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Abstract

In a bi-directional relay channel, two nodes wish to exchange independent messages over a shared

wireless half-duplex channel with the help of a relay. In this paper, we derive achievable rate regions

for four new half-duplex protocols and compare these to four existing half-duplex protocols and outer

bounds. In time, our protocols consist of either two or three phases. In the two phase protocols, both users

simultaneously transmit during the first phase and the relay alone transmits during the second phase, while

in the three phase protocol the two users sequentially transmit followed by a transmission from the relay.

The relay may forward information in one of four manners; we outline existing Amplify and Forward

(AF), Decode and Forward (DF), Lattice based, and Compress and Forward (CF) relaying schemes and

introduce the novel Mixed Forward scheme. The latter is a combination of CF in one direction and DF

in the other. We derive achievable rate regions for the CF and Mixed relaying schemes for the two and

three phase protocols. We provide a comprehensive treatment of eight possible half-duplex bi-directional

relaying protocols in Gaussian noise, obtaining their relative performance under different SNR and relay

geometries.
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I. INTRODUCTION

Bi-directional relay channels, or wireless channels in which two nodes (a and b)1 wish to exchange

independent messages with the help of a third relay node r, are both of theoretical and practical interest.

Such channels may be relevant to ad hoc networks as well as to networks with a centralized controller

through which all messages must pass. From an information theoretic perspective, an understanding

of these fundamental bi-directional channels would bring us closer to a coherent picture of multi-user

information theory. To this end, we study bi-directional relay channels with the goal of determining

spectrally efficient achievable rate regions and tight outer bounds to the capacity region. In this work, we

consider half-duplex communication in which a node may either transmit or receive at a given moment,

but not both. This is in contrast to full-duplex operation where nodes transmit and receive on the same

antenna and frequency simultaneously. Unfortunately, full-duplex operation may not be practically feasible

as the intensity of the near field of the transmitted signal is much higher than that of the far field of the

received signal, motivating the consideration of half-duplex operation. Our goal is to determine spectrally

efficient (measured in bits per channel use) transmission schemes and outer bounds for the half-duplex

bi-directional relay channel and compare their performance in a number of scenarios. These scenarios

highlight the fact that different protocols may be optimal under different channel conditions. An obvious

half-duplex bi-directional relay protocol is the four phase protocol, a→ r, r→ b, b→ r and r→ a, where

the phases are listed chronologically. However, this protocol is spectrally inefficient and does not take

full advantage of the broadcast nature of the wireless channel. One way to take advantage of the shared

wireless medium is to combine the second and the fourth phases into a single broadcast transmission

by using, for example, network coding [1]. That is, if the relay r can decode the messages wa and wb

from nodes a and b respectively, it is sufficient for the relay r to broadcast wa ⊕ wb to both a and b.

Alternative capacity achieving strategies for this second downlink phase alone are proposed using tailored

binning strategies in [12], [22], [32]. In this paper we consider two possible bi-directional relay protocols

which differ in their number of phases. Throughout this work, phases will denote temporal phases, or

durations. The three phase protocol is called the Time Division Broadcast (TDBC) protocol, while the two

phase protocol is called the Multiple Access Broadcast (MABC) protocol. One of the main conceptual

differences between these two protocols is the possibility of side-information in the TDBC protocol but

1We call the nodes a and b terminal and source nodes interchangeably.
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not in the MABC protocol. By side-information we mean information obtained from the wireless channel

in a particular phase which may be combined with information obtained in different stages to potentially

improve decoding or increase transmission rates. The two considered protocols may be described as:

1) TDBC protocol: this consists of the three phases a → r, b → r and a ← r → b; only a single

node is transmitting during a given phase. By the broadcast nature of the wireless channel, the

non-transmitting nodes may listen in and obtain “side information” about the transmissions of the

other nodes, which in turn may improve rates.

2) MABC protocol: this protocol combines the first two phases of the TDBC protocol and consists

of the two phases a → r ← b and a ← r → b. Due to the half-duplex assumption, during phase

1 both source nodes are transmitting and thus cannot obtain any “side information” regarding the

other nodes’ transmission. It may nonetheless be spectrally efficient since it has less phases than

the TDBC protocol and may take advantage of the multiple-access channel in phase 1.

We consider restricted protocols in the sense that the receivers must decode their messages at the

end of the third phase (TDBC) or second phase (MABC) and collaboration across multiple successive

runs of the protocols are not possible. For each of the MABC and TDBC protocols, the relay may

process and forward the received signals differently. These different forwarding schemes are motivated by

different relaying capabilities or assumptions (about the required complexity or knowledge). Combining

the relaying schemes with the temporal protocols, we can obtain various protocols whose rate regions

are not in general subsets of one another. The relative benefits and merits of the four relaying schemes

are summarized in Table I. The five relaying schemes we consider are:

1) Amplify and Forward (AF): the relay r constructs its symbol by symbol replication of the received

symbol. The AF scheme does not require any computation for relaying except for simple symbol

based addition, and carries noise incurred in the first stage(s) forward during the relaying stage.

2) Decode and Forward (DF): the relay decodes both messages from nodes a and b before re-encoding

them for transmission. The DF scheme requires the full codebooks of both a and b and a large

amount of computation at the relay r.

3) Compress and Forward (CF): the relay does not decode the messages of a and b, nor does it simply

amplify the received signal, but it performs something in between these two extremes. It compresses

the received signal, which it then transmits. To do so, the relay does not require the codebooks of

the source nodes, but it does require the channel output distribution p(yr) at the relay.

June 14, 2011 DRAFT



4

4) Mixed Forward: the relay decodes and forwards (DF) the data traveling in one direction (a→ b),

while it compresses and forwards (CF) the data traveling in the other direction (a ← b). For the

mixed scheme, one of the codebooks and the channel output distribution are needed at the relay.

5) Lattice Forward (for Gaussian noise channels only): for MABC protocols where a multiple access

channel exists in the first phase, it may be more spectrally efficient to directly decode and forward a

linear combination of the transmitted codewords. By employing structured lattice codes [20], [33],

one may exploit the linear relationship between channel inputs and outputs to decode a sum of the

codewords rather than individual codewords as is the case when using random codebooks.

A large portion of the results presented will focus on the CF-forwarding scheme, which is seen as an

alternative to DF forwarding that is slightly less computationally expensive and may lead to increased

rates due to the lack of decoding required at relay nodes. In the CF scheme the relay searches the

compression codebook to find an appropriate codeword: this is similar to the decoding operation in the

DF scheme, but the CF scheme’s complexity is controllable by the choice of the CF codebook. Some of

these protocols and relaying schemes have been considered in the past. Very little work has considered

the three phase TDBC protocol; only [13] and [15] have considered the DF TDBC protocol. In the latter,

network coding in Zk
2 is used to encode the message of relay r from the estimated messages w̃a and w̃b.

In contrast, the 2-phase MABC protocols have been much more thoroughly considered. The works of

[24] and [25] consider the MABC protocol with an “amplify and denoise” relaying scheme. In [17], [18]

lattice codes are used at the terminal nodes for the Gaussian channel in the MABC protocol, allowing

the relay to decode a combination of the transmitted messages. The capacity region of the broadcast

phase in the MABC protocol, assuming the relay has both messages wa and wb (and each terminal node

has its own message side information) is found in [12], [21], [32]. In [31] and [19] Slepian-Wolf coding

is extended to lossy broadcast channels with side information at the receivers. In [13], achievable rate

regions and outer bounds of the MABC protocol and the TDBC protocol with the DF relaying scheme

are derived. In this work we place a particular focus on CF relaying schemes as well as on the numerical

comparison of different schemes in AWGN. Uni-directional CF relaying in the full-duplex channel is first

introduced in [5]. An achievable region in the CF MABC protocol is derived in [27] and enhanced in

[29], while an achievable region of the partial DF MABC protocol is derived in [28]. In [9] a comparison

between DF and CF schemes in full-duplex channels is performed, while in [26] a comparison of AF

and DF schemes with two relays in the MABC protocol is performed. In this paper, we derive achievable

regions for new CF and mixed relaying schemes in both the TDBC and MABC half-duplex protocols.
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TABLE I

COMPARISON BETWEEN FOUR RELAYING SCHEMES

Relaying Complexity Noise at relay Relay needs

AF very low carried plus noise at rx nothing

DF high perfectly eliminated full codebooks

CF low carried plus distortion p(yr)

Mixed moderate partially carried one codebook, p(yr)

Lattice (Gaussian only) high eliminated, decode the sum of codewords full codebooks

We also obtain outer bounds for the TDBC and MABC protocols based on cut-set bounds. We compare

the achievable rate regions of the novel schemes with the regions and outer bounds derived in [13] as

well as a simple AF scheme, and an extension of the lattice-based schemes (previously presented for full-

duplex channels) to half-duplex channels in Gaussian noise. We thus present a comprehensive overview

of the bi-directional relay channel which highlights the relative performance and tradeoffs of the different

schemes under different channel conditions and relay processing capabilities. Notably, we find that under

some channel conditions the mixed TDBC protocol outperforms the other protocols and similarly, there

are channel conditions for which the CF TDBC protocol has the best performance. We also see that in

the high SNR region the sum rate of the Lattice DF MABC protocol is very close to the outer bound;

we show that this gap may be bounded by 1 bit.

