
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2011, Article ID 294852, 11 pages
doi:10.1155/2011/294852

Research Article

Achieving a Realistic Notion of Time in Discrete Event Simulation

Georg Gaderer, Anetta Nagy, Patrick Loschmidt, and Thilo Sauter

Institute for Integrated Sensor Systems, Austrian Academy of Sciences, 2700 Wiener Neustadt, Austria

Correspondence should be addressed to Georg Gaderer, georg.gaderer@oeaw.ac.at

Received 4 March 2011; Accepted 11 July 2011

Copyright © 2011 Georg Gaderer et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Distributed sensor systems require clock synchronization between all sensor nodes to provide consistent view of the overall system.
Owing the growing size of networks, the evaluation of the synchronization performance becomes difficult, if done by means of
experiments. Simulation is another method to tackle this issue. Realistic simulation of synchronization schemes requires accurate
modelling of oscillators which are the driving timers generating various events. One way to characterise oscillators is to utilize
the Allan variance, which can be used to generate a phenomenological model based on power spectral density. Since discrete
event simulation (DES) tools are widely used to model network protocols, models which combine accuracy and performance are
needed. This paper presents a model that was optimised for use in DES. To verify that the simulation results sufficiently match
measurements, an implementation in OMNeT++ was done. The results show that the behaviour of distributed sensor systems,
resulting from imperfect timebases, can be accurately simulated.

1. Introduction

Common timebases in distributed sensor networks are a pre-
requisite for many applications in automation or instrumen-
tation. They permit event ordering and the synchronization
of actions across a network, even if these networks are not
genuine real-time networks. Industrially relevant examples
from the recent past are the LXI (LAN extensions for instru-
mentation) standard [1, 2], where IEEE 1588 [3] is used
for distributed test and measurement, as well as for many
industrial automation networks [4]. Sensor applications that
are spatially distributed also significantly benefit from an
accurate, common timebase. Examples for this are remote
metering applications, data acquisition in particle accelera-
tors, as well as structural health monitoring of bridges.

Ways to establish such a distributed timebase rely on
appropriate clock synchronization strategies. Many methods
have been devised and investigated in the past, such as the
network time protocol (NTP) [5], the precision time proto-
col (IEEE 1588), or various academic approaches [6–9]. For
all such synchronization approaches, evaluation of steady-
state and transient performance (in terms of synchronization
errors) is a central question. This is not an easy task since
the processes leading to synchronization imperfections are
mostly of stochastic nature and therefore difficult to describe.
In some cases, analytical bounds can be found, which are
however typically very coarse. Additionally, contemporary

applications demand both large-scale, possibly heteroge-
neous networks and high accuracy. Implementations of dis-
tributed measurement and control [10] have to be evaluated
(simulated) regarding their achievable performance [11] in
order to show the feasibility of a networked control system as
well as to optimise control algorithms. As analytical bounds
may become too conservative, simulation-based behavioural
investigations can come closer to the actual performance of a
clock synchronization scheme.

The challenge for simulation approaches is the quality
of the underlying models, and in particular the models of
the oscillator as actual time reference. State-of-the-art sim-
ulators are event driven to achieve maximum performance.
Compared to the time constants in a behavioural system sim-
ulation (typically in the ms range and above), an oscillator
running at several 100 MHz is a continuous process which
would slow down the simulation significantly if modelled in
a straightforward way tick by tick. Therefore, this paper pro-
poses a new model for oscillators combining high accuracy
and efficient implementation to allow for simulation of large
sensor networks with a high number of nodes.

Section 2 discusses the problem in more detail. Sections
3 and 4 are devoted to the behaviour and characterisation
of oscillators and the modelling approach derived from
it. Section 5 describes the actual implementation of the
simulation model, and Section 6 presents an experimental
verification. Finally, Section 7 draws conclusions.
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2. Problem Definition

Straightforward continuous-time simulation (as done by,
e.g., SPICE and its derivatives) is widely used for low-
level, physical effects but has the drawback that even short
simulation time spans are very compute intensive. Another
technique well suited for digital systems is to assign a discrete
point on a time scale to all important events and start the
simulation with the occurrence of this time. This approach
is usually known under the term discrete event simulators,
and they are the state-of-the-art tools for network simulation
(for instance ns-3 [12] or OMNeT++ [13]) or system and
circuit design (like ModelSim [14]). In the case of the first
two oscillators, respective clocks are modelled as a static,
absolute in terms of the physical definition perfect reference
to time. Thus, in order to model imperfect clocks users
typically implement simple drift models where the absolute
time is changed with linear models such as, for example,
in the ns3::WallClockSynchronizer class of ns-3. The
case is similar with ModelSim, which however provides
functionality for defined delays for HDL constructs, which
is applied to a, again, perfect time scale. In this case, it is
also possible for the user to simulate oscillators by repetitive
toggle signals. This is in standard simulations usually done
using constant intervals between two transitions.

