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Acfs: accurate circRNA 

identification and quantification 
from RNA-Seq data
Xintian You1 & Tim OF Conrad1,2

Circular RNAs (circRNAs) are a group of single-stranded RNAs in closed circular form. They are splicing-
generated, widely expressed in various tissues and have functional implications in development and 
diseases. To facilitate genome-wide characterization of circRNAs using RNA-Seq data, we present a 
freely available software package named acfs. Acfs allows de novo, accurate and fast identification 
and abundance quantification of circRNAs from single- and paired-ended RNA-Seq data. On simulated 
datasets, acfs achieved the highest F1 accuracy and lowest false discovery rate among current 
state-of-the-art tools. On real-world datasets, acfs efficiently identified more bona fide circRNAs. 
Furthermore, we demonstrated the power of circRNA analysis on two leukemia datasets. We identified 
a set of circRNAs that are differentially expressed between AML and APL samples, which might shed 
light on the potential molecular classification of complex diseases using circRNA profiles. Moreover, 
chromosomal translocation, as manifested in numerous diseases, could produce not only fusion 
transcripts but also fusion circRNAs of clinical relevance. Featured with high accuracy, low FDR and the 
ability to identify fusion circRNAs, we believe that acfs is well suited for a wide spectrum of applications 
in characterizing the landscape of circRNAs from non-model organisms to cancer biology.

CircRNAs were discovered over two decades ago as a special group of RNA transcripts featuring circular structures1–5.  
Recent advancements in high-throughput sequencing technologies and experimental protocols enable unbi-
ased deep pro�ling of circRNA landscape in a genome-wide manner, leading to the re-discovery of thousands 
of circRNAs in eukaryotes6–9 and archaea10. CircRNAs are widely expressed and regulated in organisms such as 
human, mouse, rat, fruit �y and C. elegans11–15. CircRNAs are generated through alternative splicing, where a 
downstream splice donor is covalently linked to an upstream splice acceptor, forming a characteristic back-splice 
junction(BSJ) (Fig. 1a). CircRNAs can originate from multi-exonic transcripts, single exonic transcripts, unchar-
acterized transcripts and even fusion genes16. Alternative RNA processing events have been observed in circR-
NAs, including exon skipping, intron retention and alternative splicing13,17,18. �e vast isoform diversity, tight 
regulation of expression and deep evolutionary conservation collectively suggest the potential functionalities 
of circRNAs. It has been proposed that circRNAs could exert their functions by several means including decoy-
ing miRNA and RNA binding proteins (RPBs)19,20. Although the detailed mechanisms are still under scrutiny, 
dysregulation of circRNAs has been linked to diseases such as Alzheimer and Leukemia16,21. Moreover, due to 
the exceptional biochemical stability endowed by their circular form, circulating circRNAs are also enriched in 
exosomes and can therefore serve as a promising biomarker for cancer diagnosis22.

It is critical to accurately identify and quantify circRNAs in samples of interest so that we can gain more 
insights of the expression dynamics and biological functions of circRNAs. Many methods have been developed to 
detect circRNAs using RNA-Seq data (Table 1), yet there are still �ve challenges to be addressed. Firstly, the char-
acteristic BSJs should be identi�ed genome-wide in an unbiased manner. Several tools, such as CIRCexplorer23, 
KNIFE24 and MapSplice225, rely on a priori gene annotation and only check for possible BSJs consisting of 
known exons(Table 1). Despite the advantage of these reference-guided methods in which the search space is 
greatly reduced from the genome to annotated exons, they are not able to detect circRNAs that contain unanno-
tated exons or splicing sites or those originated from unannotated gene loci. For example, the splice sites of the 
well-known circRNAs circSRY2 and circCDR1as26 are not annotated in linear RNA transcripts, and therefore 
these circRNAs will not be reported by reference-guided methods. Secondly, the authenticity of predicted BSJs 
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should be scrutinized. Several tools, including CIRCexplorer23, circRNA_Finder27, CIRI28, and �nd_circ11, report 
a candidate BSJ if a canonical splicing motif, such as “GU-AG”, is found(Table 1). Consequently, many bona 
�de splice sites of non-canonical dinucleotide composition29 will be discarded. Moreover, splicing sites are not 
determined solely by these four bases, but much longer sequences30. Given the complexity of splicing signals, it 