This paper is structured as follows: in Section II, we introduce our notation. In Section III we

derive achievable rate regions for the CF and mixed relaying schemes. In Section IV we obtain explicit

expressions for these, new lattice based, and previous rate regions and outer bounds in Gaussian noise. In

Section V, we numerically compute these bounds in the Gaussian noise channel and compare the results

for different powers and channel conditions.

II. PRELIMINARIES

In this work, we will determine and compare the rate regions of eight bi-directional half-duplex relay

protocols. We will mainly consider the less-studied 3 phase Time Division Broadcast (TDBC) protocol

as well as provide a slight generalization of the 2 phase Multiple Access Broadcast (MABC) versions of

Amplify and Forward (AF), Decode and Forward (DF), Compress and Forward (CF), Lattice forwarding

(for the Gaussian channel under MABC protocol only), as well as a Mixed scheme which combines

Decode and Forward in one direction with Compress and Forward in the other. The AF, DF protocol
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regions and the CF MABC protocol region have been derived in prior work [13], [25], [27] while an

improvement of the [27] CF MABC, the CF TDBC, Lattice MABC and Mixed MABC and TDBC

protocol regions described in Section III are determined here.

A. Notation and Definitions

We consider two terminal nodes a and b, and one relay node r. Terminal node a has a message Wa

uniformly distributed in {0, . . . , �2nRa� − 1} =: Sa to be decoded at node b at rate Ra. Node b has an

independent message Wb uniformly distributed in {0, . . . , �2nRb� − 1} =: Sb to be decoded at node a at

rate Rb. The relay node r may assist in the bi-directional endeavor. The nodes are assumed to be half-

duplex, which implies that they cannot simultaneously transmit and receive data. As a result, achievability

schemes are protocol dependent; a protocol defines which nodes transmit during each temporal phase.

The protocols considered have either 2 (MABC) or 3 (TDBC) phases. The relative time duration of the

�th phase is denoted by Δ� ≥ 0, where
∑

�Δ� = 1. For a given block size n, Δ�,n denotes the normalized

(by n) duration of the �th phase, and in achievability schemes we will require limn→∞Δ�,n = Δ�. The

channel input and output at channel use k at node i are denoted by the random variables Xk
i ∈ Xi and

Y k
i ∈ Yi respectively, for i ∈ {a, b, r}. Channel inputs are related to channel outputs according to a

discrete memoryless channel. We note that the distributions of Xk
i and Y k

i depend on the value of k,

e.g. for k ≤ Δ1,n · n we are in phase 1, for Δ1,nn < k ≤ (Δ1,n + Δ2,n)n we are in phase 2 and for

(Δ1,n +Δ2,n)n < k ≤ n we are in phase 3 (in TDBC protocols only). With a slight abuse of notation,

we use X
(�)
i to denote the random variable with alphabet Xi and input distribution p(�)(xi) during phase

�. As multiple nodes may transmit during a particular phase, we let Xk
S := {Xk

i |i ∈ S} denote the set

of transmissions by all nodes in the set S at time k, and let X
(�)
S := {X(�)i |i ∈ S} denote a set of

random variables with channel input distribution p(�)(xS) for phase �, where xS := {xi|i ∈ S}. Lower

case letters xi will denote instances of the upper case Xi which lie in the calligraphic alphabets Xi.
Boldface xi represents a vector indexed by time at node i. Finally, let xS := {xi|i ∈ S} denote a set

of vectors corresponding to nodes in the set S indexed by time. We will be constructing Compress and

Forward schemes in which received signals are compressed or quantized before being re-transmitted. Ŷi

denotes the compressed representation of the received signal at node i, which lies in the corresponding

compression alphabet Ŷi for node i. Ŷi is not necessarily equal to Yi. However, in our numerical Gaussian

results in Sections IV and V, Xi = Yi = Ŷi = C, ∀i. Encoders, decoders and associated probability of

errors are defined as follows: let WS,T := {Wi,j |i ∈ S, j ∈ T, S, T ⊂ M} denote the set of messages

from nodes in set S to nodes in set T . We note that if node i does not have a message for node j,
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then Wi,j = ∅. The encoder at node i at channel use k is a function Xk
i (W{i},M, Y

1
i , · · · , Y k−1

i ) ∈ Xi;
the decoder at node i after all n channel uses is a function W̃j,i(Y

1
i , · · · , Y n

i ,W{i},M) which produces

an estimate of the message Wj,i. We define error events Ei,j := {Wi,j = W̃i,j(.)} for decoding the

message Wi,j at node j at the end of the block of length n, and E
(�)
i,j as the error event at node j in

which node j attempts to decode wi at the end of phase �. Let A(�)(UV ) represent the set of ε-typical

(u(�),v(�)) sequences of length n · Δ�,n according to the distributions U and V in phase � and let

D(�)(u,v) := {(u(�),v(�)) ∈ A(�)(UV )} denote the event that u and v are jointly typical. In general,

joint typicality is non-transitive. However, by using strong joint-typicality, and the fact the distributions

of interest will generally form Markov chains X → Y → Ŷ we will be able to argue joint typicality

between x and ŷ by the Markov lemma of Lemma 4.1 in [2] and the extended Markov lemma (Lemma

3 of [23], Remark 30 of [14]).

A set of rates Ri,j is said to be achievable for a protocol with phase durations {Δ�} if there exist

encoders/decoders of block length n = 1, 2, . . . with both P [Ei,j ]→ 0 and Δ�,n → Δ� as n→∞ for all

i, j, �. An achievable rate region (resp. capacity region) is the closure of a set of (resp. all) achievable rate

tuples for fixed {Δ�}. Finally, we let Q denote a discrete time-sharing random variable with distribution

p(q) and let Ā denote the complement of the set A. [x]+ := max{x, 0} for x ∈ R.

B. Compress and Forward using two joint typicality decoders

In Compress and Forward protocols, unlike in Decode and Forward protocols, the relay node r does

not decode the message wa or wb. Thus, network coding techniques such as the algebraic group operation

wa ⊕ wb used in [13] cannot be used to generate wr for the current CF schemes. Instead, two jointly

typical decoders at each node are used to decode wr.

Fig. 1. The data flow in the compress and forward MABC protocol

To illustrate this in the MABC protocol, consider the decoder at node a which wishes to decode the relay

message wr in order to ultimately decode the desired message from node b, wb. After phase 2, node a has
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the known sequences x
(1)
a (wa) and y

(2)
a . Node a then finds the set of all ŷ

(1)
r (wr) and x

(2)
r (wr) such that

(x
(1)
a (wa), ŷ

(1)
r (wr)) and (x

(2)
r (wr),y

(2)
a ) are two pairs of jointly typical sequences, as shown in Fig. 1.

Node a then decodes wr correctly if there exists a unique wr such that (x
(1)
a (wa), ŷ

(1)
r (wr)) ∈ A(1)(XaŶr)

and (x
(2)
r (wr),y

(2)
a ) ∈ A(2)(XrYa) and declares a decoding error otherwise.