In this kind of simulation approach, systems are simu-
lated in terms of individual events rather than a continuous
time scale. These events are typically stored in a global event
list, which contains the actual event and the triggering time
of the event. The advantage is that this approach dynamically
scales to the requirements of the simulation scenario in terms
of timely resolution. For example, if one wants to simulate
a distributed sensor system, which acquires data once a
second, the time in between two samples does not need to
be simulated in detail. However, the actual measurement and
initial processing timespan could need a very fine grained
simulation. Exactly this is the strength of a DES system,
which tackles this by processing all events according to a
virtual time scale.

The oscillator model must take into account stochastic
frequency and phase variations. In addition, for DES systems,
the model typically must provide the number of oscillator
ticks elapsed from simulation start until any given arbitrary
simulation time without actually running the simulation up
to that point. Given the stochastic nature of the oscillator, this
is a challenge as it has to be possible to incrementally draw
samples for points which are close to each other without
producing inconsistent output. It has to be noted that
this modelling explicitly considers only the stochastic error,
rather than parameters such as temperature dependency or
errors due to vibration. The actual requirements for this
simulation model therefore boil down to the following:

(i) the behaviour of the simulator output has to be
quantised. For an oscillator model, the generated
ticks have to be assigned to a discrete simulation
time. This is usually no problem as it is possible to
have a much finer grained simulation time scale than
the actual requirements to the result. For example,

the least possible difference between two events in a
DES system can be picoseconds when the simulation
accuracy aims at values in the nanosecond range;

(ii) the model has to support two basic request types:
it must be possible to request the number of ticks
elapsed until a given simulation time and also vice
versa, that is, obtain the simulation time reached by a
given number of ticks;

(iii) all data have to be consistent. Pairs of simulation
time and ticks (t,n) must be monotonic, that is, if
ti > t j → ni ≥ n j , irrespective of the order in which
they are generated. Moreover, identical requests must
yield identical results, that is, if ti = t j → ni = n j for
a single simulation run. Therefore, requests and their
answers have to be stored.

In addition, in general the always limited resources of a
simulation environment have to be considered. In this sense,
the most limiting factors are the available memory and the
processing time. The above requirements could be easily
satisfied by storing the exact time of every single oscillator
tick. However, this is unfeasible due to the lack of memory.
Thus, a caching strategy has to be developed where—for the
sake of consistency—already calculated and scheduled events
(instead of the ticks themselves) can be stored.

3. Related Work

The behaviour of an oscillator is in many ways production
dependent. One key parameter is the technology. Nowadays,
many types of oscillators are available, starting at low—cost
AT—cut crystals used in the commonly known XOs (crystal
oscillators). Here, the main influence factor on the frequency,
the temperature, is neither physically stabilised nor mathe-
matically compensated. The latter is done in the so-called
microcontroller compensated oscillators (MCXOs), where
the actual temperature is taken into account and the output
frequency is corrected with a preconfigured temperature-
frequency calibration curve. The most expensive crystal
oscillators are oven controlled oscillators (OCXOs). This
type of oscillators stabilises the ambient temperature of the
crystal to a certain temperature. Additionally—to increase
the performance—a special crystal selection process is done
for the latter two types.

The actual stability of an oscillator depends on several
external parameters, such as the above-mentioned temper-
ature. Furthermore, supply voltage and mechanical effects
like vibrations influence the output signal. All of these effects
can be summarised in terms of their impact on the fre-
quency stability or equivalent phase stability. The following
considerations take a constant set of these parameters into
account and characterise in a first step only the behaviour of
an oscillator in a stable environment.

3.1. Frequency Domain Characterisation. Oscillators exhibit
a variety of instabilities which are manifested in phase
and frequency changes. A portion of these instabilities are
well-known deterministic trends, like frequency and phase
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offset, drift, and periodic terms. A typical model for this is
published in [15].

These instabilities cause a linear (or at most quadratic)
time error term that can be easily corrected, for example,
by clock synchronization with a control loop. However, for a
complete model of an oscillator, it is also necessary to include
the stochastic trends. According to [16], this noise can be
categorised depending on the power spectral density (PSD),
Sϕ( f ), of the phase noise. The characterization with a PSD
with its advantages of transformations requires a stationary
noise process, which is assumed in the remainder of this
paper. It is important to mention for this characterization
that the underlying probability distribution is not defined by
the PSD, so could white noise have a Gaussian distribution,
while flicker noise may have a uniform distribution between
a lower and upper limit.

(a) White Noise Family. White, bandwidth-limited noise,
probably the best known noise family, is an uncorrelated,
random noise process which has a constant power spectral
density for all frequencies in its band. In the case of
oscillators, the noise processes usually have a normal or
Gaussian distribution.

