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Achieving a nonovershooting transient response with multivariable dynamic

output feedback tracking controllers

Robert Schmid and Lorenzo Ntogramatzidis

Abstract— We consider the use of dynamic output feedback
control to improve the transient response to a step input,
for invertible multivariable systems. A method is given for
designing a linear time-invariant output feedback controller
to asymptotically track a constant step reference with zero
overshoot and arbitrarily small rise time, under some mild
assumptions.

I. INTRODUCTION

The problem of designing control laws to ensure a linear

time invariant (LTI) plant has desirable transient response to

a step input has been studied for the past few decades. The

primary performance objectives include achieving a small

rise time while also minimising overshoot.

Some recent papers have considered the problem of de-

signing a suitable closed-loop feedback controller to achieve

a non-overshooting response. For continuous time single-

input single-output (SISO) systems, in [1] an eigenstructure

assignment method is given to obtain a non-overshooting LTI

state feedback controller for plants with one non-minimum

phase zero. Stable non-minimum phase SISO systems are

considered in [2], where the existence of an output feedback

controller is proved to give a non-overshooting step response,

provided the plant has no zeros on the imaginary axis.

In [3] it is shown how to give two parameter feedback

controller for an LTI plant that renders the step response non-

overshooting. A common feature of these recent papers [1]-

[3] was that they considered only SISO systems, which were

assumed to be initially at rest. In some cases the transient

response was deliberately slowed to avoid overshoot, which

necessarily yielded a lengthy settling time. In [4], the authors

used a composite nonlinear (CNF) state-feedback controller

consisting of a linear term chosen to yield a rapid response,

and a nonlinear component designed to reduce overshoot.

A smooth nonlinear error function is employed to tune the

closed-loop dynamics. The authors showed their state feed-

back controller could also be implemented in conjunction

with an observer scheme. However, their CNF scheme did

not guarantee the step response will be non-overshooting.

In our recent paper [6], the present authors considered

invertible stabilisable MIMO systems, and used linear state-

feedback control to design a non-overshooting controller for

a step reference. The design methods proposed there make

use of the combined eigenvalue and eigenvector placement
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methods for state feedback given in [5] by B.C. Moore,

and are applicable to both continuous time and discrete

time systems. Moreover, the design method is applicable

to both minimum phase and non-minimum phase systems.

Conditions are given under which a linear state-feedback

controller can be obtained to asymptotically track a step

reference with guaranteed zero overshoot, from any initial

condition. The controller can be readily chosen to achieve

any desired convergence rate.

In this paper we continue our investigation of the tracking

problem considered in [6], and consider the implementation

and performance of the design methods given in those papers

when implemented with dynamic output feedback based on

a Luenberger observer scheme. We will show that state

feedback tracking control scheme given in those papers can

also be successfully implemented with a dynamic output

feedback scheme, provided the initial state estimation error

is sufficiently small.

II. PROBLEM FORMULATION

We consider the LTI system Σ characterized by

Σ :

{

ẋ(t) = Ax(t) + B u(t), x(0) = x0,

y(t) = C x(t) + D u(t),
(1)

where, for all t ∈ R, x(t) ∈ R
n is the state, u(t) ∈ R

m is

the control input, y(t) ∈ R
p is the output, and A, B, C and

D are appropriate dimensional constant matrices.

In this paper we are concerned with the problem of

designing an output feedback control law for (1) such that

the output y of (1) tracks a step reference r ∈ R
p with zero

steady-state error with no overshoot. As such, we make the

following standing assumption:

Assumption 2.1: The system Σ is invertible, stabilizable,

detectable and has no invariant zeros at the origin.