III. ACHIEVABLE RATE REGIONS FOR COMPRESS AND FORWARD AND MIXED PROTOCOLS

In this Section we present three new achievable rate regions in Theorems 1 (3-phase CF TDBC) and

2 (3-phase Mixed TDBC), and a slight improvement of [27] in Theorem 3 (2-phase CF MABC). As

an aside, we provide the negative result that the logical extension of the 2-phase MABC protocol to a

Mixed forwarding scheme (DF in one direction and CF in the other) always lies within the DF MABC

region of [13]. These regions, derived here for the discrete memoryless channel, will be extended to the

Gaussian noise channel in sections IV and V, where we present an additional 2-phase achievable MABC

region which exploits structured lattice codes to decode sums of messages.

A. TDBC Protocol

Our main results in this section are the derivation of two new achievable rate regions for the 3-phase

TDBC protocol: one using CF in both directions, and one using CF in one direction and DF in the other,

which we term “Mixed” forwarding. In phase 1 and 2, each of the terminal nodes transmits. During

phase 3, the “relay broadcast” phase, the relay transmits in two sub-phases – separated in time due to

simplicity. In the first relay-broadcast sub-phase, we use the Marton-broadcast-like scheme [16], in which

two different messages are transmitted to the two receivers. In this scheme, neither receiver uses side

information (wa at node a and wb at node b) to decode the messages. In the second relay-broadcasting

phase, we assume a compound channel, i.e., a common message is transmitted to the two receivers which

have different side information. Because we use two sub-phases, different proportions of the messages

Wa and Wb are transmitted during the two sub-phases. We let αa (resp. αb) denote the fraction of the

information content of Wa (resp. Wb) transmitted by Marton-broadcasting-like scheme; the remainder is

broadcast in the compound-channel-like scheme. For convenience of analysis, we denote the first part

of the relay-broadcast phase as phase 3 and the second as phase 4. During phase 1, node a sends wa

using codeword x
(1)
a (wa). Since node b is silent, direct-link side information is available at node b. The

relay receives the signal y
(1)
r according to p(1)(yr|xa) and compresses it to a signal ŷ

(1)
r (wa0) with the

index wa0. A similar process is performed during phase 2 in sending message wb from node b to node

a with the help of the relay which compresses the received signal to the index wb,0. Then the relay
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broadcasts a portion (αa and αb) of the compression messages wa0 and wb0 using a scheme similar to

that in Marton’s broadcast channel region during phase 3 and sends a common message as in a compound

channel during phase 4. The main challenge lies in finding the optimum compression strategies and ratios

between two relay broadcasting schemes by exploiting the terminal nodes’ own messages and direct-link

side information.

Theorem 1: An achievable rate region of the half-duplex bi-directional relay channel with the compress

and forward TDBC protocol is the closure of the set of all points (Ra, Rb) satisfying

Ra < Δ1I(X
(1)
a ; Ŷ

(1)
r , Y

(1)
b |Q) (1)

Rb < Δ2I(X
(2)
b ; Ŷ

(2)
r , Y

(2)
a |Q) (2)

subject to

αaΔ1I(Y
(1)
r ; Ŷ

(1)
r |Q) < Δ3I(U

(3)
a ;Y

(3)
b |Q) (3)

αbΔ2I(Y
(2)
r ; Ŷ

(2)
r |Q) < Δ3I(U

(3)
b ;Y

(3)
a |Q) (4)

αaΔ1I(Y
(1)
r ; Ŷ

(1)
r |Q) + αbΔ2I(Y (2)r ; Ŷ

(2)
r |Q) < Δ3I(U

(3)
a ;Y

(3)
b |Q) + Δ3I(U

(3)
b ;Y

(3)
a |Q)−Δ3I(U

(3)
a ;U

(3)
b |Q)

(5)

(1− αa)Δ1I(Y (1)r ; Ŷ
(1)
r |Q) + Δ2I(Y

(2)
r ; Ŷ

(2)
r |X(2)b , Q) < Δ4I(X

(4)
r ;Y

(4)
b ) + Δ1I(Ŷ

(1)
r ;Y

(1)
b |Q) (6)

(1− αb)Δ2I(Y (2)r ; Ŷ
(2)
r |Q) + Δ1I(Y

(1)
r ; Ŷ

(1)
r |X(1)a , Q) < Δ4I(X

(4)
r ;Y

(4)
a ) + Δ2I(Ŷ

(2)
r ;Y

(2)
a |Q) (7)

where 0 < αa, αb < 1 over all joint distributions,

p(q, xa, xb,xr, ya, yb, yr, ŷr)

= p(q)p(1)(xa, yb, yr, ŷr|q)p(2)(xb, ya, yr, ŷr|q)p(3)(ua, ub, xr, ya, yb|q)p(4)(xr, ya, yb) (8)

where

p(1)(xa, yb, yr, ŷr|q) = p(1)(xa|q)p(1)(yb, yr|xa)p(1)(ŷr|yr, q) (9)

p(2)(xb, ya, yr, ŷr|q) = p(2)(xb|q)p(2)(ya, yr|xb)p(2)(ŷr|yr, q) (10)

p(3)(ua, ub, xr, ya, yb|q) = p(3)(ua, ub|q)p(3)(xr|ua, ub, q)p(3)(ya, yb|xr) (11)

p(4)(xr, ya, yb) = p
(4)(xr)p

(4)(ya, yb|xr) (12)

with |Q| ≤ 13, |Ŷr| ≤ |Q||Yr|+ 3 over the alphabet Xa ×Xb ×X 2r × Y3a × Y3b × Y2r × Ŷ2r .

Remark 1: We note that the division of the relay broadcast phase into two sub-phases allows for a

simple reduction of the protocol to known transmission schemes. In particular, if the direct-links a→ b and
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b→ a are very weak, i.e., I(Ŷ
(1)
r ;Y

(1)
b ) and I(Ŷ

(2)
r ;Y

(2)
b ) are very small and the users’ own messages

are of limited use to cancel out interference in phase 4, i.e., I(Y
(1)
r ; Ŷ

(1)
r |X(1)a ) ≈ I(Y (1)r ; Ŷ

(1)
r ) and

I(Y
(2)
r ; Ŷ

(2)
r |X(2)b ) ≈ I(Y (2)r ; Ŷ

(2)
r ) a classical broadcast channel may be more beneficial and we may

let Δ4 → 0, αa, αb → 1 such that the relay phase corresponds to a classical broadcast channel. At the

opposite extreme, when the direct links provide a large amount of side-information, i.e., I(Ŷ
(1)
r ;Y

(1)
b )

and I(Ŷ
(2)
r ;Y

(2)
b ) are large and the users’ own message knowledge may be used to cancel out almost all

“interference” in a broadcast scheme in which a common message is sent, i.e., I(Y
(1)
r ; Ŷ

(1)
r |X(1)a ) and

I(Y
(2)
r ; Ŷ

(2)
r |X(2)b ) are very small, we may set Δ3 → 0, αa, αb → 0. 2 The detailed proof is provided in

Appendix A.

Remark 2: Strong typicality is required for the proof of Theorem 1 in order to apply the Markov

lemma to (X
(1)
a , X

(1)
b ) → Y (1)r → Ŷ (1)r for each given q. Since strong typicality is defined for discrete

alphabets, Theorem 1 cannot be directly extended to continuous alphabets. However, the extended Markov

lemma (see Remark 30 of [14] as well as Lemma 3 of [23]) shows that for Gaussian distributions, the

Markov lemma still applies.

Remark 3: We use coded time sharing [10] so that (3)–(7) will hold for a larger set of distributions than

for regular time-sharing. For regular time-sharing, these equations would need to hold for all individual

distributions, that is, αaΔ1I(Y
(1)
r ; Ŷ

(1)
r ) < Δ3I(U

(3)
a ;Y

(3)
b ) for all p(1)(yr, ŷr) in (3). However, with

coded time sharing, we only need these constraints to hold for the convex combination of the individual

mutual information terms, that is, αaΔ1I(Y
(1)
r ; Ŷ

(1)
r |Q) < Δ3I(U

(3)
a ;Y

(3)
b ) for all p(1)(yr, ŷr), yielding

a larger set of distributions over which the rate region is taken and therefore a possibly larger achievable

rate region.

When the direct forward and reverse links are of different strength, a scheme in which one direction

uses a CF and the other uses a DF relaying scheme may provide a larger rate region than if both links

use CF. In the next theorem, we provide a rate region for a TDBC scenario in which the forward link

uses DF and the reverse link uses CF.