Figure 1. Computational pipeline of circRNA pro�ling. (a) An example of a circRNA (colored in orange) 
originated from a multi-exonic gene locus (black squares). �e red vertical bar on the circRNA marks the 
BSJ. (b) Schematic work�ow of acfs, ovals denote processes for fusion circRNA identi�cation, dashed boxes 
denote optional input. (c) Determination of the BSJ using circ_NEIL3 as an example. �e BSJ supporting read 
can be partitioned in three manners (colored in orange) due to the sequence similarity at the splice sites. Exon 
sequences are shown in upper case, and intron sequences are shown in lower case. Splice strength is estimated 
for each of the potential splice sites using the maxEnt model. One partition pattern (red dash-line) is predicted 
to be generated by the splicing machinery and is reported as the BSJ.
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is clear that circRNA discovery will bene�t from a comprehensive BSJ identi�cation algorithm. �irdly, accurate 
abundance quantitation holds the prerequisite of detailed study of regulation and potential functions of circR-
NAs. Although circRNA abundance could be measured by counting the number of reads consistent with BSJ, 
many bona �de BSJ reads might not be identi�ed during the initial alignment due to the restrictions of the read 
aligners. As a remedy, realignment to predicted BSJ references can help to improve the quanti�cation accuracy. 
Furthermore, several state-of-the-art tools only accept paired-end reads as input, which severely restrict their 
applications (Table 1). Lastly and importantly, none of the current tools allows detection of fusion circRNAs, 
which is shown to have a role in diseases such as rendering drug-resistance in leukemia16.

To address all the aforementioned challenges, we present acfs (accurate circRNA �nder suite) for de novo cir-
cRNA identi�cation and quanti�cation. We showed that acfs is highly accurate, has very low FDR, and can handle 
both single-end (SE) and paired-end (PE) data. Using a set of simulated datasets and two additional published 
datasets, we showed that acfs exhibit the best performance comparing to other state-of-the-art tools. Moreover, 
among thousands of circRNAs identi�ed in leukemia samples16,31, a subset of them showed distinctive expression 
pattern and could serve as diagnostic biomarkers. We believe that accurate identi�cation and expression quanti-
tation of circRNAs, as enabled by acfs, will shed light on further understanding of the biogenesis, regulation, and 
functions of circRNAs.

Results
CircRNA identification in acfs. Here, we brie�y describe the analysis work�ow of acfs. As illustrated in 
Fig. 1b, acfs consists of three main steps: preprocessing, identi�cation and quanti�cation.

Preprocessing. SE RNA-Seq reads are collapsed, indexed and then aligned to the reference genome 
sequences using the split-read mapper BWA-MEM32. Although acfs is designed to pinpoint the BSJs using SE 
RNA-Seq reads, conversion of PE data to SE data allows acfs to process PE data as well (termed as “acfs_p” mode). 
A read pair could be treated either as two independent SE reads if the two mates do not overlap with each other, 
or merged into one read using the overlapped sequence (see Supplementary Materials). �is PE to SE conversion 
also ensures each read or read-pair is counted only once in the quanti�cation step.

Identification. Reads potentially originated from the BSJs are examined by first selecting those whose 
aligned segments locate on the same chromosome and the same strand. A�erwards, acfs examines the splice 
strength of each candidate BSJ using maxEnt model30 and pinpoint the exact genomic position if it meets all the 
criteria. We illustrate this in an example (Fig. 1c). Here, the circRNA originates from NEIL3 gene and consists of 
exon5 to exon9, in which the 3′  end of exon9 is covalently linked to the 5′  end of exon5 thereby forming a circu-
lar structure (orange arc). A circRNA supporting read (orange sequence) could be partitioned in three equally 
good manners due to the sequence similarity at the splice sites (colored in blue). However, this ambiguity can be 
resolved by inspecting the splicing strength of each of the potential splice patterns. �e pattern predicted with the 
highest splice strength (red dashed-lines) passes the threshold and is therefore classi�ed as a BSJ while the other 
two are unlikely to be generated by splicing. �e threshold is user-de�nable, and we set it to 10 by default to allow 
correct identi�cation of over 95% of all canonical splicing sites in human transcriptome (Fig. S1). Similarly, reads 
with segments locate on di�erent chromosomes and/or strands can be examined for fusion junctions of fusion 
circRNAs.

