypertension, diabetes mellitus, cerebral stroke, coronary artery disease, heart 

septal wall thickness and ventricular hypertrophy23,24,25. The association between ACE2 

polymorphisms and blood pressure responses to the cold pressor test led to the hypothesis that the 

different polymorphism distribution worldwide may be the consequence of genetic adaptation to 

different climatic conditions25,26 . In this study we have used a combination of in silico tools to 

analyze the possible impact of ACE2 single-nucleotide polymorphisms (SNPs) on the interaction 

with SARS-CoV-2 Spike glycoprotein. Results seem to suggest that ACE2 polymorphism can 

contribute to ethnic and geographical differences in SARS COVID-19 spreading across the world. 
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Results 

3D Protein Data Bank (PDB) models and in silico screening of ACE2 SNPs affecting binding 

with coronavirus Spike proteins. All simulations were carried out using different 3D Protein Data 

Bank (PDB) X-ray cristallography models from RCBS (https://www.rcsb.org/): 2AJF  (SARS-CoV 

Spike Receptor Binding Domain [RBD] /ACE2 complex)27, 6LZG (SARS-CoV-2 Spike RBD 

/ACE2 complex)28, 6M0J (SARS-CoV-2 Spike RBD /ACE2 complex)29, 6VW1 (chimeric SARS-

CoV/SARS-CoV-2 Spike RBD /ACE2 complex)30, and 6M17 (SARS-CoV-2 Spike RBD 

/ACE2/B0AT1 complex)20,21 (Fig. 1a). ClustalO alignments of human ACE2 amino acid sequences, 

and SARS-CoV, SARS-CoV-2 and chimeric SARS-CoV/SARS-CoV-2 spike RBDs used for X-ray 

cristallography models are reported in Supplementary Fig. 1. 6VW1 was developed with a chimeric 

RBD to facilitate crystallization, by using the core from SARS-CoV RBD as the crystallization 

scaffold and the Receptor Binding Motif (RBM) from SARS-CoV-2 as the functionally relevant 

unit. Nevertheless, the structures of chimeric SARS-CoV/SARS-CoV-2 Spike RBD /ACE2 

complex of 6VW1 and SARS-CoV-2 Spike RBD /ACE2 complex of 6M0J, particularly in RBM 

region, were highly similar30. 

In all models, similar to SARS-CoV RBM, SARS-CoV-2 RBM forms a concave surface that 

houses a convexity formed by two helices on the exposed surface of ACE2.  Strong network of H-

bond and salt bridge interactions mediate the receptor-ligand binding. Global energy and several 

distinctive features of the 3D models with and without glycosylation are reported in Supplementary 

Table 1. Contact residues are classified as: “permanent” (predicted as binding residues in all 10 

models), “stable” (predicted as binding residues in 6 or 7 out 10 models), “unstable” (predicted as 

binding residues in 6 or 7 out 10 models), “hyper-unstable” (1 or 2 models out of 10). 

Using the 3D PDB models and EVOEF31,32 on SSIPe web-server 

(https://zhanglab.ccmb.med.umich.edu/SSIPe/) we screened the entire list of 301 ACE2 SNPs 

causing missense mutations from the dbSNP and UNIPROT database to identify possible amino 

acid substitutions that may affect binding interfaces (Supplementary Table 2). SSIPe 33 was used to 

estimate ΔΔG values associated with each amino acidic substitution, and to generate models of 

ACE2 polymorphic variants. The list of the amino acid substitutions that may affect the 

ACE2/Spike, ACE2/B0AT1 and ACE2/ACE2 interfaces is reported in Supplementary Table 3. 

Twenty-seven substitutions were predicted to influence the ACE2/Spike interface in at least one of 

the different 3D PDB models. Fifteen and seventeen were predicted to affect the ACE2/B0AT1 and 

ACE2/ACE2 interfaces, respectively. Some residues, which are described in UNIPROT database 

(https://www.uniprot.org/uniprot/Q9BYF1) as important for the interaction between spike and 

ACE2, are permanent contact residues (predicted as binding) but all of these are non-polymorphic 
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(Fig. 1b). In contrast, polymorphic residues are stable, unstable or hyper-unstable. A list of 18 SNPs 

from dbSNP (S19P, I21T, I21V, E23K, A25T, K26E, K26R, T27A, E35D, E35K, E37K, S43R, 

E75G, M82I, G326E, E329G, G352V; D355N), which were predicted to affect the ACE2/Spike 

interface, was used for further analysis. 

 

SNPs possibly affecting ACE2 glysosylation. Supplementary Table 1 illustrates amino acid 

glycosylation sites, and structure of the glycosidic chains as inferred from different ACE2/Spike 

complex PDB models. Putative polymorphic sites (Q60R, N103H, N546D, N546S) from dbSNP 

database that may affect ACE2 glycosylation are also reported. One of these amino acid variations, 

N546D, is rather common in South Asia (Supplementary Table 4). 

