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Abstract—A Gaussian MI1SO (multiple input single output)
channel is considered where a transmitter is communicating to
a receiver in the presence of an eavesdropper. The transmitter
is equipped with multiple antennas, while the receiver and
the eavesdropper each have a single antenna. The transmitter
maximizes the communication rate, while concealing the message
from the eavesdropper. The channel input is restricted to Gaus-
sian signalling, with no preprocessing of information. For these
channel inputs, and under different channel fading assumptions,
optimal transmission strategies are found, in terms of the input
covariance matrices. It is shown that, the optimal communication
strategy in all cases, is beamforming.

. INTRODUCTION

The inherent openness of wireless communication calls for
careful security considerations. Information theoretic security
of wireless channels has received a great deal of attention
recently, and different wireless channel models and their
security limits have been extensively studied. The basic model
used in these studies is introduced by Wyner [1], where he
considers a wire-tap single user channel. The measure of
secrecy is the message equivocation rate at the wire-tapper,
which is defined as the entropy of the message at the wire-
tapper, given the wire-tapper’s observation. The wire-tapping
channel is assumed to be a degraded version of the channel
from the sender to the legitimate receiver. This is in fact a
reasonable assumption in a wired channel.

In[2], Wyner's model is generalized to a broadcast channel
in which a common message is transmitted to two users while
a private message is transmitted to only one of the users,
and the other user should be kept as ignorant of this private
message as possible. Here, the channels to the two users are
not degraded versions of each other. Capacity-equivocation
region for this channel is specified. When the user’s channel
is “more capable” compared to the eavesdropping channel, it
is shown that the capacity-equivocation region is as Wyner’s.

Scalar Gaussian wire-tap channel is considered in [3], and
its capacity-equivocation region is characterized. Secrecy in
multiple access channels (MAC) is studied in [4], [5] and
[6]. In [4], a generdized MAC is considered, where the
users can listen to the channel. Each user has private, as
well as common information to transmit. There is no external
eavesdropper, however, the private information of each user
is to be kept as confidential as possible from the other user.
The users listen to the channel, but their encoding functions
are not affected by their eavesdropping information. The level
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of secrecy is measured by equivocation. When only one user
has confidential information for the receiver, inner and outer
bounds on the capacity-equivocation region are provided, and
the secrecy capacity region is specified. In [5] as well, there
is no externa eavesdropper. A two user system is considered
where both users communicate to the receiver, while one of
them is permitted to eavesdrop on the other user. The Gaussian
MAC is studied in [6]. The setting in [6] is different than
[4] and [5] in that, an external eavesdropper is present, and
the users do not eavesdrop on each other. A new secrecy
constraint suitable for a multiple user system is defined. Using
Gaussian codebooks, achievable rate-equivocation regions and
their corresponding power allocation strategies are provided.

The Gaussian multiple input multiple output (MIMO) wire-
tap channel is studied in [7]. An achievable schemeis proposed
where the user tries to put the eavesdropper in relative disad-
vantage by transmitting noise in the user channel’s null space.
The single input multiple output (SIMO) Gaussian channel is
considered in [8]. There, the existence of an equivalent scalar
Gaussian channel is shown and consequently, the results of [3]
are used to derive the capacity-equivocation region.

Secrecy in single input single output (SISO) fading channels
is studied in [10], [11], [12], [13] and [14]. [10] investigates
the outage performance. [11], [12] and [13] specify the secrecy
capacity, when full channel state information is available to all
the parties. [13] further finds the secrecy capacity without the
eavesdropper channel state information for a special fading
eavesdropper channel. In [14], only the eavesdropping chan-
nel is assumed to experience fading, and the main channel
is considered to be non-fading. The eavesdropping channel
fading realization is assumed to be known only to the eaves-
dropper. Achievable secrecy rates under Gaussian signalling
are characterized.

We consider a Gaussian MISO channel under various as-
sumptions on the channel attenuations. We first assume that
the channel attenuations are constants, known to al the parties.
We characterize the maximum secrecy rate achievable through
Gaussian signalling, and show that the Gaussian signalling that
achieves the best secrecy rate is of beamformig nature. [9]
reports asimilar result, as derived in this paper, however, these
similar results are derived independently and concurrently. Our
problem is different than [7] in that we seek the optimum
Gaussian signalling, while [7] investigates the performance of
one specific Gaussian strategy. The results of [8] cannot be



extended to our case, since the method used in [8] to find an
equivalent scalar Gaussian channel cannot be used for aMISO
Gaussian channel.