Quantification. Acfs deploys an additional alignment procedure to accurately assess the abundance of the 
predicted circRNAs. Reference sequences of circRNAs are obtained by extracting the sequence between the BSJs, 
or concatenating the internal exonic sequences if gene annotation is provided. In order to allow aligning reads 
directly to the BSJs, acfs repeats the reference sequence once for each circRNA and thus generates a pseudo cir-
cular reference. �en, acfs aligns all reads to this pseudo circular reference and inspects alignments spanning the 
BSJs before reporting the circRNA abundance.

Tool De novo? Check splice site Realignment Single-end? Mapper Version

acfs yes full yes yes BWA-MEM 2.2

segemehl yes no no yes segemehl 0.2.0

CIRCexplorer no
GU-AG GC-AG 

AU-AC
no yes STAR 1.1.3

KNIFE no no no yes Bowtie1 and 2 NA

MapSplice2 no no no yes Bowtie1 2.2.0

circRNA_�nder yes
GU-AG GC-AG 

AU-AC
no no STAR NA

CIRI yes GU-AG no yes* BWA-MEM 1.2

�nd_circ yes GU-AG no no Bowtie2 1.0

Table 1.  Overview of circRNA detection methods. *Although CIRI can take in SE reads, it never �nishes 
within 10000 min in our simulations.
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To sum up, the major advantages of acfs lie in facts that it allows an unbiased back-splice sites identi�cation 
without relying on available gene annotation, it inspects the strength of potential splicing sites including but not 
limited to the canonical “GU-AG” motif, and the additional realignment allows better expression estimation.

Simulation benchmarks. We designed a set of simulation studies to compare the performance of 
acfs with seven state-of-the-art tools listed in Table 1. To allow a fair comparison between de novo tools and 
reference-guided tools, we simulated circRNAs only from annotated exons of human RefSeq genes. To reca-
pitulate the diverse splicing events of circRNAs observed in real datasets, we also simulated two circRNAs for a 
fraction of RefSeq genes. In total, we simulated 61488 circRNAs from RefSeq transcripts. For positive datasets 
(circRNA reads), we randomly sampled SE or PE reads spanning the BSJ with di�erent read lengths (50, 100, or 
150 nt respectively). Similarly, we sampled reads from RefSeq transcripts for negative datasets (linear RNA reads). 
To rule out the possible in�uence of transcript abundance, we sampled 20 reads from every circRNA or RefSeq 
transcript. To further mitigate the potential bias of the performance of di�erent read mappers in use, we kept the 
simulated reads error-free. Details on the simulation procedures are described in the Methods section.

Using the simulated datasets, we benchmarked the performance of acfs together with other state-of-the-art 
tools listed in Table 1. On simulated SE datasets (Fig. 2a, Table S1), although all tools exhibited high F1 accuracy 
in detecting circRNA, acfs consistently reported the lowest false positive rate (FDR) that is one to two orders of 
magnitude smaller than the other tools. Importantly, acfs demonstrated the highest F1 accuracy in estimating 
the abundance of circRNAs, which is crucial for further analysis of the regulation of circRNAs and highlights 
the e�cacy of the realignment procedure. On simulated PE datasets (Fig. 2b, Table S1), all tools exhibited similar 
high F1 accuracy in predicting circRNAs when using datasets of longer read length, yet several showed a drastic 
decrease with shorter reads. Similar to that in SE datasets, the FDR of acfs was orders of magnitude lower than 
all other tools. Acfs had the second highest F1 accuracy in abundance quanti�cation, tightly following CIRI. In 
terms of speed performance, acfs ranked the �rst except for CIRCexplorer and circRNA_�nder, both of which 
use STAR as the read mapper. �is gain of speed powered by STAR might in turn be responsible for the high FDR 
and low F1 accuracy in abundance quanti�cation. Together, acfs achieved a balanced performance in speed and 
accuracy. Interestingly, although all circRNAs were simulated from RefSeq transcripts, none of the annotation 
guided tools reported all of them. �is upper limit could be partly explained by the presence of pseudogenes or 
genes belonging to the same family that share highly similar sequences. Of note, since we only simulated circR-
NAs from annotated transcripts, we systematically underestimate the performance for de novo tools. In real-life 
studies, thousands of circRNAs have been identi�ed with unannotated exon borders or from unannotated gene 
loci which underlines the e�cacy of de novo circRNA identi�cation.

