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ABSTRACT Sintering inhibition of a catalyst at high tem-

peratures is a challenge during heterogeneous catalysis. In this

paper, we report that hexagonal boron nitride (h-BN) is an

optimal material for anti-sintering γ-Al2O3-supported Pt

nanoparticles (NPs) originating from the high thermal con-

ductivity of h-BN. The high thermal conductivity of h-BN

ensures maximal heat dissipation from Pt NPs to γ-Al2O3,

thereby causing both Ostwald ripening and particle co-

alescence of Pt NPs to be decelerated at elevated temperatures.

Inhibition of Pt NP sintering is also shown in the reducible

TiO2-supported Pt NPs with the help of h-BN. The proposed

anti-sintering strategy using thermal management is uni-

versal, providing new insight into the design of anti-sintering

materials and structures for a wide range of applications in

heterogeneous catalysis.

Keywords: anti-sintering, thermal management, molecular dy-

namics, hexagonal boron nitride

INTRODUCTION
Heterogeneous catalysis converts resources and raw ma-
terials into energy and valuable chemicals in an eco-
nomically efficient manner. Transition metal (TM)
particles are commonly used catalysts and are often pre-
pared in small sizes to maximize the atomic utilization
efficiency. Sintering is a natural phenomenon in hetero-
geneous catalysis at elevated temperatures, wherein nano-
and micron-sized particles aggregate into larger particles
because of reduced surface energy [1,2]. Numerous im-
portant industrial catalytic reactions, including the pro-
duction of chemicals, pharmaceuticals, clean fuels, and

exhaust treatments for automobiles and stationary power
plants, undergo a large loss of catalytic reactivity due to
the sintering of supported metal nanoparticles (NPs) [3].
To minimize sintering, the strengthening of metal-
support interactions has allowed various methods and
technologies to be established [4–12]. For example, TM
sintering can also be decelerated by the strong steric
hindrance effect, such as by encapsulating metal particles
into core-shell or yolk-shell structures [13–19], anchoring
metal particles into pores of the large surface area of
catalytic supports [20–22], controlling the uniformity of
the metal NPs [23–25], and synthesizing multi-element
alloys [26–28]. However, active sites are often covered
and cannot participate in chemical reactions in such
strategies, decreasing the catalytic performance of TM
NPs. Understanding the sintering mechanism and de-
veloping efficient approaches to inhibit TM NP sintering
are desirable, yet continue to pose a challenge.

In this paper, we report a new strategy to achieve metal
NP sintering resistance using thermal management from
the microscale to macroscale. Molecular dynamic (MD)
simulations were first performed to study the sintering
mechanisms of Pt NPs over a γ-Al2O3 support, two-
dimensional (2D) hexagonal boron nitride (h-BN), gra-
phene, and hexagonal boron arsenide (h-BAs), which are
materials with high conductivities. We identified h-BN as
an optimal material for Pt NP anti-sintering. Pt NP sin-
tering was conducted at 800 K on a γ-Al2O3 support. The
introduction of h-BN into a Pt/γ-Al2O3 catalyst can in-
hibit the sintering of the highly dispersed Pt NPs at
temperatures up to 1000 K by effectively dissipating ex-
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cess heat. The inhibition of sintering can be extended to
reducible TiO2-supported Pt NPs. Our work provides a
new approach for anti-sintering TM NPs on a broad
range of supports at elevated temperatures.

EXPERIMENTAL AND THEORETICAL
SECTION

MD simulations of particle migration and coalescence

MD simulations were performed using large-scale
atomic/molecular massively parallel simulation code to
study Pt NP sintering using a particle migration and
coalescence (PMC) mechanism. Nose-Hoover im-
plementations of the thermostats were used to control the
temperature. The relative sintered density was obtained
using mass-conservation in Equation (S1). Further details
about non-isothermal sintering behaviors of different
models are discussed in the Supplementary information
(Table S1).

Phonon spectrum and phonon density of states

Density functional theory (DFT) calculations were per-
formed within the projector-augmented wave pseudopo-
tential as implemented with the Vienna Ab-initio

Simulation Package (VASP). The generalized gradient
approximation was adopted. The plane-wave cutoff en-
ergies were set at 350 eV. The Monkhorst-Pack sampling
in the first Brillouin zone was gamma-centered. A 15-Å
vacuum layer was set perpendicular to the surface and the
ionic positions were fully optimized until the difference in
total electronic energies was <10−5 eV.

