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Abstract—In energy harvesting communication systems, an
exogenous recharge process supplies energy necessary for data

transmission and the arriving energy can be buffered in a battery

before consumption. We determine the information-theoretic

capacity of the classical additive white Gaussian noise (AWGN)

channel with an energy harvesting transmitter with an unlim-

ited sized battery. As the energy arrives randomly and can

be saved in the battery, codewords must obey cumulative sto-

chastic energy constraints. We show that the capacity of the

AWGN channel with such stochastic channel input constraints

is equal to the capacity with an average power constraint equal

to the average recharge rate. We provide two capacity achieving

schemes: save-and-transmit and best-effort-transmit. In the

save-and-transmit scheme, the transmitter collects energy in a

saving phase of proper duration that guarantees that there will

be no energy shortages during the transmission of code symbols.

In the best-effort-transmit scheme, the transmission starts right

away without an initial saving period, and the transmitter sends

a code symbol if there is sufficient energy in the battery, and a

zero symbol otherwise. Finally, we consider a system in which the

average recharge rate is time varying in a larger time scale and

derive the optimal offline power policy that maximizes the average

throughput, by using majorization theory.

Index Terms—Additive white Gaussian noise (AWGN) channel,

energy harvesting, offline power management, Shannon capacity.

I. INTRODUCTION

I N this paper, we analyze point-to-point communication of

energy harvesting nodes from an information-theoretic per-

spective. We focus on wireless networking applications where

nodes (e.g., sensors nodes) can harvest energy from nature

through various different sources, such as solar cells, vibration

absorption devices, water mills, thermoelectric generators,

microbial fuel cells, etc. In such systems, energy that becomes

available for data transmission can be modeled as an exogenous

recharge process. Therefore, unlike traditional battery-powered

systems, energy is not a deterministic quantity in these systems,

but is a random process which varies stochastically in time
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at a scale on the order of symbol duration. Transmission can

be interrupted due to lack of energy in the battery. On the

other hand, excess energy can be buffered in the battery before

consumption for transmission. This model requires a major

shift in terms of the power constraint imposed on the channel

input compared to those in the existing literature.

To illustrate, in information-theoretic approaches, there are

two widely used input constraints on the channel inputs of con-

tinuous-alphabet channels: average power constraint and am-

plitude constraint. If the input is average power constrained,

then any codeword should be such that while each symbol can

take any real value, the average power of the entire codeword

should be no more than the power constraint. On the other hand,

if the input is amplitude constrained, then every code symbol

should be less than the constraint in amplitude. It is clear that

in an energy harvesting model, the constraint imposed on the

channel input is different than these constraints, in that, while

code symbols are instantaneously amplitude constrained, en-

ergy can be saved in the battery for later use. This amounts

to an unprecedented input constraint on the channel input. In

this context, the main goal of this paper is to investigate the

impact of stochastic energy arrivals on the achievable commu-

nication rates in an information-theoretic framework. In partic-

ular, we augment an energy buffer to the classical additive white

Gaussian noise (AWGN) system and study information-theoret-

ically achievable rates.

First, we consider the setting where energy arrives at the

transmitter as a discrete-time stochastic process, and unused en-

ergy is saved in a battery of unlimited size. The energy arrival

(or recharge) process has the same discrete time index as the

channel use. Therefore, the energy in the battery is updated as

follows. First, it is increased by the energy arrival and then it is

decreased by the energy of the transmitted code symbol. The

problem is posed as the design of a codebook that complies

with instantaneous energy constraints at each channel use. The

channel input in each channel use is constrained by the amount

of energy in the battery, which evolves stochastically throughout

the communication. Therefore, this model generalizes classical

deterministic amplitude constraint on the channel input. The

recharge process together with the past code symbols determine

the allowable range of inputs in each channel use. We start with

showing that the capacity of the AWGN channel with an average

power constraint equal to the average recharge rate is an upper

bound for the capacity in the energy harvesting system. Then,

we develop the save-and-transmit scheme that achieves this

upper bound and hence the capacity. In the save-and-transmit

scheme, zero code symbols are sent in a portion of the total

block length, which becomes negligible as the block length gets

large. The goal of this portion of the total block length where
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no signal is transmitted is to save energy to ensure that there