Application on real datasets. A�er demonstrating the high performance of acfs with simulated datasets, 
we further benchmarked it with two published datasets. �e �rst dataset (dataset A) consists of two SE sequencing 
libraries13: one for total RNA and the other for polyA-selected RNA from mouse brain tissues. Since circRNAs do 
not process polyA tails and have a low chance of containing a stretch of genomic As in their sequences (Fig. S2), 
they would be expected to be depleted in the polyA-selected library. We applied all �ve tools that can process 
SE data to this dataset. Indeed, the majority of circRNAs detected by all four tools except for segemehl were 
depleted in the polyA-selected library, and acfs had the lowest FDR (Fig. 3a). Out of 6683 circRNAs predicted 
by �ve tools with at least two reads spanning the BSJs, 1275 (19%) were identi�ed by all �ve tools (Fig. 3b). �is 
low commonality could be attributed to the fact that the majority (66%) of the circRNAs identi�ed by segemehl 
were not reported by any other tool. To assess the authenticity of these segemehl-speci�c circRNA candidates, 
we went on to examine their genomic distance within the predicted BSJs, as suggested by Hansen et al.33. Whilst 
circRNAs reported by acfs, CIRCexplorer, KNIFE and MapSplice2 showed a similar distance distribution within 
BSJs, over half of the segemehl-speci�c circRNAs were identi�ed with proximal splice sites (< 500 nt) and 25% 
were even within 100 nt (Fig. 3c and Fig. S3). Considering the high proportion of circRNAs that was not depleted 
by polyA-selection and also the high proportion of their proximal splice sites, many circRNAs predicted by sege-
mehl are more likely to represent artifacts. �is observation emphasizes the importance of splice site examination 
for circRNA identi�cation. Moreover, there were 92 circRNAs identi�ed by acfs that were not reported by tools 
relying on gene annotation, and 62 of them were originated from unannotated gene loci.

�e second dataset (dataset B) consists of four PE deep sequencing libraries from Hs68 �broblast cells8: two 
replicates from RNase R treated RNA and the other two from untreated RNA. Due to their closed circular struc-
ture, circRNAs have much higher resistance to exoribonuclease, such as RNase R, comparing to linear RNA 
transcripts and are therefore expected to be enriched in the RNase R treated RNA libraries. We applied acfs on 
this dataset and compared with the results adopted from Hansen et al.33. In order to get a full landscape of iden-
ti�ed circRNAs in this dataset, we considered all circRNA with at least one read spanning the predicted BSJ. Acfs 
reported the highest number of circRNAs (Fig. 3d). Similar to the other tools, most circRNAs identi�ed by acfs 
were enriched in the RNase R treated RNA libraries, indicating the authenticity of the predicted circRNAs. We 
observed that acfs and circRNA_�nder were more sensitive in circRNA identi�cation than the other tools. Whilst 
acfs predicted more circRNAs than circRNA_�nder, the circRNAs reported only by acfs is fewer than that of cir-
cRNA_�nder (Fig. 3d), suggesting circRNAs identi�ed by acfs were better supported by other tools and therefore 
more likely to be authentic. Furthermore, de novo tools reported more circRNAs than those relying on existing 
gene annotations, emphasizing their utility to pro�le circRNAs unbiasedly. We also found a subset of circRNAs 
of high abundance in the untreated RNA library whose representation was drastically depleted in the RNase R 
treated RNA library. Among these RNase R sensitive circRNAs, many are well known, including circ_CDR1as, 
which is over 10-fold depleted by RNase R treatment. Although experimental validation of the circular structure 
of these RNase R sensitive circRNAs in situ remains challenging, Hansen et al.26 suggested that they might rep-
resent miRNA-directed AGO2-cleavage products. To examine the generality of the miRNA-guided linearization 
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phenomenon, we predicted for all circRNAs the potential cleavage sites (see Methods). Indeed, we observed a 
statistically signi�cant negative correlation between the circRNA-miRNA binding a�nity and the resistance to 
RNase R (Fig. S4a). In addition, the secondary structure might also in�uence the stability of circRNAs when chal-
lenged with RNase R, as those with more complex structures show stronger RNase R resistance (Fig. S4b). Taken 
together, acfs accurately identi�es circRNAs with low FDR on both SE and PE RNA-Seq data.