After structural relaxation, the phonon spectrum and
phonon density of states (Phonon DOS) were calculated
using the finite displacement method [29]. Force constant
calculations were performed using reduced k-point sam-
pling meshes of 4 × 4 × 4, 2 × 2 × 2, and 6 × 6 × 1 for the
Pt, γ-Al2O3, and h-BN, respectively. The phonon fre-
quencies were sampled on an 8 × 8 × 8 q-point mesh for
Pt and γ-Al2O3 and on a 10 × 10 × 1 q-point mesh for h-
BN.

Material preparation and characterization

h-BN was introduced into the substrate by using a me-
chanical mixture. Pt NPs were chemically deposited onto
the substrate by using wet impregnation. Further pre-
paration details are provided in the Supplementary in-
formation. Fourier transform infrared spectroscopy (FT-
IR) and in situ FT-IR were both recorded using a Bruker
VERTEX 70. X-ray diffraction (XRD) was performed
using a Bruker D8 Advance. Nitrogen adsorption/deso-

rption isotherms were performed using a Micromeritics
ASAP 2460. Inductively coupled plasma optical emission
spectrometry (ICP-OES) was tested using an Agilent ICP-
OES 730. Scanning electron microscopy (SEM) was per-
formed using an FEI Quanta 200F. Energy-dispersive X-
ray in the transmission electron microscopy (EDX-TEM)
and high-angle annular dark-field scanning TEM
(HAADF-STEM) were taken using an FEI F20. Ther-
mogravimetric (TG) analysis was performed using a
TGA/DSC 3+. In situ TEM spectroscopy was recorded on
a JEM-2100F (JEOL Inc.) and an in situ heating TEM
holder (model 652, Gatan Inc.) was used to control the
temperature. Samples were heated for 5 min at a rate of
20 K min−1 and temperature was recorded in 100 K in-
crements. Thermal conductivity was tested using a
NETZSCH 447. A VarioCAM HD research 880 was
employed for infrared thermal imaging. Details about
hydrogen-oxygen titration are shown in the Supplemen-
tary information (Fig. S1).

RESULTS AND DISCUSSION
The sintering of metal NPs may occur following two
different mechanisms, namely, Ostwald ripening (OR)
and PMC. OR causes large particles to grow at the ex-
pense of smaller particles due to the migration of single
metal atoms on the support [30]. Metal NPs can migrate
and coalesce to form larger particles in the PMC sintering
process [31], which is a crucial method of achieving NP
growth. In this paper, MD simulation was performed to
study Pt NP sintering on γ-Al2O3 through a PMC sin-
tering mechanism. γ-Al2O3 was selected based on the fact
that it is widely used as the support in heterogeneous
catalysis due to its versatile physical-chemical properties
[32]. The PMC sintering evolution of Pt NPs on the γ-
Al2O3 (010) surface was evaluated. We observed that Pt
NPs merge easily on γ-Al2O3 (010) at 1000 K (Fig. 1a) and
that Pt sintering accelerates as the temperature increases
(Fig. S2).

In this paper, we focus on 2D materials, which have
attracted considerable attention due to their extra-
ordinary physical and chemical properties, such as high
charge-carrier mobility, high thermal conductivity, high
optical activity, and high mechanical strength [33–40]. 2D
materials are widely and commonly used as supports to
disperse single noble metal atoms and NPs [41–44].
However, it is still unknown whether and which 2D
materials can act as effective supports to achieve anti-
sintering of Pt NPs. Pt NP sintering behaviors present in
the three types of 2D materials (i.e., h-BN, graphene, and
h-BAs) were systematically studied. 2D h-BN, graphene,
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and h-BAs materials are selected here because they have
higher thermal conductivities than γ-Al2O3 by one or two
orders (Table S2).