FireDock34 was used to estimate the effects of removal of glycosidic residues or chains on ACE2 

interaction with SARS-CoV-2 Spike RBD by calculating ΔG values. The data indicated that 

removal of glycosidic chains results in either an increased or a decreased ΔG values, depending on 

the PDB model (Fig. 1c). In particular, removal of glycosidic moieties apparently strengthened the 

ACE2/Spike interaction in SARS-CoV Spike/ACE2 in the 2AJF model, while it appeared to 

weaken the interaction between SARS-CoV-2 Spike and ACE2 in the 6VW1 model. In both cases, 

the effect was mostly due to removal of the terminal beta-mannose (BMA) (Fig. 1c), which was 

predicted to decorate a glycosidic chain attached to aspartic amino acid residue at position 90 that 

maps in a helix that is involved in the interaction with Spike, as shown in Fig. 1d. Noteworthy, in 

the 6VW1 model, BMA is involved in two H-bonds and one pseudo-bond (Fig. 1e), and these 

bonds are lost in non-glycosylated models. In contrast, in the 2AJF model, the BMA forms only one 

H-bond, and after removal of terminal BMA, the Thr-41 acquires more grads for binding thereby 

strengthening the interaction with ACE2. These results seem to suggest that ACE2 glycosylation 

may play a different role in modulating the interaction with SARS-CoV Spike and SARS-CoV-2 

Spike. 

 

Selected ACE2 SNPs affecting binding interfaces 

FireDock34 was used to estimate the effects of selected ACE2 SNPs on interaction with SARS-CoV 

Spike RBD (2AJF model) and SARS-CoV-2 Spike RBD (6M0J and 6WV1 models). Selection was 

based on both frequency of these SNPs worldwide, and predicted effects on ACE2 binding 

interfaces. Screening was preceded by correlation analysis of SNPs data from different databases 

(Supplementary Fig. 2). Network plot (Fig. 2a) and Non-Metric Multidimensional Scaling (NM-

MDS, Bray-Curtis index) (Fig. 2b) of the most diffused SNPs demonstrated that S19P and K26R 

were, among the most diffused SNPs worldwide, the only two SNPs that were able to potentially 
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affect the interaction of ACE2 with SARS-CoV Spike and SARS-CoV-2 Spike (Supplementary 

Table 3). In particular, the S19P SNP is rather common in African people with a frequency about 

0.3%, while K26R SNP is frequent in European people with a frequency about 0.5% 

(Supplementary Table 4). 

FireDock34 results indicated that the S19P substitution decreased the affinity of ACE2 with 

Spike in 2AJF and 6VW1 models (Fig. 2c) and similar results were obtained with all other models. 

Moreover, this amino acid substitution seems also to affect the ACE2 N-terminal cleavage site (Fig. 

2d), and when FireDock34 simulations were carried out on ACE2 with the alternative cleavage site, 

the effects of S19P SNP was much more impressive (Fig. 2 c). 

In contrast, the K26R and the less common K26E substitutions appeared to increase the affinity 

of ACE2 with SARS-CoV-2 Spike (2AJF model), and slightly decrease the affinity of ACE2 with 

SARS-CoV Spike (6VW1 and 6M17) models (Fig. 3a). As 6VW1 was generated with a chimeric 

SARS-CoV/SARS-CoV-2 Spike, to support our results we performed an additional simulation by 

challenging the ACE2 structure from 6VW1 with the Spike structures that were generated by the 

different models (Fig. 3b), and the results confirmed those shown in Fig. 3a. Noteworthy, the 

receptor-ligand interactions was much weaker in 6M17 (SARS-CoV-2 Spike RBD /ACE2/B0AT1 

complex) with respect to the other models, confirming an inhibitory function of B0AT1. However, 

in this model, at lower energy values, the effects of K26R/E substitutions were much more evident. 

FireDock34,35 simulations indicate that such an increased affinity between K26R ACE2 and SARS-

CoV-2 Spike could be due to an increased number of H-bond and/or pseudo-bonds around Glu-35, 

Met-82 and Lys-353 (Fig. 3c). Based on this result, the K26R and K26E could genetically 

predispose to more severe SARS-CoV-2 disease. In addition, several ACE2 SNPs were predicted to 

affect ACE2/ACE2 homo-dimerization (E668K, N638S, R716H, R710H) or ACE2/B0AT1 

interaction (L731F) (Supplementary Fig. 3). 