The following method for designing a tracking controller for

a constant step reference r ∈ R
p is standard: By virtue of

Assumption 2.1, we may obtain gain matrices F and G such

that A+B F and A+GC are both stable matrices, and there

exist vectors xss ∈ R
n and uss ∈ R

m exist satisfying

0 = Axss + B uss (2)

r = C xss + D uss (3)

for any r ∈ R
p. We introduce a Luenberger observer system

Σo for Σ, governed by

ż(t) = Az(t) + B u(t) − G (y(t) − yo(t)) , (4)

yo(t) = I z(t). (5)
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with z(0) = 0. Applying the output feedback control

u(t) = F (z(t) − xss) + uss, (6)

to Σ, and using the change of coordinates ξ(t) := x(t)−xss,

we get the homogeneous closed loop system
[

ξ̇(t)
ė(t)

]

=

[

A + B F −B F

0 A + GC

] [

ξ(t)
e(t)

]

ǫ(t) = −
[

C + D F −D F
]

[

ξ(t)
e(t)

]

.

where e(t) := x(t)−z(t) is the estimation error, and ǫ(t) :=
r − y(t) is the tracking error. The stability of the matrices

A + BF and A + GC ensure the estimation and tracking

errors vanish and hence asymptotic tracking is achieved. We

say that the step response is nonovershooting if ǫ(t) does not

change sign in any component.

In this paper we consider how to design the observer

based control law (6) so as to guarantee no overshoot in all

components of the output, while also achieving any desired

settling time.

III. DESIGN OF NON-OVERSHOOTING OUTPUT FEEDBACK

CONTROLLERS

Our earlier paper [6] considered the design of nonover-

shooting state feedback controllers, with control law

u(t) = F (x(t) − xss) + uss (7)

In this section, we briefly revise the design procedure for the

feedback gain matrix F , and then consider the performance

of the controller design when employed in conjunction with

an observer scheme.

Central to the design method was the choice of a suitable

closed loop eigenstructure, consisting of eigenvalues L =
{λ1, . . . , λn} ∈ C and eigenvectors V = {v1, . . . , vn} ⊂ C

n.

The papers [6] offered several design procedures, contingent

upon the number of zeros of Σ lying in the left hand complex

plane (LHP). Theorem 3.1 of [6] assumed that Σ has n −
p distinct LHP zeros {z1, . . . , zn−p}. Eigenvalues L were

chosen thus: for i ∈ {1, . . . , n− p}, we choose λi = zi. For

i ∈ {n − p + 1, . . . , n}, the remaining closed loop poles λi

were freely chosen to be any real distinct stable modes. 1 To

obtain V , we first introduced the set S = {s1, . . . , sn} ⊂ R
p

where

si =



















0 for i ∈ {1, . . . , n − p};
e1 for i = n − p + 1;
...

ep for i = n.

(8)

and {e1, . . . , ep} is the canonical basis of R
p. We then

obtained sets V = {v1, . . . , vn} ⊂ C
n and W =

{w1, . . . , wn} ⊂ C
p by solving the Rosenbrook matrix

equation
[

λiI−A −B

C D

] [

vi

wi

]

=

[

0
si

]

(9)

1If Σ has any uncontrollable stable modes, it can be shown that these
will also be zeros of Σ, because Σ is invertible. Thus these modes are
automatically included in L.

for each si ∈ S. The sets L, V and W were shown to meet

the requirements of Proposition 1 in the classic paper [5] by

B.C. Moore, and the procedure given in that paper was then

used to obtain a suitable gain matrix F such that A + BF

has the desired eigenstructure. The vectors in V satisfy, for

all i ∈ {1, . . . , n},

(A + B F ) vi = λi vi, (10)

(C + D F ) vi = si. (11)

Theorem 3.1 of [6] then showed that with F designed in

this way, the state feedback control law (7) would yield an

output y(t) for Σ that was nonovershooting, from all initial

conditions x0.

To implement the output feedback control law (6), we

first design F according to the above state feedback

scheme. Next we must choose some observer pole locations

{λn+1, . . . , λ2n}; these may be chosen arbitrarily, provided

they all satisfy

λi < λn−p+j (12)

for all i ∈ {n+1, . . . , 2n} and all j ∈ {1, . . . , p}. Using the

MATLAB command place yields G such that A+GC has

the desired observer poles.