Theorem 2: An achievable rate region for the half-duplex bi-directional relay channel with a mixed

TDBC protocol, where the a → r → b link uses decode and forward and the a ← r ← b link uses

compress and forward, is the closure of the set of all points (Ra, Rb) satisfying

Ra < min
{
Δ1I(X

(1)
a ;Y

(1)
r ),Δ1I(X

(1)
a ;Y

(1)
b ) + Δ3I(U

(3)
r ;Y

(3)
b |Q)−Δ3I(U

(3)
r ;U

(3)
b |Q)

}
(13)

2This choice of Δ3, αa, αb is on the boundary of the closure of the achievable rate region.
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Rb < Δ2I(X
(2)
b ; Ŷ

(2)
r , Y

(2)
a |Q) (14)

subject to

Δ2I(Y
(2)
r ; Ŷ

(2)
r |Y (2)a , Q) < min{Δ3I(U (3)r , U

(3)
b ;Y

(3)
a |Q),Δ3I(U (3)b ;U

(3)
r , Y

(3)
a |Q)} (15)

over all joint distributions,

p(q, xa, xb, xr, ub, ur, ya, yb, yr, ŷr) = p(q)p
(1)(xa, yb, yr)p

(2)(xb, ya, yr, ŷr|q)p(3)(ub, ur, xr, ya, yb|q)
(16)

where

p(1)(xa, yb, yr) = p
(1)(xa)p

(1)(yb, yr|xa) (17)

p(2)(xb, ya, yr, ŷr|q) = p(2)(xb|q)p(2)(ya, yr|xb)p(2)(ŷr|yr, q) (18)

p(3)(ua, ub, ur, xr, ya, yb|q) = p(3)(ub, ur|q)p(3)(xr|ub, ur, q)p(3)(ya, yb|xr) (19)

with |Q| ≤ 6, |Ŷr| ≤ |Q||Yr|+ 2 over the alphabet Xa ×Xb ×Xr × Ub × Ur × Y2a × Y2b × Y2r × Ŷr.
Proof outline : We use random (Slepian-Wolf-like) binning to exploit the overheard side information

and a Gel’fand-Pinsker coding scheme to broadcast two separate messages from the relay to the terminal

nodes. Theorem 2 then follows the same argument as the proof of Theorem 1. We note that the mixed

TDBC protocol, the DF TDBC and the CF TDBC protocol are not generally ordered in terms of

performance, i.e., one can find channel scenarios in which each one achieves “better” rates than the

others.

B. MABC Protocol

During phase 1, nodes a and b simultaneously send independent messages wa and wb as codewords

x
(1)
a (wa) and x

(1)
b (wb) to the relay, forming a classical multiple-access channel. Since we assume half-

duplex nodes, neither a nor b can receive the message of the other during phase 1 and hence no direct-

link side information is available at the terminal nodes. The relay receives the signal y
(1)
r according to

p(1)(yr|xa, xb). Rather than attempting to decode message wa and wb (as in a DF scheme), it compresses

the received y
(1)
r into a signal ŷ

(1)
r (wr). The index wr is then mapped in a one-to-one fashion to the

codeword x
(2)
r (wr) which is broadcast in phase 2 back to the relays. The challenge here is to determine the

optimal compression strategy such that just enough information is carried back to the nodes to decode

the opposite node’s message, by fully exploiting the own-message side-information available at each

terminal.
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Theorem 3: An achievable rate region of the half-duplex bi-directional relay channel with the compress

and forward MABC protocol is the closure of the set of all points (Ra, Rb) satisfying

Ra < Δ1I(X
(1)
a ; Ŷ

(1)
r |X(1)b , Q) (20)

Rb < Δ1I(X
(1)
b ; Ŷ

(1)
r |X(1)a , Q) (21)

subject to

Δ1I(Y
(1)
r ; Ŷ

(1)
r |X(1)b , Q) < Δ2I(X

(2)
r ;Y

(2)
b ) (22)

Δ1I(Y
(1)
r ; Ŷ

(1)
r |X(1)a , Q) < Δ2I(X

(2)
r ;Y

(2)
a ) (23)

over all joint distributions,

p(q, xa, xb, xr, ya, yb, yr, ŷr) = p
(1)(q, xa, xb, yr, ŷr)p

(2)(xr, ya, yb) (24)

where

p(1)(q, xa, xb, yr, ŷr) = p
(1)(q)p(1)(xa|q)p(1)(xb|q)p(1)(yr|xa, xb)p(1)(ŷr|yr, q) (25)

p(2)(xr, ya, yb) = p
(2)(xr)p

(2)(ya, yb|xr) (26)

with |Q| ≤ 4, |Ŷr| ≤ |Q||Yr|+ 4 over the alphabet Xa ×Xb ×Xr × Ya × Yb × Yr × Ŷr.
Remark 4: The bound of Theorem 3 is essentially independently derived in [27]. We do however note

that equation (25) is a slight extension of the work in [27], as we use p(1)(ŷr|yr, q) instead of p(1)(ŷr|yr),
i.e., in [27] the compression codewords ŷ

(1)
r are generated according to p(1)(ŷr) =

∑
p(1)(yr)p

(1)(ŷr|yr),
while in (25) the space of compression distributions p(1)(ŷr|q) =

∑
p(1)(yr|q)p(1)(ŷr|yr, q) is in general

larger. By conditioning on q, one can “fine-tune” the distribution of ŷ
(1)
r for each given q and the left

side of (22) and (23) may be reduced. This is because the distributions of X
(1)
a and X

(1)
b , and hence

Y
(1)
r , depend on q. For example, let p(1)(q = 1) = αn and p(1)(q = 2) = 1 − αn, where 0 < αn <

1. For q = 1 we optimize p(1)(ŷr|1) and generate (αnΔ1,n · n)-length sequence ŷ
(1),1
r (wr1), wr1 ∈

{0, 1, · · · �2nRr1�}, where Rr1 = αnΔ1,n(I(Y
(1)
r ; Ŷ

(1)
r |q = 1) + ε). Likewise, we generate ŷ

(1),2
r (wr2)

for q = 2. To compress y
(1)
r to ŷ

(1)
r , we construct y

(1)
r = (y

(1),1
r ,y

(1),2
r ) and ŷ

(1)
r = (ŷ

(1),1
r , ŷ

(1),2
r ) and

choose wr = (wr1, wr2) if both (y
(1),1
r , ŷ

(1),1
r (wr1)) and (y

(1),2
r , ŷ

(1),2
r (wr2)) are jointly typical. Then the

rate Rr = Rr1+Rr2 = Δ1I(Y
(1)
r ; Ŷ

(1)
r |Q). However, if one generated ŷ

(1)
r from the distribution p(1)(ŷr)

then Rr = Δ1I(Y
(1)
r ; Ŷ

(1)
r ) which in general could be either smaller or greater than Δ1I(Y

(1)
r ; Ŷ

(1)
r |Q)

depending on the particular p(1)(yr|q) and p(1)(ŷr|yr, q), but for optimized p(1)(ŷr|yr, q) is always smaller

or equal with equality only in degenerate cases. A similar argument may be found in [7].
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In the TDBC protocol, we provided achievable rate regions for both CF and Mixed (CF one way,

DF the other) forwarding schemes. In general, no strict relationship between the CF, DF and Mixed

forwarding schemes exists for the TDBC protocol. In the MABC protocol, the CF and DF forwarding

schemes will be shown numerically to not contain each other in two-way AWGN channels. We do not

present a Mixed MABC region in which CF is used in one direction and DF in the other as in such a

scheme 1) one message (wa) still has to be decoded at the relay, and 2) the compressed signal (ŷr) contains

less information than the received signal (yr). Using these, one may show that a MABC protocol with a

Mixed forwarding scheme which uses techniques similar to those used in the Mixed TDBC protocol is

completely included in the DF MABC protocol. As such, the Mixed MABC region is omitted.

IV. GAUSSIAN CASE

We now assume all links in the bi-directional relay channel are subject to independent, identically

distributed white Gaussian noise. The commonly considered Gaussian channel will allow us to visually

compare different achievable rate regions for the bi-directional relaying channel. Definitions of codes, rate,

and achievability in the memoryless Gaussian channels are analogous to those of the discrete memoryless

channels. The achievable rate regions for the Gaussian noise channel are obtained by evaluation of the

previously derived rate regions for Gaussian input distributions. We note that since strong typicality –

needed for the CF forwarding schemes – does not apply to continuous random variables, the achievable

rate regions from the theorems in the previous section do not directly apply to continuous domains.