CircRNAs as biomarkers distinguishing APL and CN-AML samples. To illustrate the potential utility 
of acfs in biomedical research, we investigated the circRNA landscape in leukemia samples. Acute Promyelocytic 
Leukemia (APL) is a subtype of Acute Myeloid Leukemia (AML) with the characteristic chromosomal translo-
cation involving retinoic acid receptor alpha (RARA) gene and Promyelocytic leukemia protein (PML) gene. �e 

Figure 2. Benchmark of acfs using simulated data emphasizes the importance of accurate BSJ 
identi�cation. (a) Benchmark of all �ve tools supporting SE datasets in terms of identi�cation accuracy, false 
discovery rate, quanti�cation accuracy and runtime. (b) Benchmark of acfs with seven state-of-the-art tools on 
PE datasets. �e color of the bars (black, grey and white) represents reads of di�erent length (50, 100, 150 nt).
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fusion protein PML-RARA underlines the etiology of this diseases and also points to the high e�cacy of the cor-
responding treatment34. However, no obvious genomic alterations could be detected by conventional band anal-
ysis in about 40% of all AML cases, and these cases are therefore termed as cytogenetically normal (CN-AML)31. 
We then asked whether circRNA pro�les could be used for molecular disease strati�cation and we identi�ed 
thousands of circRNAs, using acfs, in �ve APL samples16 and �ve CN-AML samples31. Due to the relatively low 
sequencing depth, about half of the circRNAs were detected with only one read and a fraction of them had at 
least �ve reads (Fig. 3e). Although circRNAs were generally of lower abundance, as a group, they could separate 
APL from CN-AML samples better than linear protein-coding genes (Fig. S5a,b). Since these two datasets were 

Figure 3. Application of acfs on real datasets suggests the high performance of acfs. (a) Barplot shows 
the number of circRNAs identi�ed by acfs(6363), KNIFE(8774), CIRCexplorer(7254), segemehl(243004) 
and Mapsplice2(1923) in Dataset A, and acfs shows the smallest FDR. (b) Venn diagram of the overlap of 
circRNAs (>  =  2 reads) among �ve circRNA prediction tools in Dataset A. (c) Cumulative distribution of the 
splice distance for circRNAs predicted in Dataset A. (d) Acfs identi�ed more RNase R resistant circRNAs than 
�ve other tools on Dataset B with low FDR. (e) �e number of circRNAs identi�ed in the APL and CN-AML 
samples with di�erent thresholds. (f) Heatmap of 80 di�erentially represented circRNAs between CN-AMP and 
APL samples. (g,h) Representative examples of circRNAs that are enriched in APL (g) and CN-AML (h). Light-
colored regions highlight the read coverage in the circRNAs. �e numbers (colored in orange) to the right of 
both panels (g,h) denote the number of reads supporting the BSJ in each sample.
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generated in two di�erent labs, to mitigate the potential in�uence of batch e�ects, we used the relative contribu-
tion of circRNAs as a proxy of their absolute abundance. �e relative contribution (RC) of a circRNA is the quo-
tient of its estimated abundance over that of its hosting gene. �e rationale is that the potential bias introduced 
during the library preparation and sequencing should in�uence the representation of circRNA and its hosting 
gene similarly, and using the quotient of the two could remove the bias and thus enable cross-sample comparison. 
We found 80 circRNAs demonstrating opposite pattern of expression in CN-AML versus APL, which might 
serve as a set of biomarkers to distinguish the two types of diseases (Fig. 3f, S5c). Interestingly, many circRNA 
hosting genes are functionally crucial to the di�erentiation and proliferation of myeloid cells and therefore likely 
underline the pathogenesis of leukemia. For example, circ_EMB is highly abundant in APL but not in AML 
samples (Fig. 3g). EMB (Embigin) encodes a transmembrane protein belonging to the immunoglobulin super-
family that has been identi�ed as a biomarker for cancer progression35. In addition to the potential pathogenic 
role of circ_RMB, the conversion of linear EMB transcript to circRNAs via back-splicing might also serve to 
decrease the protein output and thereby lead to excessive cell proliferation. On the other end of the spectrum, the 
circ_SMARCA5 is highly abundant in the AML but almost absent in APL samples (Fig. 3h). SMARCA5 (SWI/
SNF-Related Matrix-Associated Actin-Dependent Regulator of Chromatin A5) encodes a core component of 
chromatin remodeling and spacing factor RSF, which promotes cell proliferation36 and is dysregulated in prim-
itive hematopoietic cells of AML37. We found a miR-10b (a member of the miR-99 family) binding site on circ_
SMARCA5, and the miR-99 family has been shown to modulate the expression of SMARCA538. �erefore, we 
speculated that circ_SMARCA5 could function as a decoy of miR-10b, hence relieve linear SMARCA5 transcripts 
from repression and eventually contribute to the accumulation of undi�erentiated myeloid cells. Although the 
detailed mechanism in which circRNAs are regulated and function remain for further experimental investigation, 
we observed that the gene loci frequently mutated in AML cohorts39 produced circRNAs with signi�cantly higher 
abundance, suggesting an alternative approach of gene dysregulation deployed by cancer cells to gain and remain 
selective advantages against the immune surveillance (Fig. S6).