will always be sufficient amount of energy to transmit the re-

maining code symbols, with probability approaching one. Next,

we provide an alternative capacity achieving scheme termed the

best-effort-transmit scheme. In this scheme, whenever available

energy in the battery is sufficient to send the code symbol, it is

put to the channel, while a zero symbol is put to the channel if

there is not enough energy in the battery. This leads to a mis-

match between the encoder and the decoder in the sense that

some of the code symbols in the codeword are replaced with

zeros. However, we show that the mismatch can be made neg-

ligible, and therefore, this scheme can achieve rates arbitrarily

close to the capacity.

Second, we address a typical behavior in certain energy

harvesting sensors, such as solar-powered sensors, where the

recharge process is nonergodic and nonstationary. In this case,

we assume that the average recharging rate is not a constant in

time, but rather fosters time variation in a scale much larger

than the time scale in which communication takes place.

Accordingly, the recharge process has time-varying mean in

sufficiently long time to which we refer to as a frame. Using

tools from majorization theory, we derive the optimal offline

power management policy for maximum average throughput in

a finite number of frames, and provide a geometric interpreta-

tion for the resulting optimal policy.

A. Related Literature

Information-theoretic study of communication in energy har-

vesting systems has been recently initiated in [1]. There have

been manymotivating works in the networking literature. In [2],

Lei et al. address replenishment in one hop transmission. For-

mulating transmission strategy as a Markov decision process,

Lei et al. [2] use dynamic programming techniques for opti-

mization of the transmission policy under replenishment. In [3],

Gatzianas et al. extend classical wireless network scheduling re-

sults to a network with users having rechargeable batteries. Each

battery is considered as an energy queue, and data and energy

queues are simultaneously updated where interaction of these

queues are determined by a rate versus power relationship. Sta-

bility of data queues is studied using Lyapunov techniques. A

back pressure algorithm is proposed that takes both data and en-

ergy queues into consideration and it is shown to achieve the sta-

bility region of the average power-constrained system as the bat-

tery capacity goes to infinity. In [4] and [5], in a similar energy

harvesting setting, a dynamic power management policy is pro-

posed and is shown to stabilize the data queues. In each frame,

energy spent is equal to the average recharge rate. Moreover,

under a linear approximation, some delay-optimal schemes are

proposed. In [6] and [7], optimal packet scheduling that mini-

mizes the transmission completion time has been derived. In [8],

energy allocation is optimized in a slotted system using dynamic

programming techniques. In [9], we provided continuous time

optimal policies for energy harvesting nodes in fading channels.

Tutuncuoglu and Yener [10] extend [6], [7] to a setting with fi-

nite battery sizes, and we extend [6], [7] to a broadcast setting

in [11] independently and concurrently with [12].

The capacity of scalar AWGN channel has been extensively

studied in the literature under different constraints on the input

Fig. 1. AWGN channel with random energy arrivals.

signal. Average power (or the second moment) constraint on the

input yields the well-known result that the capacity achieving

input distribution is Gaussian with variance equal to the power

constraint. Smith [13] considers amplitude constraints in addi-

tion to average power constraints and concludes that the ca-

pacity achieving input density function has all the mass dis-

tributed over finite number of points in the real line. More-

over, Shamai and Bar-David [14] extend Smith’s result to am-

plitude-constrained quadrature Gaussian channel and show that

the optimal input distribution is concentrated to a finite number

of uniform phase circles within the amplitude constraint. Re-

cently, Raginsky [15] proved using relations connecting infor-

mation and estimation theories that if the amplitude constraint

is less than 1.05 in a unit noise power AWGN channel, then the

capacity achieving input distribution is binary with two equal

mass points that are symmetric around the origin.