However, for the Gaussian input distributions and additive Gaussian noise which we will assume in the

following, the Markov lemma of [23], which generalizes the Markov lemma to the continuous domains,

ensures that the achievable rate regions in the previous section are valid for AWGN channels. The

corresponding Gaussian channel model is:

Ya[m] = hraXr[m] + hbaXb[m] + Za[m] (27)

Yb[m] = hrbXr[m] + habXa[m] + Zb[m] (28)

Yr[m] = harXa[m] + hbrXb[m] + Zr[m] (29)

where Xa[m], Xb[m] and Xr[m] follow the input distributions X
(�)
a ∼ CN (0, Pa), X

(�)
b ∼ CN (0, Pb) and

X
(�)
r ∼ CN (0, Pr), m ∈ [n

∑�−1
j=0Δj,n + 1, n

∑�
j=0Δj,n], and CN (μ, σ2) denotes a complex Gaussian

random variable with mean μ and variance σ2, and � corresponds to the appropriate phase. If node i is

transmitting, its transmit power is bounded by Pi, i.e., E[|Xi|2] ≤ Pi. If node i is receiving, its input
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symbol during that phase does not exist in the above mathematical channel model. For example, in the

first phase of the TDBC protocol, the corresponding channel model is :

Yb[m] = habXa[m] + Zb[m] (30)

Yr[m] = harXa[m] + Zr[m]. (31)

In the above hij (∈ C) is the effective channel gain between transmitter i and receiver j. We assume

that the channel is reciprocal such that hij = hji and each node is fully aware of har, hbr and hab (i.e.

full CSI). The noise at all receivers Za, Zb, Zr is of unit power, additive, white Gaussian, complex and

circularly symmetric. For convenience of analysis, we also define the function C(x) := log2(1+ x). For

the analysis of the Compress and Forward scheme, we assume Ŷ
(�)
r are zero mean Gaussians and define

P
(�)
y := E[|Y (�)r |2] , P

(�)
ŷ := E[|Ŷ (�)r |2] and σ

(�)
y := E[|Ŷ (�)r Y

(�)
r |]. Then the relation between the received

Yr[m] and the compressed Ŷr[m] are given by the following equivalent channel model:

Ŷr[m] = hr̂r[m]Yr[m] + Zr̂[m], (32)

where Yr[m], Ŷr[m] and Zr̂[m] follow the distributions Y
(�)
r ∼ CN (0, P

(�)
y ), Ŷ

(�)
r ∼ CN (0, P

(�)
ŷ ) and

Z
(�)
r̂ ∼ CN (0, P

(�)
ŷ − (σ(�)y )2

P
(�)
y

) and hr̂r[m] =
σ(�)y

P
(�)
y

, where m ∈ [n
∑�−1

j=0Δj,n + 1, n
∑�

j=0Δj,n]. We note

that in the following, P
(�)
ŷ and σ

(�)
y are variables corresponding to the compression that are numerically

optimized. We consider five different relaying schemes for the MABC and TDBC bi-directional protocols:

Amplify and Forward (AF), Decode and Forward (DF), Lattice Forwarding (Lattice), Compress and

Forward (CF), and Mixed Forward (Mixed). In addition to achievable rate regions, we apply outer bounds

for the MABC and TDBC protocols to the Gaussian channel.

A. Amplify and Forward

In the amplify and forward scheme, all phase durations are equal, since relaying is performed on a

symbol by symbol basis. Therefore, Δ1 = Δ2 = 1
2 for the MABC protocol and Δ1 = Δ2 = Δ3 = 1

3

for the TDBD protocol. Furthermore, relay r scales the received symbol yr by
√

Pr

Py
to meet the transmit

power constraint of Pr. The following are achievable rate regions for the amplify and forward relaying:

• MABC Protocol

Ra <
1

2
C

( |har|2|hbr|2PaPr
|har|2Pa + |hbr|2Pb + |hbr|2Pr + 1

)
(33)

Rb <
1

2
C

( |har|2|hbr|2PbPr
|har|2Pa + |hbr|2Pb + |har|2Pr + 1

)
(34)
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• TDBC Protocol

Ra <
1

3
C

(
|hab|2Pa + |har|2|hbr|2PaPr

|har|2Pa + |hbr|2Pb + 2|hbr|2Pr + 2

)
(35)

Rb <
1

3
C

(
|hab|2Pb + |har|2|hbr|2PbPr

|har|2Pa + |hbr|2Pb + 2|har|2Pr + 2

)
(36)

B. Decode and Forward

Applying Theorems 2 and 3 in [13] to the Gaussian case, we obtain the following achievable rate

regions:

• MABC Protocol

Ra < min{Δ1C(|har|2Pa),Δ2C(|hbr|2Pr)} (37)

Rb < min{Δ1C(|hbr|2Pb),Δ2C(|har|2Pr)} (38)

Ra +Rb < Δ1C(|har|2Pa + |hbr|2Pb) (39)

• TDBC Protocol

Ra < min{Δ1C(|har|2Pa),Δ1C(|hab|2Pa) + Δ3C(|hbr|2Pr)} (40)

Rb < min{Δ2C(|hbr|2Pb),Δ2C(|hab|2Pb) + Δ3C(|har|2Pr)} (41)

When obtaining the regions numerically, we optimize Δ�’s for the given channel mutual informations to

maximize the achievable rate regions.

C. Compress and Forward

Applying Theorem 3 and 1 to the Gaussian case, we obtain the following achievable rate regions:

• MABC Protocol

Ra < Δ1C

⎛
⎝ (σ

(1)
y )2|har|2Pa

P
(1)
ŷ (P

(1)
y )2 − (σ

(1)
y )2(P

(1)
y − 1)

⎞
⎠ (42)

Rb < Δ1C

⎛
⎝ (σ

(1)
y )2|hbr|2Pb

P
(1)
ŷ (P

(1)
y )2 − (σ

(1)
y )2(P

(1)
y − 1)

⎞
⎠ (43)

where,

Δ1 = min

⎧⎪⎪⎨
⎪⎪⎩

C(|hbr|2Pr)
C

(
(σ

(1)
y )2(|har|2Pa+1)

P
(1)
ŷ (P

(1)
y )2−(σ(1)y )2P

(1)
y

)
+ C(|hbr|2Pr)

,
C(|har|2Pr)

C

(
(σ

(1)
y )2(|hbr|2Pb+1)

P
(1)
ŷ (P

(1)
y )2−(σ(1)y )2P

(1)
y

)
+ C(|har|2Pr)

⎫⎪⎪⎬
⎪⎪⎭

(44)

P (1)y = |har|2Pa + |hbr|2Pb + 1. (45)
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• TDBC Protocol One can show that Marton’s bound in (3) – (5) is equivalent to the capacity region

of the Gaussian broadcast channel with Costa’s setup as follows: let |hra| > |hrb| and we set

In phase 3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ub[m] = Vr[m] + αUa[m]

Ya[m] = hra(Vr[m] + Ua[m]) + Za[m]

Yb[m] = hrb(Vr[m] + Ua[m]) + Zb[m]

(46)

where Vr[m] and Ua[m] follow the distributions V
(3)
r ∼ CN (0, βPr), U

(3)
a ∼ CN (0, (1 − β)Pr)

respectively during phase 3, m ∈ [n(Δ1,n+Δ2,n)+1, n], where (0 ≤ β ≤ 1) and E[V
(3)
r U

(3)
b ] = 0,

i.e., V
(3)
r , U

(3)
a are independent. We also take α = |hra|2βPr

|hra|2βPr+1
. Then⎧⎨

⎩ I(U
(3)
a ;Y

(3)
b ) = C

( |hrb|2(1−β)Pr

|hrb|2βPr+1

)
I(U

(3)
b ;Y

(3)
a )− I(U (3)a ;U

(3)
b ) = C

(|hra|2βPr) (47)

We similarly obtain the bounds for |hra| ≤ |hrb|. We note that the broadcast phase regions correspond

to the capacity region of the Gaussian broadcast channel without own-message side-information