New Pt–Pt bond formation is accompanied by heat
release during Pt NP sintering due to PMC [45]. How-
ever, heat cannot dissipate effectively from γ-Al2O3,
which has low thermal conductivity. Compared with Pt/
γ-Al2O3, Pt NP sintering due to PMC decelerates on h-
BAs, graphene, and h-BN supports that have higher
thermal conductivities than γ-Al2O3 (Fig. 1a–d). Heat
released from Pt NP merging can facilitate fast heat dis-
sipation on the 2D materials, preventing build-up of hot
spots on Pt NPs. Pt/graphene displays the optimized
performance for Pt NP anti-sintering, followed by h-BN
and h-BAs (Fig. 1b–d), which can be attributed to the
higher thermal conductivity of graphene than h-BN and
h-BAs. Nevertheless, the structure collapse of graphene
occurs at high temperatures and is likely to be removed
during catalyst regeneration [46]. Therefore, we adopt h-
BN as an optimal choice in this anti-sintering study by
also considering its strong chemical inertness, thermal
conductivity, superior temperature stability, acid-base
resistance, and low cost [47,48].

An h-BN support can inhibit Pt NP sintering. However,
the migration of Pt NPs occurs frequently on the highly
crystalline surface of h-BN and few Pt NPs can anchor

onto an h-BN surface due to the weak interactions be-
tween h-BN and Pt NPs. Synthesizing a low crystallized
h-BN support to maintain the high dispersion of Pt NPs
is a possible solution [49]. However, this will lower the
thermal conductivity of the h-BN support that accelerates
Pt NP sintering. We have thereby resorted to other ap-
proaches to decelerate the sintering of Pt NPs with a high
dispersion. The γ-Al2O3 support binds Pt NPs more
strongly in comparison with h-BN [50], and therefore, Pt
NPs prefer to anchor onto the surface of γ-Al2O3 in the
presence of both γ-Al2O3 and h-BN supports. This find-
ing was corroborated by our STEM characterization (Fig.
S3). Hence, we propose a new strategy to relieve sintering
of Pt NPs by combining γ-Al2O3 and h-BN to produce a
composite support. First, h-BN can prevent Pt NP sin-
tering through the PMC mechanism. The heat released by
Pt NPs that are growing and merging can dissipate
quickly through h-BN with high thermal conductivity.
Second, sintering via OR predicts that large metal-sup-
port interactions results in a high rate of sintering due to
the large migration of atoms along the support. The weak
interaction between single Pt atoms and h-BN [51] in-
hibits Pt NP sintering via the OR mechanism. Third,
highly dispersed Pt NPs can be deposited on γ-Al2O3.

To prove our hypothesis, we resort to phonon DOS
calculations. We found that the phonons of γ-Al2O3 are

Figure 1 MD simulations and phonon DOS. Vector field distribution for NPs merging on (a) γ-Al2O3, (b) graphene, (c) h-BN, and (d) h-BAs
supports predicted using MD simulations and following NP migration coalescence sintering mechanism. The 2D material supports are not shown to
highlight Pt NP merging behaviors. (e) The phonon DOS of Pt, γ-Al2O3, and h-BN obtained using DFT calculation. (f) Relative sintered density of
different model systems at the end of sintering process.
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primarily distributed between 0–25 THz (Fig. 1e). The
phonon DOS of h-BN shows obvious peaks at ~9, 18 and
38 THz. However, for Pt NPs, the overwhelming majority
of phonons have frequencies <7 THz (Fig. 1e). This could
be attributed to the heavier atomic mass and weaker in-
ter-atomic force of the Pt NPs than the h-BN samples. In
general, a stronger mismatch in the phonon DOS dis-
tributions will result in higher interfacial thermal re-
sistance on the interface between materials [52], which
will retard heat dissipation across the interfaces. There-
fore, judging by the mismatch in phonon DOS distribu-
tions among Pt, γ-Al2O3, and h-BN, the Pt/γ-Al2O3-h-BN
is an optimal configuration for decelerating Pt NP sin-
tering. A schematic diagram of two different configura-
tions is shown in Fig. S4.

To verify the design strategy, we adopted an MD ap-
proach to simulate the sintering procedure when three 2D
materials with high thermal conductivity (h-BN, h-BAs,
and graphene) were introduced into Pt/γ-Al2O3 systems
(Fig. 1e). The results show that the Pt/γ-Al2O3 system has
the highest relative sintered density, which indicates the
least anti-sintering performance. Combined with a series
of high thermal conductivity 2D composites, the relative
sintered densities of Pt NPs decease in different grades
(Fig. 1f). Moreover, among all the systems, the “Pt/γ-
Al2O3-2D-material” configurations demonstrate better
anti-sintering performances than their counterparts. This
confirmed that, as we proposed, Pt/γ-Al2O3-h-BN is an
optimal material for decelerating Pt sintering. The pho-
non DOS distributions of h-BN, h-BAs [53], and gra-
phene [54] demonstrate a stronger mismatch with Pt NPs
than with γ-Al2O3 and this can be explained by the
analysis of phonon DOS distributions previously dis-
cussed. Placing γ-Al2O3 between Pt NPs and the high
thermal conductive components may be an optimal
strategy.