II. SYSTEM MODEL

We consider the scalar AWGN channel characterized by the

input , output , additive noise with unit normal distribu-

tion and a battery (see Fig. 1). Input and output alpha-

bets are taken as real numbers. Energy enters the system from a

power source that supplies units of energy in the th channel

use where . is the time sequence of supplied

energy in channel uses. is an i.i.d. sequence with average

value , i.e., , for all .

units of energy can be stored in the battery and the

existing energy in the battery can be retrieved without any loss.

For convenience, we assume that the energy stored and depleted

from the battery are for only communication purposes (e.g., we

do not consider the energy required for processing). Moreover,

our focus here is on the case where , and hence,

energy overflow does not occur and incoming energy can always

be saved in the battery. This assumption is especially valid for

the current technology in which batteries have very large energy

storage capacities compared to the rate of harvested energy flow:

.1 The battery is initially empty and energy needed

for communication of a message is obtained from the arriving

energy during the transmission of the corresponding codeword

subject to causality. In particular, units of energy is added to

the battery and units of energy is depleted from the battery

in the th channel use. This is illustrated in Fig. 2.

This brings us to the following cumulative power constraints

on the channel inputs based on the causality of energy usage:

(1)

1We have studied the other extreme where in [16]. We leave the
finite case, i.e., , for future research.
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Fig. 2. is the energy arriving and is the energy used at time where
is the th code symbol.

Note that the constraints in (1) are upon the support set of the

random variables . The first constraint restricts the support set

of to . The second constraint is

. In general, letting denote , in

channel use , the symbol is subject to the constraint

.

The input constraints in (1) introduce memory (in time) in the

channel inputs. Randomness in makes the problem similar to

fading channels in that the state of recharge process (i.e., low or

high ) affects instantaneous quality of communication. More-

over, this time variation in the recharge process allows oppor-

tunistic control of transmit energy as in fading channels. How-

ever, recharged energy can be saved in the battery for future use

unlike a fading state. In fact, we will see that this nature of en-

ergy arrivals renders saving energy in the battery more advanta-

geous for later use when a peak occurs in the recharge process,

as opposed to opportunistically riding the peaks.

Codebook is defined by the code length

, the code size , and the probability of error . The

messages in the set are equally likely. Encoding

function is , and the de-

coding function is . Here, encoding

and decoding are performed independent of energy information.

In fact, energy information at the encoder/decoder does not im-

prove the capacity as will be apparent in the following sections.

There are two separate causes of error. The first one is that a

codeword does not satisfy the input constraints at a particular

channel use. In this case, the transmitter experiences an energy

shortage to transmit the codeword and this event is counted as

an error event. The second cause of error is the decoding error

at the receiver. If the received signal is decoded to a message

that is different from the message sent, then an error occurs. Ac-

cordingly, the error event is defined as the union of two events:

where is the energy shortage event, and

is the decoding error event. The overall probability of error is

.

III. CAPACITY

We will invoke the general capacity formula of Verdu and

Han [17]. For fixed , let be the joint cumulative distribu-

tion function of the random variables and let be

the set of variable joint cumulative distribution functions that

satisfy the constraints in (1). Since the AWGN channel is an

information-stable channel [17], the capacity of the channel in

Fig. 1 with constraints in (1) is

(2)

In general, for an AWGN channel, the capacity achieving input

distribution is in the form of a product of marginal distribu-

tions (independent distribution) [17]. However, note that the

power constraints in our problem create dependence among the

random variables. The constraint on is dependent on the

given values of , . Though in a classical AWGN channel

independent processes achieve higher mutual information than

the ones with the same marginal distribution but with correla-

tion [17], the capacity that we seek in this problem does not let

the process be independent. This problem falls in the family of

problems of finding capacity under dependence constraints on

code symbols which is by itself interesting and less studied.

An upper bound for is the corresponding AWGN ca-

pacity with average power constrained to average recharge

rate , as and by the i.i.d. na-

ture of , invoking the strong law of large numbers [18],

with probability one. Therefore, each code-

word satisfying the constraints in (1) automatically satisfies

with probability one. However, the

reverse is not true. If a codeword satisfies the average power

constraint, it does not necessarily satisfy the constraints in (1).