Next, we assume that the eavesdropping channel experi-
ences fading, where the realizations of the fading coefficients
are not known to the transmitter. We characterize achievable
secrecy rates through Gaussian signalling. We show that the
optimal Gaussian signalling has a unit-rank covariance matrix,
and therefore, beamforming is optimal in this case as well.
However, while the beamforming vector in the non-fading
case depends on both channel attenuation vectors from the
transmitter to the receiver and the eavesdropper, in this case,
it depends only on the channel attenuation vector from the
transmitter to the receiver. As a result of the optimality of
beamforming, our MISO system reduces to a SISO system.
We identify conditions under which, positive secrecy rates
are achievable. Our formulation is partially similar to that of
[14]. [14] treats the SISO system, and we study the MISO
problem, but in both cases, the main channel is constant,
while the eavesdropping channel is fading and unknown to
the transmitter. After we reduce the MISO system to a SISO
system, our results overlap significantly with those of [14].
Here again, the results of this paper and those of [14] have
been derived independently and concurrently. Our results are
different than [10], [11], [12], [13] and [14], in that they all
consider single antennas for al the parties, while multiple
transmit antennas are considered for the transmitter here.

We use the following notations throughout this paper: Bold
face lower and upper case letters are used to represent vectors
and matrices, respectively. x! denotes the conjugate transpose
of the complex vector x. ¢r(X) denotes the trace of the square
matrix X, which is the sum of its diagona elements. ||x||
denotes the norm of the complex vector x. Whether a variable
is deterministic or random will be clear from the context.

Il. SYSTEM MODEL

Figure 1 shows a communication system, with a transmitter
equipped with multiple transmit antennas and a receiver and
an eavesdropper, each with a single antenna. The user and
eavesdropper channel attenuations can be represented by ¢ x 1
vectors h and g, where ¢ is the number of transmit antennas.
The received signals at the receiver and the eavesdropper at
time i are

Yi = hTXi + Ny D
Zi = gTXi + 1z 2

where x; isthe transmitted signal at time ¢, and without loss of
generality, n, ; and n.; are unit-variance complex circularly
symmetric Gaussian random variables. h is known and fixed.
When the eavesdropper channel is non-fading, g is assumed
to be known and fixed too. When the eavesdropper channel
experiences fading, g is assumed to be a vector of i.i.d. zero
mean unit-variance complex circularly symmetric Gaussian
random variables.

A message m of rate R, is a random integer from the
set {1,...,2""}, which is transmitted in n channel uses.
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Fig. 1. A communication system with a multi-antenna transmitter, and a
single-antenna receiver and eavesdropper.

The equivocation rate R., is the conditiona entropy of the
transmitted message, conditioned on the received signa at
the eavesdropper. The equivocation rate is a measure of the
amount of information that the eavesdropper can attain about
the message, and quantifies the level of secrecy in the system.
The secrecy capacity, C's, is the largest rate R achievable with
perfect secrecy, i.e, R. = R.

I11. NON-FADING EAVESDROPPER CHANNEL

Assume that g in (2) is fixed and known. From [2], the
secrecy capacity of this system is
Cs= max I(ujy)—I(u;z) 3)
u—xX—Yz
Ideally, one should solve (3) for the optimal joint distribution
of u and x. We restrict ourselvesto the potentially sub-optimal
assumption that x = u, under which, the following rate is
achievable with perfect secrecy

Rs = max I(x;y) — I(x;2) 4
pP(x

Rs would have been equivalent to the secrecy capacity C'g, if
the main channel was “more capable’ than the eavesdropping
channel [2]. p(x) must be chosen to maximize (4), but we
restrict ourselves to the class of Gaussian pdfs. Our aim is
to characterize the best achievable secrecy rates, under this
restriction, and the input power constraint. Thisis in fact one
further potentially sub-optimal assumption that we make, as,
Gaussian signalling maximizes both terms on the right hand
side of (4), but does not necessarily maximize the difference.
Note that in the scalar Gaussian channel studied in [3], the
two assumptions of x = u and x being Gaussian are not sub-
optimal, as the eavesdropping channel is a degraded version
of the main channel.
The optimization problem of interest is now