In particular, two types of white noise are contributing:
the commonly called white noise phase modulation (WPM,
Sϕ ∝ 1/ f 0 = 1, where f denotes the frequency) and white
noise frequency modulation (WFM, Sϕ( f ) ∝ 1/ f 2). The
first one is frequency independent and usually denotes the
phase variations which appear to be random white noise
processes. Amplifiers usually contribute to this kind of noise
in oscillators. Thus, by proper amplifier design, this process
can be reduced. The second class of the white noise family is
the white noise frequency modulation. Causes for this can be
usually found in passive elements of the oscillator [17].

(b) Flicker Noise Family. This noise family is usually also
referred to as pink or flicker noise, which has as its
identification property a 1/ f dependency in the PSD (power
spectral density). It is characterized by equal amount of
energy per octave. In oscillators, flicker noise processes can
be observed in the spectrum near the resonance frequency,
which results in oscillator phase noise. Similarly, like in the
white family, typically two effects of flicker noise can be
observed: flicker frequency modulation (FFM) and flicker
phase modulation (FPM) [17].

Theories about the cause of flicker noise are relatively
vague. Some sources [18] say that FPM, 1/ f , can be related
to a physical resonance mechanism in the oscillator. Usually
its source is the amplification stage itself, thus it can be found
even in high-quality oscillators.

The spectrum of the FFM has a power spectral density,
proportional to 1/ f 3. Its cause is again not fully investigated.
Often this type is masked by WFM or FPM in lower-quality
oscillators.

(c) Random Walk Noise. This noise type can be identified by
its typical 1/ f 4 spectrum. It is relatively close to the carrier
frequency and thus difficult to measure. However, the effect,

namely the random (but directional) frequency change can
be easily observed. Among the causes for this kind of noise
are mechanical shock, vibration, temperature fluctuations,
and similar effects [17].

More commonly the power spectral density of the fre-
quency noise Sy( f ) is used (with the relation Sy( f ) = Sϕ( f )·
f 2/v2

0 , where v2
0 is the nominal frequency) to characterise

the noise as it gives information how the average power is
distributed over the frequency. Since usually the oscillator
noise is modeled as a superposition of the five types of noises
described above, the the PSD can be defined with the power
law [19]

Sy
(
f
)
=

2∑
α=−2

hα f
α, (1)

where Sy( f ) is the one-sided spectral density of the frac-
tional frequency fluctuations (frequency noise), and hα are
constants which can be used to characterise the oscillator.

3.2. Time Domain Characterisation. In the time domain, the
so-called Allan variance is used to estimate the stability of a
clock. The introduction of this measure is necessary, since
the classical variance diverges for a certain type, random
walk noise. It is the typical effect of an oscillator’s frequency
to depart with variable progression and direction from the
nominal frequency. As for this effect, the (temporal) mean
value does not converge, also the variance does not show
useful results. The Allan variance solves this issue for all noise
types commonly observed in crystal oscillators. It is easy and
fast to compute as well as more accurate in estimating noise
processes [20–22]. The Allan variance σ2

y of the fractional rel-
ative frequency error y(t) = 1− ( f (t)/ fnominal) is defined by

σ2
y(τ) = 1

2(N − 1)

N−1∑

i=1

(
yi+1 − yi

)2
. (2)

In this commonly used estimation, N is the number of sam-
ples. Additionally, to the division by the number of samples,
the sum is divided by two so that the Allan variance is equal
to the classical variance when the measured samples are
uncorrelated or statistically dependent [16]. All N samples
must be evenly distributed within the observation period
τ. Likewise, each frequency offset can also be estimated by
evaluating the time errors xi(t). Since yi = (xi+1 − xi)/τ, the
Allan variance can be also approached by evaluating

σ2
y(τ) = 1

2(M − 2)τ2

M−2∑

i=1

(xi+2 − 2xi+1 + xi)
2, (3)

with M = N + 1 samples of xi. Once a set of time errors has
been measured over the sampling time τ0, it is possible to
compute the Allan variance for different sampling times τ =
n·τ0. The approach is to average n adjacent values of yτ0

i [19],

yτk =
1

n

k·n∑

i=(k−1)n+1

yτ0

i =
xk+n − xk

τ
. (4)
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It is clear from the equation that the time errors for the sam-
pling time τ are generated by skipping out n− 1 samples. In
case of a finite set of N values for yτ0

i , σ2
y(τ) can be written as

σ2
y(nτ0) = 1

2(M − 1)

M−1∑

k=1

(
yτk+1 − yτk

)2
, (5)

where M = N/n. This can also be done based on the time
error xi when the Allan variance is defined as

σ2
y(nτ0) = 1

2τ2(M − 1)

M−1∑

i=1

(
x(i+1)n+1 − 2xin+1 + x(i−1)n+1

)2
,

(6)

for N + 1 number of xi measurements and M = N/n. xi is in
this context defined as the phase offset of the oscillator to an
ideal clock.