Hence, the channel capacity under the energy constraints in (1)

is bounded by the following for almost all realizations of the

energy arrival process:

(3)

The main result of this paper is that the upper bound in (3) can

be achieved, as stated in the following theorem.

Theorem 1: The capacity of an AWGN channel with channel

inputs constrained by the random i.i.d. energy arrival sequence

, and an infinite-sized battery is equal to

the classical AWGN capacity with average power constraint

(4)

In the next two sections, we develop two different achiev-

ability schemes that achieve the capacity given in Theorem 1.

IV. SAVE-AND-TRANSMIT SCHEME

While designing the codebook and the encoding/decoding

rule, a first approach could be to optimize the codebook de-

sign subject to the input constraints in (1) so that the occurrence

of the error event is eliminated from the beginning. Instead,

we propose a scheme that implements a save-and-transmit prin-

ciple which averages out the randomness in energy arrivals first,

and then performs channel coding to counter errors due to the

randomness in the channel.

In the save-and-transmit scheme, data transmission is per-

formed in two phases: first the saving phase where the battery

is fueled with energy and then the transmission phase where in-

formation carrying code symbols are sent. Therefore, we will

consider the sequence of codes with code length such that the

first symbols of each codeword are zero and the

remaining code symbols are the information carrying

symbols, where denotes the class of functions that scale

slower than . We particularly consider such that
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Fig. 3. Save-and-transmit scheme:first, code symbols are identically zero
for all codewords, and the remaining code symbols are selected as
i.i.d. Gaussian distributed with variance . Error of the first type occurs if
the energy arrival curve crosses the energy expenditure curve.

and as . The reason for

considering functions for the saving period is to allow suf-

ficient number of channel uses for the data transmission period

so that no loss is incurred in achievable rates.

In the first symbols, no energy is spent for communica-

tion and battery energy is increased. In the remaining

channel uses, information carrying symbols which are chosen

as independent random variables from the (capacity achieving)

Gaussian distribution with mean zero and variance is trans-

mitted. That is, for , we have for

all . For , is

selected as independent samples of a zero mean and variance

Gaussian random variable for all .

We note that the save-and-transmit scheme does not use any

information of the recharge process . Irrespective of

the realization of , we introduce amount

of delay to save energy and then transmit with average power

. We aim to prove that there exists that

can guarantee sufficient energy savings to prevent any energy

shortages in the transmission phase, which, in turn, implies that

the energy shortage probability and probability of decoding

error both go to zero and rates arbitrarily close to the upper

bound in (3) are achieved.

For , by the strong law of large numbers, at time

index , about amount of energy is saved in the bat-

tery with high probability. We argue that if , in the

remaining channel uses, this saved energy together

with energy entering the system is sufficient to provide the en-

ergy needed for data transmission (see Fig. 3).Wewill formalize

this argument in the following lemma.

Lemma 1: Assume with .

The save-and-transmit scheme satisfies the input constraints in

(1) with probability arbitrarily close to one provided that

.

A proof of Lemma 1 is provided in Appendix A. Lemma 1

says that in the save-and-transmit scheme if , a saving

period with is sufficient to collect

an initial amount of energy to prevent energy shortages during

the transmission phase. The proof requires an application of the

strong law of large numbers along with the tail behavior of sums

of i.i.d. random variables. For instance, we can select

as and and by Lemma 1, it

is guaranteed that the probability of any energy shortages goes

to zero. The achievable rate for this scheme with decoding error

approaching zero is [17]

(5)

(6)

(7)

Since is continuous, can be achieved

by choosing , and therefore, the capacity in The-

orem 1 is achievable by the save-and-transmit scheme.

Using the advantage of having a battery to buffer energy,

the save-and-transmit scheme first eliminates the uncertainty

in the energy arrivals, and then copes with the uncertainty in

the channel by means of appropriate channel coding. The actual

data transmission starts with an delay and the capacity with

average power constrained to the average recharge rate can be

achieved.