To consider the transient performance of the step response

arising from the observer scheme (4)-(6), we first introduce

matrices

Λ =

[

A + B F −B F

0 A + GC

]

(13)

Γ = −
[

C + D F −D F
]

(14)

Z(t) =

[

ξ(t)
e(t)

]

(15)

Then Λ has eigenvalues {λ1, . . . , λ2n} and eigenvectors V̄ =
{v̄1, . . . , v̄2n} ⊂ C

2n. For i ∈ {1, . . . , n}, the eigenvectors

v̄i are of the form v̄i = [vi 0n]⊤, where the vi are the

eigenvectors in V and 0n is a zero vector of length n. For

any initial condition Z(0) = [ξ(0)⊤ e(0)⊤]⊤ ∈ R
2n, the

tracking error is given by

ǫ(t) = ΓeΛtZ0 (16)

As the eigenvectors in V̄ are linearly independent, the matrix

V := [ v̄1 v̄2 . . . v̄2n ] is invertible. Introduce α :=
[α1 α2 . . . α2n]⊤ = V −1Z0. The tracking error can be

expressed as

ǫ(t) =
2n
∑

i=1

Γ v̄i αi eλi t (17)

For i ∈ {1, . . . , n}, we have

Γ v̄i =
[

C + D F −D F
]

[vi 0n]⊤

= (C + DF )vi

= si (18)

from (10)-(11). Hence the tracking error can be expressed as

ǫ(t) =
n

∑

i=n−p+1

ei−(n−p) αi eλit +
2n
∑

i=n+1

Γ v̄i αi eλi t (19)
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If let Γj denote the j-th row of Γ, for j ∈ {1, . . . , p}, then

we may express ǫj(t), the j-th component of ǫ(t) as

ǫj(t) = αn−p+j eλn−p+jt +

2n
∑

i=n+1

Γj v̄i αi eλi t (20)

Since the observer poles satisfy (12), it follows that a

sufficient condition to ensure ǫj(t) does not change sign is

|αn−p+j | >

∣

∣

∣

∣

∣

2n
∑

i=n+1

Γj v̄i αi

∣

∣

∣

∣

∣

(21)

Since αn−p+j depend only upon ξ(0) = x0 − xss, while

for i ∈ {n + 1, . . . , 2n} the αi depend upon e(0), it is

clear that for any given initial state x0, (21) will be satisfied

for all j ∈ {1, . . . , p} if the initial estimation error e(0)
is sufficiently small. Summarising the above, we have the

following theorem:

Theorem 3.1: Assume that Σ satisfies Assumptions 2.1

and has at least n− p stable zeros. Let F and G be defined

as above, let r ∈ R
p be any step reference, and let x0 ∈ R

n

be any initial condition. Then applying the output feedback

control law u(t) given in (6) to Σ yields an output y(t) that

will asymptotically track r without overshoot, if the initial

error e(0) satisfies (21) for all j ∈ {1, . . . , p}.

Remark 3.1: As the λi for i ∈ {n− p + 1, . . . , n} can be

freely chosen to be any distinct real stable modes (provided

they are distinct from the stable invariant zeros of Σ, and

provided also that the resulting V is linearly independent),

the rate of convergence of the output trajectory to the target

reference can be chosen to be arbitrarily fast. Note also that

F is independent of both r and x0. Hence, the same F can

be used to achieve non-overshooting convergence for any

r ∈ R
p and any x0 ∈ R

n. The values of r and x0 enter the

control law u only through the values of xss and uss.

Remark 3.2: The principal limitation of Theorem 3.1 is

that Σ is assumed to have n − p stable zeros. Theorem 3.2

of [6] considered the design of a nonovershooting state feed-

back controller for the cases where Σ has n−2p stable zeros.

If the resulting state feedback gain matrix is incorporated

into the output feedback law u(t) in (6), then arguments

similar to the above will again show that the output achieves

nonovershooting reference tracking, provided the initial error

estimate is sufficiently small.

Remark 3.3: The bound in (21) is rather conservative.

A somewhat less conservative bound may be obtained as

follows. For each j ∈ {1, . . . , p}, define kj to be the largest

integer such that scalars Γj v̄i αi all have the same sign as

αn−p+j , for all i ∈ {n + 1, . . . , n + jk}. Now a sufficient

condition to ensure ǫj(t) does not change sign is

∣

∣

∣

∣

∣

∣

αn−p+j +

n+kj
∑

i=n+1

Γj v̄i αi

∣

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

∣

2n
∑

i=n+kj+1

Γj v̄i αi

∣

∣

∣

∣

∣

∣

(22)

Note that kj may equal zero, in which case (21) and (22)

coincide.