(equations (15.11) and (15.12) in [4]). The following rates are achievable:

Ra < Δ1C

⎛
⎝|hab|2Pa + (σ

(1)
y )2|har|2Pa

P
(1)
ŷ (P

(1)
y )2 − (σ

(1)
y )2(P

(1)
y − 1)

⎞
⎠ (48)

Rb < Δ2C

⎛
⎝|hab|2Pb + (σ

(2)
y )2|hbr|2Pb

P
(2)
ŷ (P

(2)
y )2 − (σ

(2)
y )2(P

(2)
y − 1)

⎞
⎠ (49)

where,

if |hra| < |hrb| : αaΔ1C

⎛
⎝ (σ

(1)
y )2

P
(1)
ŷ P

(1)
y − (σ

(1)
y )2

⎞
⎠ < Δ3C

(
β|hrb|2Pr

)
(50)

αbΔ2C

⎛
⎝ (σ

(2)
y )2

P
(2)
ŷ P

(2)
y − (σ

(2)
y )2

⎞
⎠ < Δ3C

(
(1− β)|hra|2Pr
β|hra|2Pr + 1

)
, (51)

otherwise : αaΔ1C

⎛
⎝ (σ

(1)
y )2

P
(1)
ŷ P

(1)
y − (σ

(1)
y )2

⎞
⎠ < Δ3C

(
(1− β)|hrb|2Pr
β|hrb|2Pr + 1

)
(52)

αbΔ2C

⎛
⎝ (σ

(2)
y )2

P
(2)
ŷ P

(2)
y − (σ

(2)
y )2

⎞
⎠ < Δ3C

(
β|hra|2Pr

)
, (53)

June 14, 2011 DRAFT



17

and

(1− αa)Δ1C
⎛
⎝ (σ

(1)
y )2

P
(1)
ŷ P

(1)
y − (σ

(1)
y )2

⎞
⎠+Δ2C

⎛
⎝ (σ

(2)
y )2

P
(2)
ŷ (P

(2)
y )2 − (σ

(2)
y )2P

(2)
y

⎞
⎠

< Δ4C(|hbr|2Pr) + Δ1C

⎛
⎝ (σ

(1)
y )2|hab|2|hra|2Pa

(P
(1)
y )2P

(1)
ŷ (|hab|2Pa + 1)− (σ

(1)
y )2|hab|2|hra|2Pa

⎞
⎠ (54)

(1− αb)Δ2C
⎛
⎝ (σ

(2)
y )2

P
(2)
ŷ P

(2)
y − (σ

(2)
y )2

⎞
⎠+Δ1C

⎛
⎝ (σ

(1)
y )2

P
(1)
ŷ (P

(1)
y )2 − (σ

(1)
y )2P

(1)
y

⎞
⎠

< Δ4C(|har|2Pr) + Δ2C

⎛
⎝ (σ

(2)
y )2|hab|2|hrb|2Pb

(P
(2)
y )2P

(2)
ŷ (|hab|2Pb + 1)− (σ

(2)
y )2|hab|2|hrb|2Pb

⎞
⎠ (55)

P (1)y = |har|2Pa + 1 (56)

P (2)y = |hbr|2Pb + 1 (57)

0 < αa, αb, β < 1. (58)

Again, we numerically optimize P
(�)
ŷ , σ

(�)
y , Δ�, αa, αb and β to maximize the region’s boundary.

D. Lattice Forwarding

The two-way relay channel is a canonical example for which, at least in full-duplex channels, the use of

structured codes such as lattice codes for AWGN channels, is beneficial, particularly in highly symmetric

high SNR scenarios. In [17], [18], [30] achievable rate regions for the full-duplex two-way relay channel

using lattice codes are derived. The structure offered by lattice codes allows for a sum of the messages

to be decoded at the relay, forming a type of lattice-based Decode and Forward scheme. Prior work has

considered full-duplex rate regions employing lattice codes without [17], [18], and recently with [30]

direct links. We adapt the scheme of [17] to the case in which nodes are half-duplex and follow an

MABC protocol. We note that for the full duplex scheme with direct links of [30], the direct link cannot

be used in an MABC-like fashion due to the half-duplex nature of the nodes and as such the benefits

over the scheme of [17] under MABC constraints disappears.

• MABC Protocol

The focus of this work is not on lattice codes; we do however state a new region for the half-duplex

DF MABC protocol which employs lattices at the terminal nodes. This region is derived directly

from that of [17] by taking the two phases into account; its proof follows immediately from [17]

and is omitted. One may show that the following rates may be achieved using lattice codes:
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Ra < min

{[
Δ1 log

(
Pa

Pa + Pb
+ |har|2Pa

)]+
,Δ2C(|hrb|2Pr)

}
(59)

Rb < min

{[
Δ1 log

(
Pb

Pa + Pb
+ |hbr|2Pb

)]+
,Δ2C(|hra|2Pr)

}
. (60)

• TDBC protocol

One may derive an achievable rate region for the DF TDBC protocol in which terminal nodes employ

lattice codes. However, this would not improve the rate region over a random-coding-based region

as the gains of lattice codes stem from removing the multiple-access-like constraints at the relay

node (i.e. removing the sum-rate constraint); in a TDBC protocol this multiple access phase does not

exist and as such we do not present an achievable rate region for the Lattice-based TDBC protocol.

E. Mixed Forward

Applying Theorem 3 to the Gaussian case with Costa’s setup in [3] the channel in the relay broadcast

phase for the Mixed MABC protocol is given by:

In phase 2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ur[m] = Vr[m] + αUb[m]

Ya[m] = hra(Vr[m] + Ub[m]) + Za[m]

Yb[m] = hrb(Vr[m] + Ub[m]) + Zb[m]

(61)

where Vr[m] and Ub[m] follow V
(2)
r ∼ CN (0, βPr), U

(2)
b ∼ CN (0, (1 − β)Pr) during phase 2, m ∈

[Δ1,n · n + 1, n], 0 ≤ β ≤ 1, and V
(2)
r , U

(2)
b are independent. Then we obtain the following achievable

rate region, where we numerically optimize α, β, P
(�)
ŷ , σ

(�)
y and Δ� to maximize the boundary.

• TDBC Protocol

Ra < min
{
Δ1C(|har|2Pa),

Δ1C(|hab|2Pa) + Δ3 log2

(
βPr(|hrb|2Pr + 1)

|hrb|2(1− α)2β(1− β)P 2r + βPr + α2(1− β)Pr

)}
(62)

Rb < Δ2C

⎛
⎝|hab|2Pb + (σ

(2)
y )2|hbr|2Pb

P
(2)
ŷ (P

(2)
y )2 − (σ

(2)
y )2P

(2)
y + (σ

(2)
y )2

⎞
⎠ (63)
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where,

Δ2C

⎛
⎝ (σ

(2)
y )2(1− P ∗)

P
(2)
ŷ P

(2)
y − (σ

(2)
y )2

⎞
⎠ < min

{
Δ3C(|hra|2Pr),Δ3C

(
|hra|2(1− α)2(1− β)Pr + α

2(1− β)
β

)}

(64)

P (2)y = |hbr|2Pb + 1 (65)

P ∗ =
|hab|2Pb
|hab|2Pb + 1

· |hrb|
2Pb

|hrb|2Pb + 1
(66)

• MABC Protocol

The Mixed MABC protocol is not presented separately as it was shown be contained in the DF

MABC region.

F. Outer Bound

Applying Theorems 2 and 4 in [13] to the Gaussian case, we obtain the following outer bounds. We

optimize Δ�’s for given channel gains (and hence given mutual information expressions) to maximize

these outer bounds.