Fusion transcript derived circRNAs. Apart from detecting circRNAs originated from genes in canonical 
con�guration, here we further demonstrated the power of acfs in identifying circRNAs from non-canonical gene 
structure, such as fusion genes. Chromosomal translocation is observed in numerous diseases, and many fusion 
genes have been causally linked to tumor development40,41. Since circRNAs are generated by the splicing machin-
ery, it would be expected that fusion gene loci have also the potential for circRNA biogenesis. A recent study 
experimentally demonstrated both the existence and the functionality of fusion circRNAs in cancer16. However, 
comprehensive identi�cation of fusion circRNAs in a genome-wide manner remains yet challenging due to the 
lack of appropriate tools. Although many tools have been developed to detect fusion events, such as MapSplice, 
Tophat-Fusion42 and STAR-Fusion43, none could directly report fusion circRNAs. In this study, we showed that 
acfs could facilitate the pro�ling of fusion circRNAs using RNA-Seq data. As depicted in Fig. 4a, a fusion mRNA 
transcript harbors one fusion junction, whereas a fusion circRNA harbors two in a speci�c order. By determin-
ing the two characteristic fusion junctions between two gene loci, fusion circRNAs can be identi�ed. To test the 
performance of acfs in fusion circRNA identi�cation, we �rst simulated ten fusion circRNAs, randomly extracted 
ten reads from each of the fusion junctions, merged them with the simulated dataset described before and bench-
marked acfs with other state-of-the-art fusion detection tools. Across SE datasets with di�erent read lengths, 
acfs consistently identi�ed over 90% of all fusion junctions, whereas MapSplice2 and Tophat-Fusion had marked 
decrease in reporting true positives on the dataset with shortest read length, and performance of segemehl was 
consistently inferior to that of acfs (Fig. 4b). We observed a similar trend on the benchmark using PE data, except 
that MapSplices2 reported none of the true positives for all three datasets (Fig. 4c). Tophat-Fusion identi�ed all 
fusion junctions for longer read datasets, which came along with the cost of 10-fold more false positives than that 
of acfs(Fig. 4b,c). �e reason behind the fusion junctions missed by acfs was the existence of gene family members 
with high sequence similarity, which is challenging to resolve using only short-read NGS data. A�er demonstrat-
ing the e�cacy in identifying fusion circRNAs on simulated datasets, we then applied acfs to the APL dataset in 
which fusion circRNAs were experimentally validated16. For the seven APL samples (APL1, APL2, APL3, APL4, 
NB4s1, NB4s2, and NB4c) with known chromosomal translocation in the breakpoint cluster region (bcr), we 
identi�ed three fusion junctions from PML to RARA and one fusion junction from RARA to PML (Fig. 4d). 
However, these fusion junctions suggested the existence of linear fusion transcripts but not fusion circRNAs. 
Similarly, we detected only one fusion junction between MLL and AF9 in both THP1 cells and APL0 sample. We 
also had negative results by running three other fusion-detecting tools (Table S2). Alternatively, we constructed 
a reference from the junction sequences suggested by Guarnerio et al., and directly aligned all sequencing reads 
against this reference. When requiring at least 4 nt overlap with the junction and allowing up to 4% errors in the 
reads, only fusion junctions of PML/RARA and MLL/AF9 were detected, whereas the counterpart fusion junc-
tions of RARA/PML or AF9/MLL were not (Table S3). Taking both lines of evidence together, we concluded that 
we were unable to identify fusion circRNAs in this RNA-Seq dataset. However, it is likely that those experimen-
tally validated circRNAs are of low abundance, and the sequencing depth was not deep enough for computational 
detection. To sum up, acfs allows e�cient detection of fusion circRNAs and our reanalysis of the published data 
suggests the importance of unbiased pro�ling of samples of interest with su�cient sequencing depth.