 

Dynamic models of ACE2: fluctuation, deformation and chaperone requirement for correct 

topology maintenance 

Dynamut36 was used to analyze dynamic features of ACE2 receptor including fluctuation and 

deformation. Dynamut36 calculated fluctuation and deformation scores for each ACE2 amino acid 

residue position (Fig. 4a) thus providing dynamic features of the analyzed protein. The model 

shows that ACE2 (computed by using 3D PDB model 6M17 as input file) is characterized by a high 

deformation tract that is located immediately upstream of the transmembrane domain (Fig. 4b), 

whereas the C-terminal tail is characterized by high fluctuation (Fig. 4c). 
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CHARMM-GUI
37,38 and VMD/NAMD

39,40 tools were used to model the interaction of the 

ACE2 transmembrane domain with the phospholipid membrane. CHARMM-GUI was used to build 

the model of the phospholipid membrane embedding a single chain of ACE2, while VMD/NAMD 

tools were used to perform Molecular Dynamics Simulation. Frames shown in Fig. 4d seem to 

suggest that the hydrophobic domain alone is highly unstable in the membrane confirming that a 

chaperone is required for correct topology maintenance. This function was assigned to the 

moonlighting amino acid transporter B0AT119. 

To investigate dynamic properties of ACE2 globular head, the trans-membrane helix and 

conserved domains were firstly mapped on a 3D structure. Then, Dynamut36 simulation was carried 

out on ACE2 by using 6WV1 PDB model (without the transmembrane domain) (Fig. 5ab). Results 

indicate that some residues of the ACE2 interface, which are involved in the interaction with 

SARS-CoV-2 Spike glycoprotein can actually fluctuate (Fig. 5cd).  

Dynamic properties of SARS-CoV-2 and SARS-CoV spike proteins were also investigated. 

CABS-flex
41

 was used to this purpose, also to compare fluctuation scores of SARS-CoV-2 and 

SARS-CoV Spike RBD (receptor binding domain) of spike and ACE2. Fig. 5ef depicts the CABS 

flex model of SARS-CoV and SARS-CoV-2 Spike, respectively while Fig. 5g illustrates the model 

of ACE2. CABS-flex model (Fig. 5ef) and fluctuation scores indicate that SARS-CoV Spike is 

characterized by higher flexibility of in a coiled-coil domain, with respect to SARS-CoV-2 Spike 

(Fig. 5h). This difference may affect the interaction with ACE2. 

Variation of the distance between the amino acid residues involved in ACE2 binding interfaces 

were then analyzed by Molecular Dynamics Simulation, a computer simulation method for 

analyzing the physical movements of atoms and molecules. Supplementary Fig. 4a and 4c show, 

respectively, oscillation plot (in ångström) and variance of distance between the amino acid 

residues in the two helices that are involved in the SARS-CoV-2 Spike interaction, while 

Supplementary Fig. 4b illustrates 3D images of regions containing the amino acid residues of 

Supplementary Fig. 4a. Oscillation plots and variance of the distance of amino acid residues 

between the two helices and beta-sheet, and between the residues of the beta-sheet are illustrated in 

Supplementary Fig. 4d and 4f, and Supplementary Fig. 4e and 4g, respectively. Overall, the data 

indicate that, although the two helices in the binding interface with Spike protein form a compact 

structure, some residue can actually oscillate. Permanent amino acid residues (41-31) exhibit small 

oscillation by Molecular Dynamics Simulation. In contrast, stable or unstable residues exhibit a 

different behavior. The residue 21 occupies the first position in the model used (PDB 6M17) for 

simulation, and, as a consequence, it exhibits the highest oscillation degree. Interestingly, the 
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distance between the amino acid residues 26-36 and 72-82 shows high variation indicating that 

Met-82 and Lys-26 may be characterized by considerable degree of freedom. 

 

ACE2 SNPs analyzed by dynamic models: structural effects on binding interfaces 

Dynamut36 and ENCoM42 were used to compare dynamic features of ACE2 and ACE2 

polymorphic variants. Both these tools predict ΔΔG values associated with single amino acid 

substitution; ENCoM42 also predicts ΔΔE values. The Dynamut
36

 and ENCoM42 outputs were used 

to generate ordination plots (PCA) by PAST to evaluate overall results (Fig. 6a, Supplementary Fig. 

5 and Supplementary Table 7). 

All 197 amino acid residues that were reported as polymorphic in dbSNP were analyzed. In 

Supplementary Fig. 5a the ordination plots that were generated by clustering the effects of the 

single amino acid substitutions according to the Dynamut
36

 (left panels) and ENCoM42 (right 

panles) outputs are illustrated. The data of the amino acid substitutions in the three ACE2 interfaces 

(ACE2/SARS-CoV-2 Spike, ACE2/ACE2, ACE2/B0AT1) were then extrapolated (Supplementary 

Fig. 5b), and were excluded from the analysis that was aimed at predicting structural (indirect) 

effects of amino acid substitutions on binding interfaces. The resulting subset of data 