Rg =log(1 + h'Xh) — log(1 + g'Xg) (5)

where X is the covariance matrix for the channel input vector
x, and is constrained such that tr(X) < P. There is no 3
coefficient before the log terms, as, complex Gaussian vectors

are involved. It remains to identify the covariance matrix X



that maximizes Rgs. This is equivalent to finding the ¥ that
maximizes

1+ h'=h
N = 6
p(%) I eog (6)
or, the pair (V, A) that maximizes
1+afAa
)= ——"— 7
3 = 11 57Ab )

where ¥ = VAVT is the eigenvalue decomposition for X,
a=Vihand b = Vig. We first show that A should have
only one non-zero component, equal to P, and therefore, the
optimal 3 should be unit rank.
The optimization function can be rewritten as
T t 2.
S O
=1 "¢ 7'
For afixed V, we show that either all eigenvalues are zero, or
there is only one nonzero eigenvalue equal to P, depending
on the parameters a; and b;.

1) If

a? < b2, i=1,...,t 9)

then for all values of A, p(X) < 1. Its maximum value
p(X) = 1 happens when A = 0 and the user stays
quiet. This situation can be interpreted as the case were
the eavesdropping channel is strictly better than the user
channel, and therefore, it is not possible to transmit
information at any positive rate with perfect secrecy
R. = R. The corresponding rate-equivocation region
in this case is empty.
2) If for some 1 < i < ¢, a? > b7, and there is unused
power, increasing A; will increase p(X). Therefore, if
at least for one 4, a? > b2, the user should use al the
available power. To show that the power should be used
in only one direction, consider any two indices i and 7,
1 <4,j <t Assumethat \; +\; = P;; < P. Fixing
all other eigenvalues, the optimization function can be

written as
) = 10
p(3) =~ y (10)
where
t
a=1+ > aj\+alPy (11)
1=1,l%i,j
b=ai—a; (12)
t
c=1+ Y bN+UP; (13)
1=1,l%i,j
_ 12 2
d=1b7 - b3 (14)

Depending on the sign of be — ad, this function is either
monotonically increasing or monotonically decreasing
in \;. Therefore, in the optimal solution, for any two
indices ¢ and 5, 1 < 4,5 < ¢, we should have either

(0,/\1‘ + )\]) or ()\z + /\j,O) instead of ()\7,)\]) We
conclude that there is only one nonzero eigenvalue,
which is equa to P.
Since X is unit rank, it can be written as ¥ = Pqq' where
q is constrained to be a unit-norm vector, i.e., qTq = 1. Then,
we can write the optimization problem as

~ qd'q+P(q'h)> qf(I+Phhi)q qfAq

q) = - = 15
Pl a'q+ P(q'g)? qf(I+ Pggi)a qiBq (15)
where
A =1+ Phh! (16)
B =1+ Pgg' (17)

Now, p(q) is insensitive to the scaling of q, therefore, we
can ignore the constraint on q, find the genera solution, and
then scale it to have the unit-norm solution for the original
problem. The problem in (15) is equivalent to

wiB-1/2AB~1/2w

wiw
wherew = B!/2q. The problemin (18) is a Rayleigh quotient
[16] and is maximized when w is any scaled version of the
eigenvector of Z corresponding to its largest eigenvalue, where
Z = (I+ Pggh)~Y2(I+ Phhf)(I+ Pggh)~¥/2 (19

Calling this vector w*, the solution of the original optimization
problem is

(18)

p(w) =

o« = (I+ Pggh)~1/2w*
[(I+ Pggf)=1/2w*||

It is well-known that the capacity achieving transmission
strategy in a peaceful MISO channel without secrecy con-
gtraints, is to beamform in the direction of the main channel
h [15]. The above result shows that, with the addition of an
eavesdropping channel, and the resulting secrecy constraints,
the optimal strategy is still beamforming, but the beamforming
direction q*, is “adjusted” to be as orthogonal to the eaves-
dropping channel direction as possible, while being as close
to the main channel direction as possible.