Using this algorithm, the Allan variance has become a de-
facto standard to predict the quality of clocks. Nevertheless,
it should be noted that for the computation of {xi}, a
reference clock, or at least the information about its phase,
is indispensable.

Finally, it has to be mentioned that a relationship
between the time and frequency domain exists which is
defined by [19]

σ̃2
y(τ) = 2

∫∞
0
Sy
(
f
) sin4(π f τ

)
(
π f τ

)2 d f . (7)

From this representation, it is clear that one additional
benefit of the Allan variance is that the type of error
(modulation of the frequency) can be identified by the slope
of the plot. For example, a slope of τ−1 identifies a white-
phase noise (WPM) or a flicker phase (FPM). Details can be
found in [20–23].

3.3. DES Clock Models. There have been attempts to bring
realistic notion of time to discrete event simulation systems
in literature. The main issue with DES is the one virtual
time scale which is shared amongst the different components
of the system, thereby making them perfectly synchronized.
To make the simulation more realistic, it is necessary to
introduce, as in the real world, statistically independent
oscillator models every spatially distributed device. In [24],
such a local clock modelling approach for DES is introduced.
The clock model provides an API for other node’s modules
and implements several mapping utilities: (a) conversion
from local time to virtual time, (b) conversion from virtual
to local time, (c) conversion of local duration to virtual
duration, and (d) conversion of virtual duration to local
duration. With this conversions functionality, it is easy to
map the nodes’ notion of time to a global, absolute perfect
time scale. While this solution is generic and can be easily
applied in simulation, the issue of realistic clock behaviour
still remains. Although the clock model exhibits most of the
deterministic characteristics of real world clocks (time and
frequency offset, drift, etc.), the random processes described
in Section 3.1 are modelled by simple white noise which is
not efficient for simulations that require high precision clock
synchronization.

Oscillator

with power spectral density Sy

Power spectral

PSD:
Sy

Filter that generates a random signal y

Density: Sy

P1(jω) P2(jω) P3(jω) P4(jω) 1/(jω)

Figure 1: Concept of the oscillator model. A filter, with a frequency
response equal to the power spectral density of an oscillator, is
used to extract similar noise behaviour from a bandwidth-limited
white noise. The exact properties of the dashed box, which contains
five filter elements, are developed in this section. So far, it is only
important that the box as a whole forms the spectrum according to
the Allan variance of the oscillator.

4. Oscillator Model Concept

Based on the considerations in the previous sections, the
actual task is to model the five noise types. For this matter,
the PSD of the noise can be useful, since it is deterministic
and independent of time (for these certain noise types). The
approach is the following.

If a random signal u(t) is filtered by a linear, time-
invariant filter with frequency response H( f ), the power
spectral density of the output signal v(t) can be calculated
as [25]

Sy,v

(
f
)
= Sy,u

(
f
)∥∥H( f )

∥∥2
, (8)

where Sy,u( f ) is the power spectral density of u(t), and Sy,v

refers to the power spectral density of the output signal. This
fact can now be used in the following manner: in case u(t)
is white noise, Sy,u(t) equals one. Therefore, the spectrum of
the five types of noises can be defined which allows to define
a filter cascade for white noise like in Figure 1 that has the
same power spectral density as the desired oscillator noise.

Therefore, the key step is to define the PSD of the
noises. However, since it is easier to perform time-based
measurements and, therefore, calculate the Allan variance,
the relation between the Allan variance and the power
spectral density has to be found.

For a system with limited bandwidth, this correspon-
dence between the Allan variance and the power spectral
density is given by [16]

σ̃2
y(τ) = 2

∫ fuc

flc
Sy
(
f
) sin4(π f τ

)
(
π f τ

)2 d f . (9)

The modification concerns the always positive cutoff

frequencies flc and fuc of the measurement system. Thus,
the corresponding power spectral density has to be limited
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to [ flc, fuc], too. In this case of a restriction to a bandwidth-
limited signal, the redefinition is simple, as only the con-
tributing parts to Sy( f ) have to be cut off,

S̃y,α

(
f
)
=

⎧⎨
⎩
hα f α, if flc < f < fuc,

0, otherwise.
(10)

Finally, the power spectral density can be summed up to

S̃y
(
f
)
=

2∑
α=−2

S̃y,α

(
f
)
. (11)

4.1. Power Spectral Density Correspondence. Using (11), the
Allan variance on a limited bandwidth, σ̃2

y,α, is defined as

σ̃2
y,α

(
τ, flc, fuc

)
= 2

∫ fuc

flc

sin4(π f τ
)

(
π f τ

)2 S̃y,α

(
f
)
d f , (12)

and the trivial consequence for the Allan variance is

σ̃2
y =

2∑
α=−2

σ̃2
y,α

(
τ, flc, fuc

)
. (13)

As it can be seen from inserting (10) into (12), the
integral is defined only for α = −2,−1, 0. Therefore, it is
mandatory to limit the upper frequency for values of α > 0
to avoid the singularity [26]. If this assumption holds, the
solution of (12) for α > 0 can be given with the help of the
definition of the sine integral [27]

S(ζ) =
∫ ζ

0

sin(ω)

ω
dω, (14)

which can be approximated using a TAYLOR series around
zero as

S(ζ) = ζ − ζ3

3! · 3
+

ζ5

5! · 5
− ζ7

7! · 7
+ · · ·

=
∞∑

k=0

(−1)k

(2k + 1)! · (2k + 1)
ζ2k+1.