To confirm our theoretical predictions, Pt/γ-Al2O3 and
Pt/γ-Al2O3-h-BN samples were successfully synthesized
to understand their sintering behaviors. First, the surface
properties, crystallinity, specific surface area, and textural
structure of the four samples, γ-Al2O3, γ-Al2O3-h-BN, Pt/
γ-Al2O3, and Pt/γ-Al2O3-h-BN, were characterized using
FT-IR, XRD, and N2 adsorption and desorption isotherm
characterization techniques (Figs S5, S6). Two typical FT-
IR absorption bands at 1378 and 816 cm−1 are identified
for the high-purity commercial h-BN [55]. XRD char-
acterization confirmed the existence of a hexagonal
crystal structure of boron nitride and alumina is present
in the gamma phase. Both γ-Al2O3 and h-BN retain their
original phases after the introduction of Pt NPs and

during the heating process (Fig. S6).
N2-sorption isotherms were obtained to reveal the

textural structure of Pt/γ-Al2O3 and Pt/γ-Al2O3-h-BN
samples calcined at different temperatures (Fig. S5b and
Table S3). Compared with Pt/γ-Al2O3, the Barrett-Joyner-
Halenda pore size of Pt/γ-Al2O3-h-BN is slightly smaller
(Fig. S5b inset), which can be explained by the low spe-
cific surface area of pristine commercial h-BN (Table S3).
Sintering of γ-Al2O3 and γ-Al2O3-h-BN substrates is not
observed by raising the temperature from 773 to 973 K
due to the high Tammann temperature of alumina
(1500 K) and high thermal stability of h-BN [56].
Therefore, a minor fluctuation of the Brunauer-Emmett-
Teller (BET) surface area of Pt/γ-Al2O3 and Pt/γ-Al2O3-h-
BN with variation in temperature exists even up to 973 K.

The initial mass fraction and dispersion of Pt NPs in
the Pt/γ-Al2O3 and Pt/γ-Al2O3-h-BN samples were mea-
sured using ICP-OES and hydrogen-oxygen titration,
respectively (Table S4). A lower platinum dispersion was
observed in Pt/γ-Al2O3-h-BN than in Pt/γ-Al2O3, which
corresponds to the inhibited sintering behavior of Pt/γ-
Al2O3-h-BN. The high temperature sintering process was
examined for the Pt/γ-Al2O3 and Pt/γ-Al2O3-h-BN sam-
ples using in situ TEM (Fig. 2). Pt NPs initially have the
same size distribution of 2.6±0.4 nm on both γ-Al2O3 and
γ-Al2O3-h-BN supports. Pt NPs are predominantly de-
posited on the surface of the γ-Al2O3 support (length of
alumina nanotube is ~20 nm) for the Pt/γ-Al2O3, whereas
for Pt/γ-Al2O3-h-BN, h-BN (width of h-BN wafer is
~13 μm) blends with γ-Al2O3 (Fig. S7). Using EDX in
conjunction with TEM characterization, we found that Pt
NPs are predominantly deposited on γ-Al2O3 in the Pt/γ-
Al2O3-h-BN sample (Fig. S3).