(Supplementary Fig. 5c) was combined by matching Dynamut36 and ENCoM42 predictions, and 

used to generate the final ordination plot shown in Fig. 6a. Results indicate that a considerable 

number of the amino acid substitutions are able to either stabilize or destabilize the binding 

interfaces with possible consequences on either ACE2 function and/or ACE2/SARS-CoV-2 Spike 

interaction. In particular, in Fig. 6b, the effects of amino acid substitutions on structure flexibility 

were calculated as ΔΔG and/or ΔΔS values comparing ACE2 and each polymorphic variant (red 

gain in flexibility, blue gain in rigidity).  SNPs I468V, V488A and A501T were selected as the most 

common polymorphisms that gave the highest ΔΔG and ΔΔS values in our dynamic model. 
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Discussion 

Although with limitations and caveats of in silico technology, this study addresses the question of 

whether some ACE2 SNPs may be associated with a different individual susceptibility to COVID-

19. To alleviate these limitations, we used a combination of bioinformatics tools, and tested 

different crystallographic models. 

Four months after the spread of the SARS COVID-19, its worldwide distribution remains 

extremely uneven. Lethality is even more inhomogeneous among and within countries, with figures 

of 12.6% in Italy43, and 0.6% in South Korea44. Although differences in mortality might have 

various causes, including access and efficiency of health systems, total number of people tested, 

presence and severity of symptoms in tested populations, they are so impressive that it seems 

legitimate to search for other factors possibly related to individuals as the elements of a population. 

Ultimately, infectivity and lethality do not seem linearly related, and probably represent problems to 

be solved with different, albeit complementary, approaches. 

Basic aspects of epidemiology of the disease warrant some considerations: differently from other 

countries, in South Korea (which adopted a policy of extensive PCR screening), women represent 

63% of infected people44 as opposed to 50% in Italy43 (where the policy has been to test only 

severely symptomatic cases for a long time). Lethality figures in women were 0.4% and 8.7% in 

South Korea and Italy, respectively, as opposed to 1% and 16.4% in men. It could be speculated 

that women are probably more prone to infection but often present a less severe disease. Although 

higher incidence of cardiac, respiratory and metabolic co-morbidities are probably responsible for 

more severe form of infection in men, estrogen-induced upregulation of ACE2 expression would 

explain increased susceptibility of women to a less severe and often asymptomatic form of disease. 

Furthermore, the ACE2 gene is located on Xp22, in an area where genes are reported to escape 

from X-inactivation, further explaining higher expression in females45,46. 

On the other hand, it has been hypothesized that, regardless of sex, pharmacological (anti-

hypertensive drugs, such as ACE inhibitors and sartans) or environmental factors (NO2 pollution), 

capable of inducing an overexpression of ACE2 could be responsible of increased susceptibility to 

infection and/or greater severity47. ACE2 plays an essential role in the renin-angiotensin-

aldosterone system, and its loss of function due to the massive binding of viral particles and 

internalization could constitute an essential element of the pathophysiology of pulmonary and 

cardiac damage during COVID-19 infection47,48. In this context it should be underlined that ACE2 

probably plays a dual role in the dynamic of infection and disease course. While at beginning ACE2 

overexpression may increase the entry of the virus into the cell and its replication, its consequent 

viral-induced loss of function results in an unopposed accumulation of angiotensin II that further 
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aggravates the acute lung injury response to viral infection. Indeed, in the rodent blockade of the 

renin-angiotensin-aldosterone system limits the acute lung injury induced by the SARS-CoV-1 

spike protein49, suggesting that if ACE2 function is preserved (because of increased baseline 

expression, as especially seen in pre-menopausal women), clinical course of infection might be less 

severe.   

It has been suggested that polymorphisms in the ACE2 gene could reduce the spike affinity, with 

subsequent lower susceptibility to infection: in this hypothesis, their geographical / ethnical 

distribution could explain the strong discrepancies in infection rate and/or lethality observed 

worldwide47. Effectively, we showed by Network plot and Non-Metric Multidimensional Scaling 

that most of the SNPs diffused worldwide did not affect significantly the interaction of ACE2 with 

SARS-CoV-2 Spike. S19P was one of the rare polymorphisms able to potentially affect this 

interaction, by lowering the affinity. This polymorphism is more frequent in African populations, 

but its diffusion (0.3%) remains too low to explain, except in minimal part, the reduced death toll 

observed so far in that continent, and, more generally, the enormous differences in geographical 

spread of infection and lethality. However, it seems clear that the affinity of the virus for ACE2 is a 

key determinant of its infective potential: in order to choose the experimental model capable of 

reproducing the essential aspects of human infection, Chan and colleagues50 determined in silico 

the spike / ACE2 affinity in primates and in a series of experimental animals, observing that the 

binding energy is maximal in primates (-62.20 Rosetta energy units (REU)), intermediate in Syrian 

hamster (-49.96 REU), lower in bat (-39.60 REU). This allowed the authors to predict that hamsters 

could be infected, which was experimentally confirmed –underlining the reliability of in silico 

modeling- and could be subsequently at the origin of inter-animal transmission. However, hamsters, 

although developing clinical signs of the infection and relative histopathological changes, did not 

die50:  we speculate that lethality may be related to Spike/ACE2 affinity. On the other hand, the 

lower affinity in bat could explain –besides a better immune control- why these animals are carriers 

without dying.  