Discussion
As a group of much neglected noncoding RNA, circRNAs have been recently identi�ed in many organisms 
from human to yeast with temporospatial-speci�c expression pro�les6,10,13–15,27. Although tens of thousands of 
circRNAs have been identi�ed to date, we are still far from being able to chart a comprehensive landscape for 
them. More importantly, investigation of both the expression dynamics and the underlying regulatory mecha-
nism requires accurate abundance estimation. Many tools have been developed for circRNA identi�cation and 



www.nature.com/scientificreports/

8Scientific RepoRts | 6:38820 | DOI: 10.1038/srep38820

quanti�cation using RNA-Seq data, yet their performances vary quite substantially on the following four aspects. 
First, many tools depend on a high-quality known gene annotation, which is absent for most non-model organ-
isms and still far from comprehensive even for the human genome. On the contrary, de novo prediction tools 
are not hindered by this limitation and can identify circRNAs in an unbiased manner. Second, the predicted 
back-splice junctions (BSJs) should be recognizable to the splicing machinery. While a few tools check for the 
canonical 4-mer splicing motifs, the rest of the tools do not examine the authenticity of the predicted BSJs, which 
give rise to not only false negatives but also false positives. �ird, the accuracy of abundance estimation is not 
satisfactorily high for most of the tools benchmarked. Last but not least, only a few tools support single-end 

Figure 4. Fusion circRNAs identi�cation by acfs. (a) Schematic view of fusion circRNA biogenesis and in 
silico identi�cation. (b,c) Benchmark of acfs with other state-of-the-art fusion prediction tools using simulated 
SE (b) and PE (c) datasets. (d) Reanalysis of a published datasets detected the characteristic fusion junctions but 
no fusion circRNAs.
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data whilst most others can only work with paired-end data. In this study, we present a standalone pipeline 
acfs that addresses all the aforementioned challenges with balanced performance and computational require-
ments. Benchmarks using several simulated and real-world datasets clearly demonstrated high accuracy and 
low false discovery rate of acfs (Fig. 2, Table S1). Several factors, including the circRNA abundance and the 
sequencing read length, could in�uence the performance. Using simulation, we show that while the accuracy 
reaches a plateau around 5~10 reads overlapping with the BSJ, lowly expressed circRNAs are di�cult to identify 
(Fig. S8, Table S4), suggesting the necessity of su�cient sequencing depth in real-world applications. Also as 
expected, longer sequencing length contributes to the improved ability to detect and quantify circRNAs (Fig. S8, 
Table S4). Applying acfs on RNA-Seq datasets from leukemia samples, we identi�ed thousands of circRNAs and, 
among them, a set of di�erentially expressed circRNAs which could potentially serve as diagnostic biomarkers 
(Fig. 3f–h). Given their enrichment in the exosomes22 and the extraordinary long half-life8 presumably owing to 
the circular structure, it is foreseeable that circRNAs serve in many roles from transcriptome characterization to 
liquid biopsy and treatment monitoring.

CircRNAs can originate from gene loci that are consistent with the reference genome, as well as from fusion 
genes caused by chromosomal translocations. Chromosomal translocations have been observed in many hered-
itary diseases as well as cancers, and many characteristic fusion genes have been casually linked to the etiology 
of the diseases. Since most studies on circRNAs focus on cell lines and only a few on normal tissue samples, 
the complexity of circRNA landscape in disease samples remains largely unexplored, letting alone the apprecia-
tion of their pathological impact. Recently, a study for the �rst time experimentally validated both the existence 
and the functionality of a few circRNAs in leukemia16. Although many tools have been developed to identify 
either circRNAs or fusion genes, currently none could directly report fusion circRNAs. In order to facilitate fur-
ther genome-wide pro�ling, acfs can identify and quantify the diagnostic fusion junctions of fusion circRNAs. 
Comparing with several state-of-the-art fusion gene identi�cation tools on simulated datasets, acfs consistently 
recovered most of the true fusion circRNAs with the fewest false positives (Fig. 4b,c). Nevertheless, future experi-
ments are needed for further characterization of fusion circRNAs and their functional interpretation.