(15)

The second abbreviation is the cosine integral [27],

C(ζ) = −
∫∞
ζ

cos(t)

t
dt = γ + ln(ζ) +

∫ ζ

0

cos(t)− 1

t
dt

= −
∫ 0

ζ

cos(t)− 1

t
dt,

(16)

where γ = −
∫∞

0 e−t ln(t)dt = 0.577215664901532 . . . is the
Euler-Mascheroni constant [27]. Using a symbolic mathe-
matics package and an intermediate boundary frequency fb

which equals either flc or fuc and introducing ub = π fbτ, the
contributing parts can be written as

σ̃2
y,−2(τ, 0,ub)

= 2

∫ ub

0
h−2 f

−2 sin4(π f τ
)

(
π f τ

)2 d f

= h−2πτ

{
8S(4ub)− 4S(2ub)

3

− sin2(ub)
[
4u2

b +2ub sin(2ub)+(8ub − 1) cos(2ub)+1
]

3u3
b

}
,

(17)

σ̃2
y,−1(τ, 0,ub)

= 2

∫ ub

0
h−1 f

−1 sin4(π f τ
)

(
π f τ

)2 d f

= h−1

{
ln(4) + 2C(2ub)− 2C(4ub)

− [4ub cos(ub) + sin(ub)]sin3(ub)

u2
b

}
,

(18)

σ̃2
y,0(τ, 0,ub)

= 2

∫ ub

0
h0

sin4(π f τ
)

(
π f τ

)2 d f

= h0
1

πτ

{
2S(2ub)−S(4ub)− sin4(ub)

ub

}
,

σ̃2
y,1(τ, 0,ub)

= 2

∫ ub

0
h1 f

sin4(π f τ
)

(
π f τ

)2 d f

= h1
1

(πτ)2

{
ln(4) + 3γ + 3 ln(ub)

4

+
C(4ub)− 4C(2ub)

4

}
,

σ̃2
y,2(τ, 0,ub)

= 2

∫ ub

0
h2 f

2 sin4(π f τ
)

(
π f τ

)2 d f

= h2
1

(πτ)3

{
12ub + sin(4ub)− 8 sin(2ub)

16

}
.

(19)

Additionally, the theorem of transposed integral limits
can be used to obtain a solution for nonzero lower cutoff

frequencies, that is,

σ̃2
y,α(τ,ulc,uuc) = σ̃2

y,α(τ, 0,uuc)− σ̃2
y,α(τ, 0,ulc). (20)
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This result can be checked, by using the lemma of
JORDAN to get a limit for the integralsine [27]

lim
ζ→∞

S(ζ) = π

2
. (21)

In consequence, using the fact that the second fraction
(·/unb) of σ̃y,−2, σ̃y,−1, and σ̃y,0 approaches zero with ub → ∞,
the following limits can be obtained:

lim
fb →∞

σ̃y,−2

(
τ, 0, fb

)
= h−2τ

2π2

6
,

lim
fb →∞

σ̃y,−1

(
τ, 0, fb

)
= h−1 ln(4),

lim
fb →∞

σ̃y,0

(
τ, 0, fb

)
= h0

1

2τ
,

(22)

which makes the result reasonable [19].

4.2. Power Spectral Density Forming. After the measurement
of the Allan variance, the hα parameters and hence the
power spectral density Sy( f ) can be sufficiently determined.
A straightforward approach would be to choose five values
from the Allan variance plot and build a linear system of
equations. This turns out not to be the optimal approach.
Due to the imperfections of the measurement system, the
calculated values of the Allan variance do not fit (18)–(20)
perfectly.

A second approach is to make an approximation of the
Allan variance by calculating a fitting curve using the least-
square method [28]. Another way to do the approximation
can be done using the infinity norm ‖ · ‖∞ of the error
vector. The technique turns out to be the best-suited
approach for the high dynamic of this double logarithmic-
scaled linear problem.

The next step is to bring the PSD function of the
oscillator noise into a form that the transfer function H(s)
can be found. By substituting ω = 2π f , Sy can be determined
as

Sy(ω,ωlc,ωuc)=
(
s−2 +s−1ω+s0ω2 +s1ω3 +s2ω4

ω2

)
·Πωlc ,ωuc (ω).