In the same study, Chan and colleagues50 showed that the binding energy between ACE2 and 

Spike of SARS-CoV, responsible for the 2002 epidemic, was -39.49 REU as compared to -58.18 of 

human ACE2. After that epidemic, attempts at developing mouse experimental models, resulted 

only in mild lung inflammation and rapid viral clearance, until development of transgenic mice 

expressing human ACE2 under regulation of a global promoter or cytokeratin 18 promoter, which 

developed rapidly lethal infection after intranasal viral inoculation51, 52. Interestingly, intranasally 

CoV infected transgenic mice expressing human ACE2 driven by the mouse ACE2 promoter, 

developed severe disease (on clinical and histopathological grounds, including typical interstitial 
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pneumonia and widespread extrapulmonary organ damage) without dying; furthermore their viral 

clearance was markedly slower as compared to wild type mice which had only mild 

abnormalities53. 

So, if modestly SNP-determined lower affinity between spike and ACE2 does not seem to 

explain the differences in the distribution and lethality of the disease in humans, we hypothesize 

that the question can be addressed in a specular way: perhaps polymorphisms responsible for higher 

affinity can be responsible of higher severity of disease, especially when very high affinity 

receptors are overexpressed because of the above mentioned environmental and pharmacological 

factors. Obviously underlying diseases would contribute to an even more severe course of the 

disease, with an intense viral replication capable of infecting in turn a large number of persons, 

including some individuals with similar ACE2 polymorphisms, and so on. Our in silico models 

allowed us to identify K26R and K26E as SNPs with a possible increase in Spike/ACE2 affinity. 

K26R SNP is relatively frequent in European people with a frequency about 0.5%, which would 

correspond to a potential target population of 2,230,000 people at the European Union level. 

In addition to FireDock34, 35 simulations that led to predict the possible effects of S19P, K26R 

and K26E ACE2 SNPs, Dynamut
36

 and ENCoM42 tools were used to compare dynamic features of 

ACE2 and its polymorphic variants in order to analyze the possible indirect effects on binding 

interfaces of SNPs that are located outside these interfaces. SNPs I468V, V488A and A501T were 

identified as the most common SNPs that may produce these indirect effects in dynamic models. 

Although the precise effects of these SNPs on the interaction between ACE2 and SARS-CoV-2 or 

SARS-CoV Spike proteins have to be determined in more detail, nevertheless, it is desirable to use 

dynamic modeling to unmask indirect effects of SNPs. 

It seems necessary to confirm in vivo that, among patients with serious disease and/or fatal 

outcome, polymorphisms responsible for a very high Spike/ACE2 affinity are more frequent than 

among patients with less severe/asymptomatic disease or even than in general population. 

Obviously, the impact of these polymorphisms on severity of outcome should be weighted by 

appropriate demographic and clinical factors. If these differences were confirmed, this would pave 

the way for the identification, on a population scale, of healthy individuals whose molecular 

phenotypes would be responsible for more serious disease. Apart from the usual social distancing 

measures, which could be reinforced for these cases, targeted drug prevention strategies could be 

evaluated. It could be logical to assess pharmacological prophylactic interventions, as proposed in 

categories of healthy people at particular risk of exposure such as care-givers. In particular, 

chloroquine, interfering with N-terminal glycosylation of ACE2, could lower its affinity for spike, 

thus representing an interesting candidate. In our in silico model, we found that removal of 
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glycosidic moieties weakened the interaction between SARS-CoV-2 spike and ACE2. The serine 

protease inhibitor camostat mesylate, approved in Japan to treat unrelated diseases, has been shown 

to block TMPRSS2 activity54,55 and is thus another interesting candidate. 

On the other hand, the identification of broader categories of people with lower risk of developing 

severe disease, could allow a safer exit from the lock-down phase, while facilitating the 

establishment of a faster herd immunity, and waiting reliable serological tests and, above all, 

effective vaccines. 

On the basis of our in silico study we speculate that infection and mortality are determined at 

individual level by different factors including the amount of expression of ACE2 and its affinity 

with the spike protein. While the level of ACE2 expression possibly determinates the probability of 

infection in the presence of an adequate inoculum, the severity of the disease is mainly determined 

by the phenotype affinity for the spike protein. Clinical studies are urgently required to confirm the 

present mechanistic hypothesis. 
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Materials and Methods 

Databases. 3D structures of proteins were downloaded from PDB (RCSB Protein Data Bank56). 