• MABC Protocol

Ra ≤ min{Δ1C(|har|2Pa),Δ2C(|hbr|2Pr)} (67)

Rb ≤ min{Δ1C(|hbr|2Pb),Δ2C(|har|2Pr)} (68)

• TDBC Protocol

Ra ≤ min{Δ1C(|har|2Pa + |hab|2Pa),Δ1C(|hab|2Pa) + Δ3C(|hbr|2Pr)} (69)

Rb ≤ min{Δ2C(|hbr|2Pb + |hab|2Pb),Δ2C(|hab|2Pb) + Δ3C(|har|2Pr)} (70)

Ra +Rb ≤ Δ1C(|har|2Pa) + Δ2C(|hbr|2Pb) (71)

V. ACHIEVABLE RATE REGIONS IN THE GAUSSIAN CHANNEL

In order to obtain an intuitive feel for the regions and to illustrate that the regions are not subsets

of one another, the bounds described in Section IV are plotted in this section for a number of different

channel configurations. We first compare the rate regions obtained by the bi-directional protocols and

outer bounds in cases in which the links are symmetric (har = hbr = 1, hab = 0.2) as well as asymmetric

(har = 0.6, hbr = 20, hab = 0.5 and har = 20, hbr = 0.6, hab = 0.5) for transmit SNRs of 0 and 20dB.

We then proceed to examine the maximal sum-rate Ra+Rb of the 10 schemes (8 achievable rate regions
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and 2 outer bounds) as a function of the transmit SNR. We find that different schemes are optimal under

different channel conditions. We provide further discussions in the following subsections.

A. Achievable rate region comparisons

1) Symmetric Case: In this case har = hbr = 1 (Figs. 2, 3). In the low SNR regime, the DF MABC

protocol dominates the other protocols. The MABC protocol in general outperforms the TDBC protocol

as the benefits of side information and reduced interference are relatively small in this regime. The DF

scheme outperforms the other schemes since the relatively large amount of noise in the first phase (and

the second phase in the TDBC protocol) can be eliminated in the DF scheme, which cannot be done

using the other schemes. In contrast, the DF TDBC protocol dominates the other protocols at high SNR

since the direct link is strong enough to convey information in this regime. In the high SNR regime

(when Pa = Pb = Pr = P is sufficiently large), the Lattice MABC protocol outperforms the CF, AF and

random-coding based DF MABC protocols. Furthermore, from [17] it may be shown that the achievable

region of the Lattice MABC protocol is within 1 bit of the MABC outer bound regardless of channel

conditions. In the TDBC protocol, the CF scheme does not outperform the DF scheme as the DF uses

two parallel channels in phase one and three while CF uses one channel in phase one with two receivers.

In other words, RDF
a < Δ1C(·) + Δ3C(·) for the DF as opposed to RCF

a < Δ1C(
∑ ·) for the CF

scheme. However, under the MABC protocol, the CF scheme outperforms DF in the high SNR regime.

This is because the interference of the transmission of two terminal nodes affects the DF MABC scheme

due to the multiple-access nature but not the CF scheme (as it does not decode the signals). In Figs. 2

and 3, AF is always outer bounded by the CF scheme. We thus expect that when relay r does not know

the full codebooks of a and b (and hence cannot decode as in the DF scheme), that CF (in which some

compression codebook knowledge is assumed at the relay) is a better choice than the AF scheme. In

the low SNR regime, the achievable rate region of the DF MABC protocol and the outer bound of the

MABC protocol are visibly tight, while in the high SNR regime, the achievable rate region of the Lattice

DF and CF MABC protocols are tight. For the TDBC protocol, there is a very small gap between the

achievable rate region of the DF TDBC protocol and the TDBC outer bound since interference is not

present in the TDBC protocol. Hence decoding at the relay is intuitively, at least, nearly optimal.

2) Asymmetric Cases: In these cases har = 0.6, hbr = 20, hab = 0.5 (Figs. 4, 5) and har = 20, hbr =

0.6, hab = 0.5 (Figs. 6, 7). Note that these two asymmetric cases are different for the mixed forwarding

scheme, which assumes CF in one direction and DF in the other. In the low SNR regime, the CF TDBC
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hbr = 1, hab = 0.2, Pa = Pb = Pr = 0 dB and Na = Nb =
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Fig. 3. Comparison of bi-directional regions with har =
hbr = 1, hab = 0.2, Pa = Pb = Pr = 20 dB and Na =
Nb = Nr = 1.

and mixed TDBC protocols achieve the best performance in Fig. 4 and Fig. 6, respectively. However,

in the high SNR regime, the DF and Lattice MABC protocols and the DF TDBC protocol yields larger

regions than the other protocols. In contrast to the symmetric case, the AF MABC protocol is not outer

bounded by the CF MABC protocol. We note that the mixed forwarding scheme is the only one in which

the relative performance of the schemes changes depending on which of the asymmetric scenarios is

considered. In particular, in the mixed TDBC protocol, if har > hbr, we obtain a larger achievable rate

region than the plain DF TDBC protocol as the first link is more critical to the performance of the DF

scheme. As the SNR increases, the difference between the two asymmetric cases decreases.

B. Maximum Sum Data Rate

In this subsection we plot the maximum sum-rate Ra +Rb as a function of the transmit SNR for the

symmetric case of the previous subsection. As expected, different schemes dominate for different SNR

values. The sum-rate is proportional to the SNR in dB scale since the sum-rate is roughly the logarithm

of the SNR. At high SNR, the Lattice-based MABC protocol very closely approximates the outer bound.

As discussed in the previous subsection, the achievable rate region of the Lattice MABC protocol is

within 1 bit of the MABC outer bound. In Fig. 8 at around 12 dB the relative performance of the CF

MABC protocol and the DF MABC protocol changes. At lower SNRs, the DF MABC protocol is better,

while at higher SNRs, the Lattice and CF MABC protocols are better. We also note that the AF MABC

protocol is always worse than the CF MABC protocol in the symmetric case (Fig. 8). In the TDBC
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0.6, hbr = 20, hab = 0.5, Pa = Pb = Pr = 20 dB and
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Fig. 6. Comparison of bi-directional regions with har = 20,
hbr = 0.6, hab = 0.5, Pa = Pb = Pr = 0 dB and Na =
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Fig. 7. Comparison of bi-directional regions with har = 20,
hbr = 0.6, hab = 0.5, Pa = Pb = Pr = 20 dB and Na =
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protocol, the sum-rate of the mixed TDBC protocol lies between the DF scheme and the CF scheme in

Fig. 8.

VI. CONCLUSION

In this paper, we have derived achievable rate regions for 4 new half-duplex bi-directional relaying

protocols and have provided a comprehensive numerical comparison of the half-duplex two-way achiev-
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Fig. 8. Maximum sum-rate of the 8 bi-directional protocols and 2 outer bounds at different SNR. Here har = hbr = 1 and
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able rate regions and outer bounds assuming Gaussian input distributions in AWGN channels. For the

MABC protocol, DF (with random or lattice codebooks) or CF is the optimal scheme, depending on the

given channel and SNR regime. In particular, the new half-duplex lattice DF MABC protocol performs

well for symmetric, high SNR channels. In asymmetric cases, Mixed protocols which employ DF in one

direction and CF in the other perform well, as different forwarding schemes in the two directions may

be more tailored to the different channel conditions in the two directions. In the TDBC protocol, the

relative performance of the forwarding schemes depends on the given channel conditions. Notably, we

have determined an example of a channel condition in which the mixed TDBC protocol outperforms the

other proposed protocols. In general, the MABC protocol outperforms the TDBC protocol in the low

SNR regime, while the reverse is true in the high SNR regime.

APPENDIX A

PROOF OF THEOREM 1

Proof: Random code generation: For simplicity of exposition, we take |Q| = 1. For any sequence

Δ�,n converging to Δ� :

1) Phase 1: Generate random (n ·Δ1,n)-length sequences

• x
(1)
a (wa) i.i.d. with p(1)(xa), wa ∈ Sa = {0, 1, · · · , �2nRa� − 1}

• ŷ
(1)
r (wa0) i.i.d. with p(1)(ŷr) =

∑
yr
p(1)(yr)p

(1)(ŷr|yr) , wa0 ∈ {0, 1, · · · , �2nRa0� − 1} =: Sa0
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and generate a partition of Sa0 randomly by independently assigning every index wa0 ∈ Sa0 to a

set Sa0,i, with a uniform distribution over the indices i ∈ {0, . . . , �2nRa1� − 1} := Sa1. We denote

by sa0(wa0) the index i of Sa0,i to which wa0 belongs.