(20)

IV. FADING EAVESDROPPER CHANNEL

We study two situations regarding the availability of the
eavesdropper’s channel state information. First, we assume
that the channel state information of the eavesdropper is also
available, similar to the setting used in [11], [12]. This can
also be motivated by the assumption that the eavesdropper can
be an idle user in a broadcast channel [2], [4], therefore, its
channel information can be common knowledge just like the
receiver channel information. Later, we make the more natural
assumption that, only statistical information about the channel
state of the eavesdropper is available.

If the eavesdropping channel state information is avail-
able, the transmitter can design a communication strategy
for a set of paralel constant sub-channels corresponding
to the set of possible fading levels of the eavesdropping



channels, and also choose a power alocation strategy over
those sub-channels [11]. The communication/equivocation
rates at the receiver/eavesdropper, are the average commu-
nication/equivocation rates of the sub-channels [11], [12],
therefore, the user can choose the optimal strategy over each
sub-channel independently. The focus of this paper is on
characterizing the optimal strategies at each sub-channel. It is
left as future work to determine the optimal power allocation
strategies. Each sub-channel is equivalent to the non-fading
MISO channel studied in the previous section.

Now, assume that there is only statistical information about
the channel state of the eavesdropper. Again, the transmitter
can design a communication strategy for a set of paralel
constant sub-channels corresponding to the set of possible
fading levels of the main channel, together with a power
alocation strategy over those sub-channels. Again, we focus
on characterizing the optimal strategies at each sub-channel
and leave the optima power alocation strategies for future
work. Toward that end, assume that the channel of the in-
tended receiver is constant, while the eavesdropper’s channel
is complex Gaussian fading. From [2], the ergodic secrecy
capacity of this system is

Cs= max I(uy)—I(u;g2) (21)
u—xX—yYgz

= max I(wy)—I(u;z|g) (22)
u—xX—yYgz

Letting x = u, the following rate is achievable with perfect
Secrecy

Rs = max
X

I(x;y) — 1(x;2|g)
p(x)

(23)
As before, we restrict ourselves to Gaussian, potentially sub-
optimal x, and characterize the best achievable secrecy rates.
The optimization problem of interest is therefore

Rg(X) =log(1 + hiXh) — E; [log(1 + g'Sg)]  (24)

where X is the covariance matrix for the channel input vector
x, and is constrained such that tr(X) < P, where P is the
available input power. Let the eigenvalue decomposition for
the input covariance matrix be ¥ = VAV, The goal is to
solve (24) for the maximizing X, or equivalently, to solve for
V and A. The optimization function R s(X) can be rewritten
as

Rs(V,A) =log(1+h'VAVTh)

— Eg [log(1+g'VAVig)] (25)

where A is diagonal, and the constraints are VV' 1 = I and
tr(A) < P. Following [15], since V is unitary, and g is a vec-
tor of i.i.d. zero-mean complex circularly symmetric Gaussian
random variables, Vg will have the same distribution as g,
and can be replaced by g in the expectation. Therefore,

Rs(V,A) =log(1 +hiVAV'h) — E, [log(1 + g'Ag)]
(26)

We will first solve for the optimal V, which affects only the

first term on the right hand side of (26).

Define a = VTh. The constraint on V can be replaced by
the following constraint on a

alfa=h'VV'h=h'h (27)

The choice of V affects (26) only through the product term
a = VTh. For any a, one can find a matrix V that satisfies
a = V'h, which isin fact a rotation matrix that maps h onto
a. Therefore, instead of solving for the best V, one can solve
for the best a in

Rs(V,A) =log(1 +a'Aa) — Eg [log(1 +g'Ag)|] (28)

for any given matrix A. Without loss of generdlity, assume
that the diagonal elements of A are in decreasing order, i.e.,
A1 > Ao > ... > ). The optimal choice of a will then be
such that

t
afAa=>"\a; (29)
i=1

is maximized. Given the constraint on a in (27), Zle a? =

h'h, and since \; is larger than all other \;, in order to

maximize the weighted sum >°'_, \;a?, we should have
a? =h'h

ai:()v

(30)
i>1 (3D
This in turn shows that, the optimal unitary matrix V, has the
unit-norm vector %” as its first column, and ¢ — 1 arbitrary
normal vectors ort%ogonal to h, as the rest of its columns.