We focused our analysis on 2AJF for SARS-CoV27 (DOI:10.2210/pdb2AJF/pdb)and 6VW130 

(DOI:10.2210/pdb6VW1/pdb), 6M1720, 21 (DOI:10.2210/pdb6M17/pdb) 6LZG28 

(10.2210/pdb6LZG/pdb), 6M0J29 (10.2210/pdb6M0J/pdb)models for SARS-COV-2. dpSNP 

database 57,58 was used to identity the ACE2 receptor SNPs, and to select the most diffused ones. 

Functional information was acquired by UNIPROT database59. Chimera60 was used as a tool for 

Image generation, 3D mapping, PDB managing and to analyze the results. 

 
Binding interface characterization. The selected PDB models were analyzed by a structural point 

of view using Chimera software in order to identify the glycosylation sites and the secondary 

structures of proteins involved in the binding between ACE2 and Spike protein receptor binding 

domain (RBD). To estimate the effect of glycosylations we implemented a static model. Chimera 

was used to remove glycosydic residues, while FireDock34,35 was used to compute the global 

energy scores between the native structures and the de-glycosylated models. On the other side, 

starting from the entire list of SNPs, SSIPe (EVOEF) 32 was used to identify the residues involved 

in the binding interfaces. A second step, which was carried out with SSIPe (SSIPe) 33, was aimed at 

estimating the effects of single SNPs, and to generate mutant models. Different SNPs lists were 

obtained, which were compared, and used to identify the most stable binding amino acid residues. 

SSIPe analysis performed with the PDB model 6M17 was used to map: the ACE2/Spike protein 

interaction interface, ACE2 /ACE2 dimerization interface, and B0AT1/ACE2 interaction interface. 

The model contains ACE2 in the dimeric form (with the hydrophobic domains) and B0AT1, while 

in all the others models the transmembrane domains, ACE2 /ACE2 interface and B0AT1/ACE2 

interface are absent. 

 

Dynamic analysis of ACE2 structure. To obtain a dynamic model of the ACE2 we used different 

tools. Dynamut36 was used to calculate the general dynamic features of the ACE2 in 6M17 model 

leading to the identification of two domains characterized by high deformations and high 

fluctuations scores, respectively. To validate these results and to compare them with Spike proteins 

fluctuations, we used CABSflex41 to analyze Spike protein chains in 2AJF and 6VW1 models, and 

ACE2 chain in 6M17 model. Another Dynamut analysis was performed on 6VW1 model, 

considering only the structure of the globular head of ACE2. The transmembrane domain was 

mapped on a 3D file using TMHMM to predict hydrophobic helix. A molecular dynamics approach 

was used to model the behavior of the transmembrane domain. CHARMM-GUI37,38 was used to 
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implement the model of a DPPC (phosphatide) bilayer that embedded ACE2, while NAMD40 was 

used to perform the analysis via VMD (NAMD GUI)39,40. Chimera was used to select the frames, 

and to measure the oscillations of interface residues. 

 

Effect of mutations on ACE2 dynamic features. Dynamut36 was used to estimate the effect of 

SNPs on structural dynamics features. This tool generated two results with the two algorithms 

ENCoM41 and Dynamut. A quartile-based clustering was performed with 197 SNPs obtaining two 

equivalent plots where results were clustered in two ways: ENCoM groups and Dynamut groups. 

After this step, we extrapolated data related to the three interfaces (ACE2/Spike protein, 

ACE2/B0AT1 and ACE2/ACE2), because the analyzed SNPs can directly interfere on either 

binding to Spike proteins, or ACE2 homo-dimerization or ACE2/B0AT1 binding. In order to select 

the best results from this last subset, the clusters for Dynamut and for ENCoM were combined. 

PCA plots were generated using PAST software61. 

 

Docking: dynamic models of ACE2 / Spike protein interactions. To obtain the protein complex 

models with and without glycosylations we used two software: PathDock62 and Gramm-X63, 

respectively. Resulting complexes were submitted to FireDock34.35 to evaluate the energy score. As 

receptors and ligands we used all chains of ACE2 in PDB models (2AJF, 6VW1, 6LZG, 6M0J, 

6M17), and the models of isoform X1 and X3, which were generated by using SwissModel64 tool, 

while all chains of the Spike protein in the PDB files were used as ligands. For each software, the 

total simulations number was 35. All the obtained results were screened excluding: i) the high-

energy complexes, ii) bad-orientated solutions (overlapping of receptor and ligand chain) and iii) 

off-target solutions (binding in membrane helix, in B0AT1 interface or ACE2 / ACE2 homo-

dimerization interface). The selected results were used as inputs to superposition using: the docking 

solutions as a model, the chains of B0AT1(2X) / ACE2 (dimeric) from 6M17 model, and Spike 

protein trimeric structure, which were obtained by using I-Tasser65 

(https://zhanglab.ccmb.med.umich.edu/COVID-19/). To obtain multiple conformations we 

performed more than one superposition (Chimera) on the solutions changing the aligned chains. 

The final results were analyzed using Chimera.  