(23)

In this equation, the boxcar function Π(·) defines a window
satisfying

Πωlc ,ωuc (ω) =

⎧⎨
⎩

1, if ωlc ≤ ω ≤ ωuc,

0, otherwise.
(24)

Due to the fact that the input signal of the filter is white
noise, the power spectral density of the output signal is

Sy(ω,ωlc,ωuc) =
∣∣H(jω)

∣∣2 = H
(
jω
)
H∗(jω), (25)

where H(jω) is the transfer function of the filter. According
to (24) and (26), the transfer function can now be defined as

∣∣H(jω)
∣∣ =

√
s−2 + s−1ω + s0ω2 + s1ω3 + s2ω4

ω
·Πωlc ,ωuc (ω),

(26)

with the introduction of

∣∣P(jω)
∣∣ =

√
s−2 + s−1ω + s0ω2 + s1ω3 + s2ω4

ω
(27)

and factorizing the polynomial s−2 + s−1ω+ s0ω2 + s1ω3 +
s2ω4 via real-valued constants ω1 . . . ω4 such as (ω1 +ω)(ω2 +
ω)(ω3 + ω)(ω4 + ω). The assumption of real coefficients is
valid because the square root of the polynomial has to exist
according to (27) and thus,

∣∣P(jω)
∣∣

= √ω1ω2ω3ω4·
∣∣P1

(
jω
)∣∣∣∣P2

(
jω
)∣∣∣∣P3

(
jω
)∣∣∣∣P4

(
jω
)∣∣

ω
,

(28)

where |Pi(jω)| is defined as

∣∣Pi
(
jω
)∣∣ =

√(
1 +

ω

ωi

)
. (29)

Therefore, one can consider P(jω) as a cascade of five
transfer functions: P1(jω), P2(jω), P3(jω), P4(jω), and 1/jω.
The last represents an integrator with a gain g = √ω1ω2ω3ω4:
Pint =

√
ω1ω2ω3ω4/jω. The step from |P(jω)| to |H(jω)| is

done with the assumption that the white noise input of the
filter is bandwidth limited. Therefore, the limitation of the
filter can be shifted to the noise source.

If one examines one of the first four parts of the cascade
more closely, it is clear that it has a 10 dB/decade slope. Since
it is not possible to make a filter using discrete components
which has this amplitude characteristics, an approximation
is needed. This can be successfully done by the lead-lag-filter
[29],

Papr,i

(
jω
)
=

∞∏

k=0

(
1 +

(
ω/ωz,i,k

))
(

1 +
(
ω/ωp,i,k

)) , (30)

where the zeros, ωz,i,k, and the poles, ωp,i,k, are chosen as

ωz,i,k = 24k−5πωi, (31)

ωp,i,k = 24k−3πωi, (32)

and k = 1, 2, 3, 4 . . . are integers.

5. DES Model Implementation

Following the approach explained above, the practical
implementation of the oscillator model starts with the
measurement of the Allan variance and the extraction of the
spectrum defining hα parameters. An intermediate, however,
necessary step in the design is to switch from the continuous
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time to the discrete time domain. For the sake of simplicity,
this first step is done using MATLAB. This involves two tasks:

(i) a digital filter with the same frequency response as the
analog H(jω) has to be created. The biggest problem
in this step is the wide dynamic range that the
digital filter cascade has to cover. Since the dynamic
frequency range of digital filters is more limited than
that of analog filters, the higher frequencies are cut
off to avoid stability problems;

(ii) white noise has to be modelled. Usually white
noise is modelled using random number generators
providing a normal distribution.

In practice, this problem turns out to be a linear optimi-
sation of the hα parameters and a following construction of a
proper filter. In practice, this can be also done by measuring
the Allan variance and optimizing the parameters of the
linear filter to match the observed PSD. This approach does
not require the calculation of the hα parameters; however,
for the sake of the comparison of the parameters with
the state-of-the-art s, the intermediate step is done in this
paper. As mentioned already, the overall goal of the model
described in this paper is to have an oscillator model available
for simulation in a DES environment. However, this is
not needed for the sake of itself, but the model has to
be embedded into a large scope of a simulation. Owing
to its high flexibility and particular suitability for network
simulation, the OMNeT++ [13] simulator was chosen for
a prototype implementation. It is however obvious that the
model in general can be ported to other simulators as the ns-
3 system or even ModelSim, as well.