Computational prediction of circRNA functions relies on the full-length sequences which is the starting point 
of the functional studies such as transcriptional regulation and RNA binding protein/miRNA decoying. More 
importantly, the knowledge of full-length sequences of circRNAs could enhance the abundance estimation as 
required in the realignment step in acfs. Due to the relative short sequencing read length in many studies, it 
is challenging to directly identify the full-length sequences of circRNAs in a genome-wide manner. Increasing 
the length of both the sequencing library and the reads could shed more light on the internal exon/sequence of 
circRNAs. Indeed, with 250 bp paired-end RNA-Seq data18 or de novo assembly17, thousands of novel circRNAs 
have been identi�ed in two recent studies, many of which are characterized by alternative RNA processing event 
such as intron retention, exon skipping and alternative splicing. �e observed complexity of circRNA isoforms 
is consistent to that of the linear transcript isoforms estimated using long read sequencing technologies44, which 
points clearly to the splicing machinery as the source and further emphasizes the importance of BSJ inspection as 
implemented in acfs. For circRNAs of length beyond the capacity of NGS platform, long read sequencing technol-
ogies, such as PacBio, could be applied to reveal their complete sequences13, albeit not permitting genome-wide 
application at the moment due to the cost and shallow throughput. Compiling a comprehensive catalog of cir-
cRNA isoforms remains an important task for future research.

To sum up, charting the landscape of circRNAs and their expression dynamics, including fusion circRNAs, 
could not only deepen our understanding of the complexity of the transcriptome but also shed light on the poten-
tial usage of circRNAs as a biomarker and even treatment agents. We believe our freely available tool acfs, featured 
with de novo BSJ identi�cation, high accuracy, and low FDR, can be widely applied to a variety of circRNA stud-
ies, especially those involving non-model organisms and cancer samples.

Methods
Simulated Benchmark datasets. Fasta sequences and gtf annotation of human (hg19) RefSeq transcripts 
were downloaded from UCSC Genome Browser. Simulated single-end (SE) and paired-end (PE) linear reads 
were randomly generated from 52408 RefSeq transcripts of length longer than 300 nt. To simulate circRNAs with 
bona �de exon structures, we select RefSeq transcripts with at least three exons, and construct BSJs with one or 
two internal exons that are randomly selected. To re�ect the observation that multiple circRNAs could originate 
from the same linear transcript, we simulated two circRNAs for a few RefSeq transcripts, reaching a total of 
61488 arti�cial circRNAs. Sequences of circRNAs were derived by concatenating all exonic sequences between 
the selected exon(s), and those of length shorter than 100 nt were discarded. Simulated SE circRNAs reads were 
randomly generated spanning the BSJ. For PE circRNA reads, we �rst randomized an insert-size from a normal 
distribution N(200, 50), and then randomized a le�-most position such that the resultant insert spanned the BSJ. 
To rule out the potential in�uence of the transcript abundance, we simulated 20 reads or read-pairs from each of 
the circRNAs and RefSeq transcripts. Fusion circRNAs were simulated by random selection of two internal exon 
regions from two RefSeq genes (A[i,j], B[m,n], where i<  =  j, and m<  =  n), and sequential joining of Aj to Bm, and Bn 
to Ai. We simulated 10 such fusion circRNA events and simulated 10 reads from each of the fusion junctions. All 
simulation scripts are available in the acfs package.

Evaluation with leukemia patient data. APL patient RNA-Seq data were obtained from (Guarnerio  
et al.16). CN-AML patient RNA-Seq data were obtained from (Garzon et al.31). All samples were supplied to acfs 
and run with default parameters. To benchmark the e�cacy of �nding fusion junctions for fusion circRNAs, 
segemehl, MapSplice2 and Tophat-Fusion were also run with default/recommended parameters. As an independ-
ent approach to detect fusion circRNA, we constructed a database consisting of the fusion junction sequences 
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suggested by the authors and aligned all sequencing reads to this reference with bowtie allowing up to 3 mis-
matches. �en we counted the number of reads that span the fusion junctions with at least 4 nt overhang to avoid 
ambiguous alignments.

MiRNA-guided cleavage site on circRNA. To predict if a certain circRNA could be cleaved by 
miRNA-bounded AGO2 complex, we concatenated all the exonic sequences for each circRNA, and counted the 
number of full-length miRNA binding sites with less than 5 mismatches located beyond the seed region for all 
miRNAs (deposited in miRBase45 version 21).

Estimation of folding energy for circRNA. RNAfold46 was used to estimate the secondary structure and 
folding energy for each candidate circRNA, with recommended parameters (-circ -MEA -d2 -p).

Data Availability. Acfs is freely available at https://github.com/arthuryxt/acfs under GNU v3 license.
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