 

African and European static and dynamic models. To gain information about the geographical 

distribution and abundance of ACE2 SNPs, we analyzed dbSNP57,58 and available databases: 

GnomAD-Exomes, TopMed, ExAC, GnomAD-Genomes, GO Exome Sequencing Project, 

1000Genomes. The frequency values of the most abundant SNPs (1KGB database) were reported in 
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Supplementary Table S4. Data were analyzed by PAST61 that generated NM-MDS ordination plots. 

Additionally, network and between-database correlation analyses (PAST61) were carried out in 

order to clarify the relationship between SNPs, and the correlation between data of all databases. 

To model the binding of S19P ACE2 we implemented two types of analyses: static analysis and 

dynamic analysis. The models with substitutions of one single amino acid were selected form SIPPe 

results (static model), and were submitted to FireDock34, 35 server. In this step we focused on 

mutant and wild type models of 6VW1 and 2AJF. Serine in position 19 is the first residue of the 

mature chain of ACE2, while residues from 1 to 18 form a signal peptide. To prove if this SNP 

changes the cut site of the ACE2 precursor we used Signal IP 5.066. The sequence of this predicted 

mutant was submitted to I-Tasser server65 in order to obtain the mutant models. Using this predicted 

model as a receptor and SIPPe complexes as a reference we superposed the structures obtaining two 

static models (one for ligand: 2AJF and 6VW1). The dynamic models were implemented using 

Gramm-X (ligands Spike chains of 6VW1 and 2AJF; receptor mutant models). All models obtained 

were submitted to FireDock34, 35 in order to obtain a value of global energy. 

To model the binding K26R or K26E ACE2 we used a set of static models. Firstly, starting from 

the dataset of the mutant models selected by SIPPe33 results, we calculated changes in global 

energy. This step was repeated for three models: 6VW1, 2AJF and 6M17. For this last model, we 

calculated the variation in terms of global energy in two conformations, using as reference models 

both: i) ACE2-spike chains B-E and ii) ACE2-Spike chains D-F. In order to estimate the effect of 

different ligands, we used the models 6VW1 form SIPPe as reference structure and receptor, and all 

Spike models reported in this study as ligands. In a similar manner, other static models from SSIPe 

were used as models to estimate the variation in terms of free energy related to polymorphisms that 

map on the ACE2 dimerization interface and ACE2-B0AT binding interface. 
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Legends to Figures 

 
Fig. 1. 3D models of SARS-CoV-2 Spike/ACE2 complex, and effects of ACE2 glysosylation on 

binding interfaces. a 3D model of SARS-CoV-2 Spike/ACE2/B0AT1 complex. The arrows 

indicate the principal binding interfaces between all proteins involved in this complex. b Domains 

and ACE2 amino acid residues involved the interaction with Spike. “Permanent” (red), “stable” 

(orange), “unstable” (green), and “hyper-unstable” residues are indicated. c FireDock was used to 

estimate ΔG values by using 2AJF (SARS-CoV Spike/ACE2 complex) and 6VW1 (SARS-CoV-2 

Spike/ACE2 complex) after removal of the glycosydic chains (red bars) or the terminal beta-

mannose (BMA) (green bars). d 3D 6VW1 model with highlighting glycosydic chains (red, N-

acetyl-glucosamine [NAG]; cyan, BMA). e Predicted effects of removal of the glycosydic chains or 

the BMA in 2AJF and 6VW1 models. In 6VW1, the BMA forms two H-bonds and one pseudo-

bond, while these bonds are lost in non-glycosylated model. In contrast, in the 2AJF, the glycosydic 

chain forms only one H-bond and, after removing BMA the Thr-41 has more grads of binding. 

 

Fig. 2. Selected ACE2 SNPs affecting binding interfaces: S19P. a Network plot of the most 

diffused ACE2 SNPs causing missenses worldwide. b Non-Metric Multidimensional Scaling (NM-

MDS, Bray-Curtis index) the most diffused ACE2 SNPs. c FireDock results predicting the effects 

of ACE2 S19P amino acid replacement on ACE2/Spike interaction in 2AJF (SARS-CoV 

Spike/ACE2), and 6VW1 (chimeric SARS-CoV/SARS-CoV-2 Spike RBD /ACE2) models. Results 

predicting the effects of ACE2 S19P with the alternative (ALT) N-terminal cleavage site (d) are 

also shown in either 2AJF and 6VW1 static models (SM-alt), or2AJF and 6VW1 dynamic 

(docking) models (DM). d Predicted effect of ACE2 S19P on ACE2 N-terminal cleavage site. 