5.1. OMNeT++ Model Structure. As a basis for the model, a
typical clock synchronization problem is taken as test case.
In this scenario, the oscillator is used as a time reference for
a clock. This clock consists of the clock logic that increases
the value of the clock with each tick (or couple of ticks) of
the oscillator by a variable increment. By the adjustment of
this increment, the clock can be steered to a desired value.
This clock is then synchronized by a second, in the context of
this paper ideal master clock which is per definition running
perfectly aligned with the time scale of the simulation. At
predefined points in time, the master clock synchronizes the
slave clock. The latter then requests from the oscillator model
the number of ticks elapsed since the last clock update and
calculates the actual local time with the current increment.
Using this and a PI-controller structure, a new increment is
calculated in order to steer the slave clock according to the
transmitted timestamps of the master. From an implemen-
tation viewpoint, the more complicated case is another one:
for a full integration into a typical OMNeT++ simulation, it
has not only to be possible to request the number of ticks at
the current simulation time, but also to request the number
of ticks at a given simulation time in the future (or vice
versa the simulation time at a future number of ticks). This
prediction is necessary, for example, to schedule clock alarms
at given times when an action of the simulated system has to
be performed. The latter is relatively simple in the framework

because it comes down to scheduling an interrupt. However,
it is not that easy for the oscillator model, since it has to
be ensured that the replies to requests are consistent. This
consistency is twofold: first, a repeated request has to be
answered in any case with the same value, and second, it
has to be ensured that the number of ticks of request 1 is
always smaller or equal to the ones of request 2, given that
the simulation time for the ticks in request 1 is smaller.

5.2. Power Spectral Density Shaping. As it will be shown in
Section 6, the oscillator model exhibits realistic behaviour in
terms of the Allan variance; however, it has to be considered
whether this is sufficient for direct implementation in a DES
system. One evident drawback of the model is the fact that
the oscillator and, hence, local time is incremented by single,
small ticks. Not only is this resource consuming in case of a
network containing a large number of clocks; but also, the
actual advantage of the discrete event simulation concept
explained in Section 2 cannot be used properly. Therefore,
following this concept, the oscillator model has to be modi-
fied in a way that it is able to simulate long periods of time
efficiently and also to keep the fine granularity when needed.

Inspired by multirate filtering, where filters with different
sample rates are used within a system to achieve processing
efficiencies [30], a filter structure was designed which shapes
the PSD according to the one of a real-world oscillator. The
main idea behind this concept is to employ several filters
with different sampling rates where each of them models
the noise within a certain frequency band. Therefore, longer
period of time would be calculated with the help of a filter
modelling an oscillator with relatively low frequency. In case
finer granularity is needed, the intermediate values would be
obtained employing a second filter.

By combining the outputs of the filters, the requested
time intervals can be simulated in an optimised manner.
The reason for using this approach instead of the standard
multirate filtering method is that the proposed solution
provides more realistic results for the oscillator noise on
higher frequencies. While in multirate filtering, the values
are obtained by interpolation, in the proposed approach
the filters with higher sampling rates have the same power
spectral density as the short-term oscillator noise. Since the
long-term behaviour of the overall structure is determined
by the transfer function of the 1 ms filter shown in Figure 2,
the rest of the filters only need to cover a part of the overall
frequency range of the oscillator noise. Hence, their transfer
functions can be simpler than the one defined by (30). A
comparison of the Allan variance plots is shown in Figure 3.
The figure shows the variance of the real-world oscillator
and the variance of an oscillator noise simulated using a
filter cascade with a sampling time of 1 ms. Besides these,
the figure shows the variance obtained using the proposed
approach and by using a multirate filter. In the last case, the
values were obtained in two stages. In the first one, the noise
was computed using the filter cascade for Ts = 10−3 s. In the
second stage, the values were upsampled by a factor of 10.
Since the multirate filter uses interpolation, the calculated
samples are correlated and, hence, the value of the Allan
variance is much lower than the measured value. On the
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Figure 2: The structure of the OMNeT++ oscillator model.
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(green) and with better fitting using the proposed model (blue).

other hand, the proposed approach utilising a white-noise
filter instead of interpolation provides more realistic results.

Finally, in the OMNeT++ implementation, three filters,
H1(jω), H2(jω), and H3(jω), have been designed with
sampling times chosen as T1 = 10−3 s, T2 = 10−6 s, and T3 =
10−9 s, where only the first filter provides the noise that has
the same long-term behaviour as an oscillator. This is again
connected to the mathematical model via the matched shape
of the power spectral density. With these sampling times, it
is possible to model an oscillator with the highest frequency
equal to fmax = 1 GHz and at the same time to calculate
long time intervals (in the range of seconds) efficiently. As
highlighted in Section 5.1, the model has to support two
functions: it needs to calculate the simulation time for a
requested number of oscillator ticks and additionally the
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Figure 4: Comparative time domain plot of the output of the
simple and the proposed oscillator model for an exemplary simula-
tion run. While the simple model only shows simple jitter around
the (compensated) nominal frequency, the proposed model also
includes other noise effects and therefore provides more realistic
behaviour compared to a real oscillator.

elapsed number of ticks at a requested simulation time to
schedule future events. Moreover, the requested times of
oscillator ticks can be retrieved in an arbitrary order.

Even with the improvements, the model would be still
ineffective if the simulation time was calculated from the
oscillator start-up time for every request. Instead, the last
calculated simulation time and number of ticks (together
with the current filter values) are stored whenever an event
is processed. These values are then used later on as reference
points for calculating future events. The structure of the
OMNeT++ model is shown in Figure 2.