2) Phase 2: Generate random (n ·Δ2,n)-length sequences

• x
(2)
b (wb) i.i.d. with p(2)(xb), wb ∈ Sb = {0, 1, · · · , �2nRb� − 1}

• ŷ
(2)
r (wb0) i.i.d. with p(2)(ŷr) =

∑
yr
p(2)(yr)p

(2)(ŷr|yr) , wb0 ∈ {0, 1, · · · , �2nRb0� − 1} =: Sb0
and generate a partition of Sb0 randomly by independently assigning every index wb0 ∈ Sb0 to a

set Sb0,i, with a uniform distribution over the indices i ∈ {0, . . . , �2nRb1� − 1} =: Sb1. We denote

by sb0(wb0) the index i of Sb0,i to which wb0 belongs.

3) Phase 3: Generate random (n ·Δ3,n)-length sequences

• u
(3)
a (wa2) i.i.d with p(3)(ua), wa2 ∈ {0, 1, · · · , �2nRa2� − 1} =: Sa2

• u
(3)
b (wb2) i.i.d with p(3)(ub), wb2 ∈ {0, 1, · · · , �2nRb2� − 1} =: Sb2

and define bin Bj := {wa2|wa2 ∈ [(j − 1) · �2n(Ra2−Ra1)� + 1, j · �2n(Ra2−Ra1)�]} for j ∈ Sa1.
Likewise, Ck := {wb2|wb2 ∈ [(k − 1) · �2n(Rb2−Rb1)�+ 1, k · �2n(Rb2−Rb1)�]} for k ∈ Sb1.

4) Phase 4: Generate random (n ·Δ4,n)-length sequences

• x
(4)
r (wa0, wb0) i.i.d with p(4)(xr), wa0 ∈ Sa0 and wb0 ∈ Sb0.

Encoding: During phase 1 (resp. phase 2), the encoder of node a (resp. b) sends the codeword x
(1)
a (wa)

(resp. x
(2)
b (wb)). At the end of phase 1, relay r compresses the received signal y

(1)
r into the message

wa0 if there exists a wa0 such that (y
(1)
r , ŷ

(1)
r (wa0)) ∈ A(1)(YrŶr). Similarly, r compresses y

(2)
r into the

message wb0 at the end of phase 2. There exist such wa0 and wb0 with high probability if

Ra0 = Δ1,nI(Y
(1)
r ; Ŷ

(1)
r ) + ε (72)

Rb0 = Δ2,nI(Y
(2)
r ; Ŷ

(2)
r ) + ε (73)

and n is sufficiently large. We choose Ra1, Rb1, Ra2 and Rb2 as:

Ra1 = αaRa0 = αa(Δ1,nI(Y
(1)
r ; Ŷ

(1)
r ) + ε) (74)

Rb1 = αbRb0 = αb(Δ2,nI(Y
(2)
r ; Ŷ

(2)
r ) + ε) (75)

and

Ra1 ≤ Ra2 = Δ3,nI(U
(3)
a ;Y

(3)
b )− 4ε (76)

Rb1 ≤ Rb2 = Δ3,nI(U
(3)
b ;Y

(3)
a )− 4ε. (77)
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From the code constructions of wa2 and wb2, Ra1 and Rb1 have to be less than Ra2 and Rb2, respectively.

Then the relay constructs wa1 = sa0(wa0) and wb1 = sb0(wb0). To choose wa2 and wb2, the relay first

selects the bins Bwa1
and Cwb1

and then it searches for a pair (wa2, wb2) ∈ Bwa1
× Cwb1

such that

(u
(3)
a (wa2),u

(3)
b (wb2)) ∈ A(3)(UaUb). Such a (wa2, wb2) exists with high probability if

Ra1 +Rb1 < Ra2 +Rb2 −Δ3,nI(U
(3)
a ;U

(3)
b )− ε′ (78)

from the Lemma in [8]. The relay then sends x
(3)
r generated i.i.d. according to p(3)(xr|ua, ub) with

u
(3)
a (wa2) and u

(3)
b (wb2) during phase 3. Finally, the relay sends x

(4)
r (wa0, wb0) during phase 4.

Decoding: Node a decodes w̃b2 after phase 3 using jointly typical decoding. Then a estimates w̃b1

from the bin index of w̃b2. Node a decodes w̃b0 if there exists a unique w̃b0 such that w̃b0 ∈ Sb0,w̃b1
,

(x
(4)
r (w̃a0, w̃b0),y

(4)
a ) ∈ A(4)(XrYa), (x

(1)
a (wa), ŷ

(1)
r (w̃a0)) ∈ A(1)(XaŶr) and (ŷ

(2)
b (wb0),y

(2)
a ) ∈ A(2)(ŶrYa)

. After decoding w̃b0, node a decodes w̃b using jointly typical decoding of the sequence (x
(2)
b , ŷ

(2)
r (w̃b0),y

(2)
a ).

Similarly, node b decodes w̃a. Error analysis:

P [Eb,a] ≤ P [E(3)r,a ∪ E(4)r,a ∪ E(4)b,a ] (79)

≤ P [E(3)r,a ] + P [E
(4)
r,a |Ē(3)r,a ] + P [E

(4)
b,a |Ē(3)r,a ∩ Ē(4)r,a ] (80)

Then,

P [E
(3)
r,a ] ≤P [∪wa0

D̄(1)(yr, ŷr(wa0))] + P [∪wb0
D̄(2)(yr, ŷr(wb0))] + P [∪wa2,wb2

D̄(3)(ua(wa2),ur(wb2))]+

P [D̄(3)(ub(wb2),ya)] + P [∪w̃b2 �=wb2
D(3)(ub(w̃b2),ya)] (81)

≤4ε+ 2n(Rb2−Δ3,nI(U
(3)
b ;Y

(3)
a )+3ε), (82)

and

P [E
(4)
r,a |Ē(3)r,a ] ≤P [D̄(4)(xr(wa0, wb0),ya)]+

P
[
∪ w̃a0 �=wa0

w̃b0 �=wb0

D(4)(xr(w̃a0, w̃b0),ya), D
(1)(xa(wa), ŷr(w̃a0)),

D(2)(ŷr(w̃b0),ya), sb0(w̃b0) = wb1

]
+

P [∪w̃b0 �=wb0
D(4)(xr(wa0, w̃b0),ya), D

(2)(ŷr(w̃b0),ya), sb0(w̃b0) = wb1] (83)

≤ε+ 2n(Ra0+Rb0−Δ4,nI(X
(4)
r ;Y

(4)
a )−Δ1,nI(Ŷ

(1)
r ;X

(1)
a )−Δ2,nI(Ŷ

(2)
r ;Y

(2)
a )−αbRb0+ε′′)+

2n(Rb0−Δ4,nI(X
(4)
r ;Y

(4)
a )−Δ2,nI(Ŷ

(2)
r ;Y

(2)
r )−αbRb0+ε′′′). (84)
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In (84), the bound for Rb0 in the second term is implied by that in the third term since Ra0 −
Δ1,nI(Ŷ

(1)
r ;X

(1)
a ) = Δ1,nI(Y

(1)
r ; Ŷ

(1)
r |X(1)a ) + ε ≥ 0. Thus,

P [E
(4)
b,a |Ē(3)r,a ∩ Ē(4)r,a ] ≤P [D̄(2)(xb(wb),yb, ŷr(wb0))] + P [∪w̃b �=wb

D(2)(xb(w̃b),yb, ŷr(wb0))] (85)

≤ε+ 2n(Rb−Δ2,nI(X
(2)
b ;Ŷ

(2)
r ,Y

(2)
a )+3ε). (86)

Since ε > 0 is arbitrary, a proper choice of αb, the conditions of Theorem 1, (77), and the AEP property

guarantee that the right hand sides of (82), (84) and (86) corresponding to (77), (7) and (2) vanish as

n→∞. Similarly, P [Ea,b]→ 0 as n→∞. By the Carathéodory theorem in [11], it is sufficient to restrict

|Q| ≤ 13 since the number of corresponding mutual information terms in Theorem 1 is thirteen. Similarly,

|Ŷr| ≤ |Q||Yr|+3. A more detailed argument of the cardinality bounds may be found in Appendix C in

[6]. To apply a coded time sharing random variable Q, generate random sequences q of length n i.i.d.

according to p(q). Then define q(�) as the length n · Δ�,n sequence (qn·
∑�−1

i=1 Δi,n+1, · · · , qn·
∑�

i=1Δi,n),

such that q = (q(1), · · · ,q(4)). We then employ coded time sharing with q(�) for phase � in the manner

of [10].
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