 

Fig. 3. Selected ACE2 SNPs affecting binding interfaces: K26R/E. a FireDock results predicting 

the effects of ACE2 K26R and K26E amino acid replacements on ACE2/Spike interaction in 2AJF 

(SARS-CoV Spike/ACE2), and 6VW1 (chimeric SARS-CoV/SARS-CoV-2 Spike RBD /ACE2) 

and 6M17 (SARS-CoV-2 Spike RBD /ACE2/B0AT1). b FireDock results that were obtained by 

challenging the ACE2 structure from 6VW1 with the Spike structures that were generated by the 

different models as shown in the bottom of the histogram. c Possible effects of K26R substitutions 

on H-bonds (cyan) and pseudo-bonds (red) from 6M17 (upper images) and 6VW1 (upper panels) 

models as illustrated (larger panels: left, wild type ACE2; right, K26R ACE2). Smaller panels on 

the right are magnifications of regions the respective panels on the left as indicated.  
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Fig. 4. Dynamut models of ACE2. a Score for fluctuation and deformation of ACE2 calculated by 

Dynamut. b ACE2 region that is mostly subject to deformation. c ACE2 region that is mostly 

subject to fluctuation. D) Distortion of the hydrophobic transmembrane domain during Molecular 

Dynamic Simulation. 

 
Fig. 5. Structural and dynamic features of ACE2, SARS-CoV-2 and SARS-CoV Spike 

proteins as inferred by Dynamut and CABSflex. a Conserved domains of ACE2. b Trans-

membrane region of ACE2 identified by TMHMM. c-d Dynamut simulations of ACE2 structure by 

using the 6WV1 PDB model (without the transmembrane domain) showing that some residues of 

the ACE2 interface that bind the Spike protein can fluctuate. e-g CABSflex simulations of SARS-

CoV (e), SARS-CoV-2 Spike (f), and ACE2 (g). h CABSflex fluctuation scores of SARS-CoV 

Spike and SARS-CoV-2 Spike. i CABSflex fluctuation scores of ACE2. 

 

Fig. 6. ACE2 SNPs analyzed by Dynamut and ENCoM. a Ordination plot (PCA) obtained with 

PAST to evaluate the results of Dynamut and ENCoM. This set of data includes all SNPs by dbSNP 

database, excluding SNPs in contact interfaces. b Effects on structure flexibility calculated as ΔΔG 

and ΔΔS variations between ACE2 and some polymorphic variants (red, gain in flexibility, blue, 

gain in rigidity). Illustrated SNPs were selected as the most common polymorphisms that gave the 

highest ΔΔG and ΔΔS variations. 
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Supplementary Figure 5
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Legends to Supplementary Figures 

Supplementary Fig. 1. ClustalO alignments. ClustalO alignments of human ACE2 amino acid 

sequences, and SARS-CoV, SARS-CoV-2 and chimeric SARS-CoV/SARS-CoV-2 Spike RBDs 

used for X-ray cristallography models 

 

Supplementary Fig. 2. ACE2 SNPs data from different databases. Correlation analysis of ACE2 

SNPs data from different databases is illustrated. 

 

Supplementary Fig. 3. Selected ACE2 SNPs affecting binding interfaces. FireDock results 

predicting the effects of several ACE2 amino acid replacements on ACE2/ACE2 (left) and 

ACE2/B0AT1 (right) interaction. 

 

Supplementary Fig. 4. Oscillation of amino acid residues in ACE2 binding interfaces. a 

Oscillation plot of the distance between ACE2 amino acid residues mapping in the two helices that 

are involved in binding with Spike proteins. b 3D images of regions containing the amino acid 

residues shown in panel a. c Variance of the distance between ACE2 amino acid residues mapping 

in the two helices that are involved in binding with Spike proteins. d-e Oscillation plot of the 

distance between the two helices and beta-sheet (d), and between the residues of the beta-sheet (e). 

f-g Variance of the distance of amino acid residues between the two helices and beta-sheet (f), and 

between the residues of the beta-sheet (g). 

 

Supplementary Fig. 5. Ordination plots of Dynamut and ENCoM results. a Ordination plot 

(PCA) obtained using PAST to evaluate the results of Dynamut (left panels) and ENCoM (right 

panles) outputs. Clustering involved 197 SNPs and was based on ΔΔG and/or ΔΔS values 

comparing ACE2 and each polymorphic variant. b Ordination plot (PCA) showing the results of 

SNPs mapping within the ACE2 interfaces (ACE2/SARS-CoV-2 Spike, ACE2/ACE2, 

ACE2/B0AT1). C) Ordination plot (PCA) showing the results of SNPs Ordination plot (PCA) 

showing the results of SNPs that mapping outside the ACE2 interfaces.     
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Supplementary Tables (Excel File) 

 

Supplementary Table 1. ACE2 PDB models and glycosylation. 

 

Supplementary Table 2. EVOEF results. 

 

Supplementary Table 3. SSIPe results. 

 

Supplementary Table 4. ACE2 SNPs metadata. 

 

Supplementary Table 5. GrammX-FireDock results. 

 

Supplementary Table 6. PatchDock-FireDock results. 

 

Supplementary Table 7. ENCoM and Dynamut results. 
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