6. Model Evaluation

In order to evaluate the model, two test cases have been
examined. In the first case the oscillator model was used as
the time reference for a free running clock, and the time error
between the simulation time and the clock was recorded in
order to calculate the Allan variance. In the second case, a
real-world measurement results were compared to the output
of the oscillator model.

6.1. Free Running Clock. In the first scenario, the OMNeT++
oscillator model was applied to the time reference of a free
running clock with nominal period equal to Tc = 1 ns.
The probably most demonstrative, however, statistically less
meaningful illustration of the model is a depiction of the
time error over time. Figure 4 shows such a simulation
experiment. In this figure, a simple oscillator model (only
Gaussian noise) is compared with the proposed architecture.
This shows one important qualitative difference between
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these two models: while the random numbers cancel out
for the simple model resulting in a zero average of the
time error, the advanced model shows the typical random
walk of the time error. This difference comes from the fact
that the returned values from the developed model are not
statistically independent as in the first case.

Although Figure 4 shows the principle working scheme
of the proposed oscillator model, a comparison between a
real-world measurement would not make any sense as the
considered curve is the manifestation of a random variable.

In a next and quantitatively more interesting step, a
comparison of the Allan deviation of the model and a real-
world clock can be done. For this experiment, a simulation
was set up such that after every 0.1 s of simulation time the
number of elapsed ticks was requested from the oscillator.
Based on the ticks, the local time and the Allan variance of
the free running clock were calculated. As shown in Figure 5,
the long-term behaviour of the model corresponds to the
behaviour of the measured oscillator: the flicker floor is
reached in the range 1–10 s, and at larger sampling time, the
variance increases.

This result can now be used to compare the proposed
oscillator model to a usual white-noise model. A comparison
study like this is done in Figure 6. In this figure, the desired
u-shape of the proposed model can be seen. As expected, the
Allan variance plot of a simple white noise compares to that
of a single slope without the important contributions of the
other noise types.

6.2. Synchronized Clock. Finally, to prove the practicability
of the oscillator model, a typical simulation has been set up.
In this scenario, a comparison between the simple model and
real-world experiments typically fails. The test includes two
instances of an oscillator. The master is set up to send out
a synchronization message periodically at a given number
of ticks. The slave receives the synchronization messages
and steers its local clock with this information. The steering
is done using a PI control algorithm commonly used for
IEEE 1588 and a clock model with an adaptable speed (or
increment). The main question behind this experiment
is to investigate the influence of the longest reasonable
synchronization interval. As it can be seen from the Allan
variance of Figure 5, an absolute minimum is reached in
the area of 100 s. For reasons of comparability with [31], a
standard deviation is used in this investigation. As a matter
of fact, the use of the standard instead of the Allan deviation
is reasonable, as the synchronization master is typically
considered as a perfect clock and the synchronization interval
is kept constant. This noise minimum at that sampling time
has an influence on the optimal synchronization frequency,
as after a certain threshold, the accuracy cannot be improved
any further. Results of this experiment [31] reveal that one
can observe this change in synchronization accuracy at 1 s,
and an absolute, stable minimum is reached around 100 ms.
Figure 7 shows this in direct comparison. As expected, the
simple oscillator model shows in fact a constant behaviour.
This is due to the independence of the deviation of the obser-
vation interval τ, which is in direct correspondence with the
synchronization interval. Therefore, a constant jitter can be
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Figure 5: The Allan variance plot of the measured oscillator and the
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observed. In opposite to that, the proposed Allan-variance
modelled oscillator exactly matches the behaviour of the real
world. The relatively small difference between the real-world
measurement and the simulation in Figure 7 stems from
the fact that the data for modelling the parameters were
taken from different test setups, however, utilising the same
oscillator.

7. Conclusions

Discrete event simulators are an efficient tool to simulate
distributed sensor networks that need clock synchronization
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Figure 7: Comparison between the simple oscillator model and the
proposed multinoise model with a real-world measurement.

across a large number of nodes. However, in order to have
meaningful results, accurate oscillator models are needed.
The presented approach proposes a modelling strategy,
which uses proper design of a noise filter to allow for a
resource-saving implementation. The filter is shaped in a
fashion which not only models the white-noise contributions
to the output of an oscillator, but also the flicker components
as well as the integral parts of the latter. It is shown by
a real-world oscillator comparison that the output of the
OMNeT++ model implements the same noise types in terms
of the Allan variance. This oscillator model has been verified
by comparing a real free running oscillator with the one
simulated using the proposed model, and the results show
a very good match between the two. The practical work for
this paper showed that the intermediate step to calculate
the hα parameters can be omitted and the parameters for
the filter calculated directly; however, the actual computing
effort is not significantly reduced. Finally, as this concept
considers only clock errors in DES systems, which result
from oscillator noise, also other effects such as the tem-
perature dependency have to be included in these kind of
models.
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