Given the optimal V as characterized above, it remains to
find the optimal A.. The best achievablerate R s can be written
as a function of \q,...,\; only

Rs(A) = log(1 + Mi|[h]?) - Eg

log (1 + Z )\i|gi||2>‘|
= (@)

where ¢g;, © = 1,...,t are the i.i.d. random variables in g.
Observe that the choice of \;, i > 1 only affects the second
term on the right hand side of (32). For any fixed A\, given
that \; and g7 are al non-negative, the second term on the
right hand side of (32) isincreasing in \;, while the first term
is fixed. Therefore, in order to maximize Rg(A), the user is
better off choosing A\; = 0 for all i > 1, asthe power constraint
istr(X) = tr(A) = Si_, \; < P. This, together with (30)
and (31), shows that the optimal user strategy is to transmit in
the direction of h. This beamforming in the direction of h is
in fact expected and intuitive, since we only have information
about the main channel vector h. This aso happens to be
the throughput maximizing direction in the peaceful channel
without secrecy constraints as mentioned at the end of the
previous section.

The secrecy rate Rg can now be written as a function of
A1 only

Rs(A1) =log(14 M |[h[*) — By [log(1+ Mllgl*)] (33)



where the random variable g has the same distribution as any
gi, t=1,...,t, and the power constraint is \; < P.

We now characterize the best choice of A; which maximizes
Rs. Since there is only one parameter A\, to be determined,
we drop the subscript and replace A1 by A. First, observe that
both the first and the second terms on the right hand side of
(33) grow with \. Let v = ||g||?. Since g is complex circularly
symmetric Gaussian, ~v will have an exponential distribution
with pdf

1 -

py(7) = 567

where a = 202, and o2 isthe variance of the Gaussian random
variables corresponding to the real and imaginary parts of
g. The parameter o characterizes the mean and the standard
deviation of the exponential random variable ~. Rewriting the
optimization function in terms of ~, we will have

Rs(\) = log(1 + Al[h||*) = B [log(1 + Av)]

(34)

(35

We now discuss the behavior of Rg()) as a function of
A. Firgt, it can be observed that, since the function f(x) =
log(1 + ax) is concave, using Jensen’s inequality [17], we
will have

E, [log(1 + Ay)] <log(1+ AE, [7]) (36)

which shows that, by choosing the right input covariance
matrix, positive secrecy rate is achievable if the combined
effect of al ¢ components of h is better than a single
component of g, which can occur even if h is much worse
than g componentwise.

Numerical simulation of Rg(\) as a function of A shows
that, depending on the relative quality of the main and the
eavesdropping channels, for some values of ||h||? and «,
Rs(X) increases with \, therefore, the user should use al its
available power, and should beamform in the direction of h.
However, for some other values of ||h||? and o, Rg()\) can
decrease with . After the reduction of our system to a SISO
system, the results reported here overlap with those reported
in [14].

Based on the above observation, and as it is also discussed
in [6], [7] and [14], the user is not always better off using all
its available power. This raises the concern that the achievable
scheme provided here, is potentially suboptimal. The source of
the sub-optimality could be either the assumption that x = u
in (22), or later restricting x to be Gaussian. In [6], [7] and
[14], the first assumption is targeted, and “preprocessing”
of information at the transmitter is alowed, in the form of
additionally injecting independent Gaussian noise by the user,
or so caled, “noise forwarding”. Higher secrecy rates are
then achieved, which shows that in fact, letting x = u is
sub-optimal. Note that, even though these techniques improve
upon the achievable secrecy rates, they are yet potentially sub-
optimal, and the problem of finding the optimal communica-
tion strategy remains open.

V. CONCLUSION

In this paper, we considered a Gaussian MISO channel
with an eavesdropper. We considered both cases when the
eavesdropper channel is non-fading and fading. We restricted
the signalling to be Gaussian with no preprocessing of infor-
mation, which is potentially sub-optimal. In both non-fading
and fading cases, we showed that the optimal communication
strategy that achieves the highest secrecy rate, is of beam-
forming type, and that the beamforming direction depends on
the available channel state information. In the fading case, as
the optimal Gaussian strategy is not always using the available
transmit power, some sort of preprocessing, at least in the form
of “noise injection” with the unused power, seems necessary
to achieve a higher secrecy rate.
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