IV. REDUCED ORDER OBSERVERS

In this section we consider the implementation of the

nonovershooting output feedback controller design in con-

junction with a reduced order observer. Applying the change

of coordinates described by T =
[

T1 T2

]

with T1 = C†

and im T2 = kerC, we obtain the equivalent system

A′ = T−1 AT =

[

A′
11 A′

12

A′
21 A′

22

]

,

B′ = T−1 B =

[

B′
1

B′
2

]

,

C ′ = C T =
[

Ip 0p×(n−p)

]

,

D′ = D,

where A′ and B′ are partitioned conformably with C ′, and

the new state x′(t) = T−1 x(t) is partitioned accordingly.

The equations of the system become
[

ẋ′
1(t)

ẋ′
2(t)

]

=

[

A′
11 A′

12

A′
21 A′

22

][

x′
1(t)

x′
2(t)

]

+

[

B′
1

B′
2

]

u(t)

y(t) =
[

Ip 0p×(n−p)

]

[

x′
1(t)

x′
2(t)

]

+ D u(t).

Assumption 2.1 implies (A′, B′) is stabilizable and

(A′
22, A

′
12) is detectable, so we can choose F and G so that

A′ + B′ F and (A′
22 + GA′

12) are both stable matrices, and

there exist vectors xss ∈ R
n and uss ∈ R

m exist satisfying

0 = A′ xss + B′ uss (23)

r = C ′ xss + D′ uss (24)

for any r ∈ R
p. The state of the reduced order observer is

z(t) = x′
2(t) + Gy0(t). By denoting

N := A′
22 + GA′

12

M := (A′
22 + GA′

12)G + A′
21 + GA′

12

L := B′
2 + GB′

1,

we obtain the reduced order observer system Σred

ż(t) = N z(t) + M y0(t) + Lu(t). (25)

Applying the reduced order control law

u(t) = F
(

[

x′
1(t)

z(t) − Gy0(t)

]

− xss

)

+ uss (26)

to Σ and introducing the change of coordinates ξ(t) :=
x(t) − xss, we get

[

ξ̇(t)
ė(t)

]

=

[

A′ + B′ F −B′ F I0np

0 N

] [

ξ(t)
e(t)

]

ǫ(t) = −
[

C ′ + D F −D F I0np

]

[

ξ(t)
e(t)

]

where e(t) := Gx′
1(t)+x′

2(t)− z(t) is the estimation error,

ǫ(t) := r − y(t) is the tracking error, and we have written

I0np :=

[

0
In−p

]

for brevity.

The implementation of the reduced order output feedback

control law (26) is quite similar to that for the full order

observer. We first design F according to the above state
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feedback scheme. Next we must choose some observer

pole locations {λn+1, . . . , λ2n−p}; these may be chosen

arbitrarily, provided they satisfy

λi < λn−p+j (27)

for all i ∈ {n + 1, . . . , 2n − p} and all j ∈ {1, . . . , p}.

To consider the transient performance of the step response

arising from the observer scheme (25)-(26), we first introduce

matrices

Λ =

[

A′ + B′ F −B′ F I0np

0 N

]

Γ = −
[

C ′ + D F −D F I0np

]

Z(t) =

[

ξ(t)
e(t)

]

Then Λ has eigenvalues {λ1, . . . , λ2n−p} and eigenvectors

V̄ = {v̄1, . . . , v̄2n−p} ⊂ C
2n−p. For any initial condition

Z(0) = [ξ(0)⊤ e(0)⊤]⊤ ∈ R
2n−p, the tracking error is given

by

ǫ(t) = ΓeΛtZ0 (28)

Introduce α := [α1 α2 . . . α2n−p]
⊤ = V −1Z0. Similarly

to full order case, it follows that the tracking error can be

expressed by

ǫ(t) =
n

∑

i=n−p+1

ei−(n−p) αi eλit +

2n−p
∑

i=n+1

Γ v̄i αi eλi t (29)

If we let Γj denote the j-th row of Γ, for j ∈ {1, . . . , p},

then we may express ǫj(t), the j-th component of ǫ(t) as

ǫj(t) = αn−p+j eλn−p+jt +

2n−p
∑

i=n+1

Γj v̄i αi eλi t (30)

Since the observer poles satisfy (27), ǫj(t) will not change

sign if

|αn−p+j | >

∣

∣

∣

∣

∣

2n−p
∑

i=n+1

Γj v̄i αi

∣

∣

∣

∣

∣

(31)