Sintering can occur at elevated temperatures, namely,
Pt NPs supported on γ-Al2O3 grow larger with the in-
crease of temperature from 300 to 1000 K (Fig. 2a–h). Pt
NPs are supported on γ-Al2O3 sinter via both OR and
PMC mechanisms. At 800 K, Pt NPs on γ-Al2O3 begin to
coalesce into a single particle as they meet in regime I. OR
occurs when larger Pt NPs grow at the expense of smaller
particles in regime II after increasing the temperature to
800 K. For the Pt/γ-Al2O3-h-BN sample, no obvious ag-
gregation of Pt NPs occurs below 800 K (Fig. 2i–p). Pt NP
sintering becomes increasingly evident on Pt/γ-Al2O3-h-
BN when the temperature increases to >900 K due to
PMC and OR. Pt NPs always have a smaller size when
supported on γ-Al2O3-h-BN than when on γ-Al2O3 from
300 to 1000 K (Fig. 3a). The experimental findings are
corroborated with our theoretical predictions that the
addition of h-BN to γ-Al2O3 would hinder Pt NP sin-
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tering. The better anti-sintering ability of Pt/γ-Al2O3-h-
BN can be attributed to two primary causes. When the Pt
NPs were loaded on the h-BN in the Pt/γ-Al2O3-h-BN
sample, weak metal-support between single Pt atoms and
h-BN inhibits OR sintering and high thermal con-
ductivity of h-BN hinders sintering due to PMC. When
the Pt NPs were loaded on the γ-Al2O3 in the Pt/γ-Al2O3-
h-BN sample, Pt NP sintering due to OR and PMC me-
chanisms decelerates because of the high thermal con-
ductivity of h-BN.

HAADF-STEM characterizations were further per-
formed to identify Pt NP sintering during a long-term
heating process with an elevated temperature rate of
1.58 K min−1 (Fig. 3a, b and Figs S8–S10). Pt NP sintering
on γ-Al2O3 can be typically divided into three phases. In
phase I at temperatures below 773 K, Pt NPs on γ-Al2O3

are a relatively uniform size of <5 nm. The Pt NP sin-
tering rate is slow at low temperatures in phase I. In phase

II, the temperature rises from 773 to 873 K and OR and
PMC are responsible for the rapid Pt NP growth. The
particle size of Pt NPs supported on γ-Al2O3 grows from
11.3±4.1 nm to 13.5±3.4 nm during phase III when
temperatures increase from 873 to 973 K. However, the
particle size of Pt NPs supported on γ-Al2O3-h-BN grows
from 6.8±2.0 nm to 9.2±2.1 nm during phase III. Al-
though Pt/γ-Al2O3-h-BN has a similar sintering behavior
as Pt/γ-Al2O3 does, Pt NPs have a lower growth rate on γ-
Al2O3-h-BN than on γ-Al2O3 below 973 K (Fig. 3b).

Consistent with in situ TEM characterizations, sinter-
ing of Pt NPs is inhibited during the three phases by
introducing h-BN in Pt/γ-Al2O3-h-BN through HAADF-
STEM analysis (Fig. 3a, b). Because sintering is a thermo-
driven process, the Pt NPs supported on the substrate
migrate from a place of high temperature to one of low
temperature as driven by the temperature gradient [57–
59]. The thermal gradient driving force for grain

Figure 2 In situ TEM characterization of sintering of Pt/γ-Al2O3 and Pt/γ-Al2O3-h-BN. TEM images of Pt/γ-Al2O3 at temperatures of (a) 300 K, (b)
400 K, (c) 500 K, (d) 600 K, (e) 700 K, (f) 800 K, (g) 900 K, and (h) 1000 K. TEM images of Pt/γ-Al2O3-h-BN at temperatures of (i) 300 K, (j) 400 K,
(k) 500 K, (l) 600 K, (m) 700 K, (n) 800 K, (o) 900 K, and (p) 1000 K.
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boundary migration is proportional to the thermal gra-
dient [57]. Infrared thermal imaging camera results show
a more uniform temperature field distribution after in-
troduction of h-BN in Pt/γ-Al2O3 (Fig. 4a–d). A gentler
temperature distribution trend for Pt/γ-Al2O3-h-BN than
for Pt/γ-Al2O3 is shown in Fig. 4a–d and Fig. S11. The
thermal gradient ratio of Pt/γ-Al2O3 and Pt/γ-Al2O3-h-
BN is 2, indicating that a stronger driving force exists for
Pt NP sintering in Pt/γ-Al2O3 than for Pt/γ-Al2O3-h-BN.
The thermal conductivity of Pt/γ-Al2O3-h-BN is four
times that of Pt/γ-Al2O3 (Fig. 3d). The high in-plane
thermal conductivity of h-BN [60], which facilitates heat
transformation, makes a large contribution to a lower
thermal gradient in Pt/γ-Al2O3-h-BN. As a result, the
more uniform temperature field distribution decreases
the thermal gradient-driven force for Pt NP sintering at a
macroscale in Pt/γ-Al2O3-h-BN. In other words, thermal
interface resistance between Pt NPs and substrates is re-
duced and the excess heat for Pt NPs can be transported
quickly with the help of h-BN-inhibited sintering of Pt
NPs in Pt/γ-Al2O3-h-BN.

In this paper, we proposed an efficient strategy to anti-
sintering Pt NPs by introducing h-BN, a material with
high thermal conductivity, into γ-Al2O3. Our strategy for

anti-sintering metal NPs by means of thermal manage-
ment is different from previous approaches, namely, by
strengthening the metal-support interaction effect [4–12],
which enhances OR sintering and hinders PMC sintering.
The integration of h-BN to the support not only enhances
heat transfer in the system but also changes the electrical
and chemical environments of the active centers. Zhu et

al. [44] indicated that Pt NPs are more negatively charged
on vacancy-abundant BN nanosheets than on SiO2. Liu et

al. [49] revealed that Pt NPs stabilized at the grain
boundary of BN could be more easily reduced in a pro-
pane combustion reaction as compared with those on the
surface of BN, and thereby are more active, suggesting
different reaction pathways for these catalysts and the
possible participation of the grain boundary of the BN
support in the reaction. Cao et al. [61] indicated that
defects of the Ni/h-BNNS catalyst can strongly influence
metal-support interaction due to electron donor/acceptor
mechanisms and favor the adsorption and catalytic acti-
vation of CH4 and CO2.

As shown in Scheme 1, Pt NP sintering due to OR and
PMC mechanisms decelerates under high temperatures in
the Pt/γ-Al2O3-h-BN system. h-BN is an optimal 2D
material for anti-sintering Pt NPs because of its high

Figure 3 Particle-size distribution and thermal properties. (a) Particle-size distribution of Pt/γ-Al2O3 and Pt/γ-Al2O3-h-BN under in situ TEM.
Particle-size distribution of (b) Pt/γ-Al2O3 and Pt/γ-Al2O3-h-BN and (c) Pt/TiO2 and Pt/TiO2-h-BN in aberration-corrected HAADF-STEM images.
(d) Thermal conductivities of Pt/γ-Al2O3 and Pt/γ-Al2O3-h-BN obtained using a laser flash apparatus.
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thermal conductivity. Thermal conductivity is higher and
thermal interfacial resistance is lower when h-BN is in-
troduced into Pt/γ-Al2O3, and thereby a large amount of
heat can be transported quickly from the surface of Pt
NPs to substrates to inhibit sintering due to PMC and OR
mechanisms. The advantage of the present strategy lies in
its simplicity and effectiveness as well as in the adapt-
ability to complex environments, such as during realistic
chemical reaction conditions. We have extended this to
the reducible Pt/TiO2 system where the introduction of h-
BN into Pt/TiO2 can inhibit Pt NP sintering (Fig. 3c and
Figs S12, S13).

CONCLUSION
A universal anti-sintering strategy was developed using a
combination of theoretical prediction and experimental
validation. The ultrahigh anti-sintering performance of Pt

NPs at high temperatures was demonstrated by introdu-
cing high-thermal-conductivity h-BN material into Pt/γ-
Al2O3 material. This strategy can be extended to other
oxide-supported TM NPs. Our work demonstrates a
method for controlling the sintering process and provides
insight into the development of novel anti-sintering ma-
terials and structures.
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基于热管理策略实现负载型铂纳米颗粒的抗烧结
王淑婷1, 李子安2,4, 杨明3,4, 李宇明1, 李然家1, 余长春1,
王雅君1, 姜尧1, 李涛3,4, 刘进勋5*, 张航3,4*, 赵震1, 徐春明1,
姜桂元1*

摘要 抑制催化剂在高温条件下的烧结仍是目前多相催化领域的
一个巨大挑战. 本文报道了高热导率六方氮化硼可作为γ-Al2O3负
载型铂纳米粒子优异的抗烧结材料. 在升温条件下, 六方氮化硼的
高热导率能够确保铂纳米粒子到γ-Al2O3的有效散热, 从而实现铂
纳米粒子Ostwald熟化烧结和颗粒碰撞烧结均被抑制. TiO2负载的
铂纳米粒子在引入六方氮化硼后, 铂纳米粒子的烧结同样被抑制.

本工作提出了一种基于热管理实现抗烧结的通用策略, 为在多相
催化中广泛应用的抗烧结材料和其结构设计提供了新的思路.
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