It is again clear that for any given initial state x0, (31) will

be satisfied for all j ∈ {1, . . . , p} if the initial estimation

error e(0) is sufficiently small. Summarising the above, we

have the following:

Theorem 4.1: Assume that Σ satisfies Assumptions 2.1

and has at least n−p stable zeros. Let F and G be defined as

above, let r ∈ R
p be any step reference, and let x0 ∈ R

n be

any initial condition. Then applying the reduced order output

feedback control law u(t) given in (26) to Σ yields an output

y(t) that will asymptotically track r without overshoot, if the

initial error e(0) satisfies (31) for all j ∈ {1, . . . , p}.

Remark 4.1: As for the full order case, it is similarly

possible to take the feedback gain matrix F obtained from

Theorem 3.2 of [6], where Σ has n − 2p stable zeros, and

incorporate it into the reduced order output feedback law u(t)
in (26). The output also achieves nonovershooting reference

tracking, provided the initial error estimate is sufficiently

small. Likewise, the bound in (31) may be replaced with

a less conservative one similar to (22).

V. EXAMPLE

Example 5.1: Consider the MIMO system Σ1 =
(A,B,C,D) with

A =









0 0 −4 6
0 −4 0 0
−7 2 7 2
5 0 −4 0









B =









0 3
−1 10
0 0
0 0









C =

[

0 2 9 7
−1 0 −10 1

]

D =

[

−2 0
0 5

]

.

Hence, Σ1 is an invertible system with n = 4, p = 2
and m = 2. The system is open-loop unstable with poles

at {10.8977, 1.4161, −4, −5.3137}. Also, the system is

of non-minimum phase with invariant zeros at {−5.2402 ±
1.8728i, 9.0805, 4}. Thus Σ1 satisfies Assumption 2.1 and

has n − p = 2 stable zeros. Let assume the desired step

reference is r = [ 1 − 1 ]⊤. Applying the state feedback

design method from [6] yields feedback gain matrix

F =

[

−53.2632 11.6840 74.8301 −7.3138
−2.5894 0.0972 3.0241 −2.5160

]

.

with closed loop poles at L = {−5.2402 ±
1.8728i, −3, −2}. Here the complex poles were

chosen to coincide with the stable zeros of Σ1, the

other two poles were chosen arbitrarily. We also choose

observer poles at {−11,−10,−9, −8} to satisfy

(12). For an initial condition of x0 = 0, we obtain

ξ(0) = −[0.0597, −0.1291, 0.0747, 0.0768]⊤. Let us

assume an initial estimator error of e(0) = δξ(0), where δ

is a variable scalar. Applying the observer feedback u(t) in

(6) to Σ1 where δ = 0 yields the nonovershooting output

shown in Figure 1. This corresponds to the case where state

feedback is used.
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Fig. 1. Σ1 step response using state feedback

Applying the full order observer feedback u(t) in (6) to Σ1

where δ = 1.2% yields the nonovershooting output shown

in Figure 2. We note that increasing δ to 1.3% does yield

overshoot.
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Fig. 2. Σ1 step response using full order observer

To obtain a reduced order observer, we again choose open

loop poles for A′ + B′F at {−5.2402± 1.8728i, −3, −2},

and choose estimator poles at {−9, −8} to sat-

isfy (27). For the initial condition x0 = 0, we obtain

ξ(0) = −[0.0054, −0.0028, −0.1099, 0.1118]⊤. Let us as-

sume an initial estimator error of e(0) = δξ̄(0), where δ

is a variable scalar and ξ̄ indicates the third and fourth

components of ξ. Applying the reduced order observer

feedback u(t) in (26) to Σ1 where δ = 2.7% yields the

nonovershooting output shown in Figure 3. We note that

increasing δ to 2.8% does yield overshoot.
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Fig. 3. Σ1 step response using reduced order observer

VI. CONCLUSION

We have considered the use of dynamic output feedback

to obtain a nonovershooting step response, for MIMO LTI

systems. It was shown that both the full order and reduced

order Luenberger observers can achieve a nonovershooting

step response if the error of the initial state estimate is

sufficiently small. This enables the state feedback scheme

introduced in [6] to be more practically implemented.
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