A. Case of

We have seen that the save-and-transmit scheme can achieve

rates arbitrarily close to the capacity by saving energy in the first

channel uses and then transmitting with zero-mean

Gaussian distributed codewords of power . Although this

scheme proves the desired capacity result, in this section we

consider the case of . This is a technically challenging

case where the average energy entering the battery is exactly the

same as the average energy exiting the battery.We will establish

that the capacity could be achieved with the save-and-transmit

scheme even when . However, we have to modify the

scheme and the assumptions on the statistics of energy arrivals.

In particular, in this case, the saving period is

not sufficient to guarantee that the energy constraints are sat-

isfied with probability one. That is, the hypothesis in Lemma

1 should be refined for this particular case. To see this, as-

sume that and consider . Note that

where denotes the class of func-

tions such that for all , there exists sufficiently large

that satisfies . In this case, as shown in

Appendix B, we have

(8)

where, assuming that has a finite-variance , is given

as (see Appendix B), and is the cumu-

lative distribution function of a unit normal random variable,

i.e., . Hence, if , en-

ergy shortages occur with a nonzero probability. In fact, with

, as also shown in Appendix B

(9)

and hence energy shortages occur with probability higher than

when . After these pessimistic results, it is of
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question whether we can find that guarantees that

no energy shortages occur in the case. Clearly, such

must scale at least as fast as .

We are able to find a family of under some

mild regulatory assumptions on the probability distribution of

the energy arrivals, as stated in the following lemma.

Lemma 2: Suppose that , the energy arrival random vari-

able, satisfies for some . Then, the

save-and-transmit scheme satisfies the constraints in (1) with

probability arbitrarily close to one for ,

where .

A proof of Lemma 2 is provided in Appendix C. It is based

on a recent strong law for sums of i.i.d. random variables that is

originally proved in [19] and the fact that for

the Gaussian distributed in the assumed range of . Lemma

2 says that under mild conditions on the energy harvesting

process , there exists that scales faster than

such that we can save sufficient amount of initial energy in the

saving phase to guarantee that there will be no energy shortages

during the transmission phase even when the average energy

exiting the system (codebook power) exactly equals the

average energy entering the system (recharge rate). For ex-

ample, if is satisfied, then

guarantees no energy shortages during the transmission. We

note that is true for a large class of random

variables including bounded support, exponential, and dis-

tributed random variables. Since

for and , the saving period does

not result in any loss in the achievable rate, and thus, the

save-and-transmit scheme achieves the capacity for the case of

.

V. BEST-EFFORT-TRANSMIT SCHEME

The input constraints in (1) impose that the codewords must

satisfy the energy constraint in every channel use. However, it is

possible to achieve a reliable communication rate even if code

symbols satisfy the energy constraints in almost every channel

use except possibly a finite number of them. Therefore, trans-

mission of data in two phases may not be necessary. In this sec-

tion, we propose an alternative single-phase scheme that attains

the capacity using Gaussian codewords subject to the avail-

ability of energy in the battery. We call this new scheme the

best-effort-transmit scheme.

Let be a codeword of length

where is the code symbol to be transmitted in channel use

and the codebook be . The codebook that the two parties

agree upon is determined by generating independent Gaussian

distributed random samples with mean zero and variance ,

i.e., is a randomly generated codebook. Let be the bat-

tery energy just before the th channel use starts. In the best-ef-

fort-transmit scheme, the code symbol can be put to the

channel if . Otherwise, the transmitter puts a code

symbol 0 to the channel as battery does not have sufficient en-

ergy to transmit symbol . Hence, the battery energy is updated

according to the following rule:

(10)

The energy updates in (10) are analogous to the queue updates

in classical slotted systems [3]. Unlike in classical queuing in

data networks, the energy queue is desired to be unstable so that

there is always sufficient energy to transmit code symbols.

We say that the symbol is infeasible if there is not suffi-

cient energy to send , i.e., . Note that the code-

words in the best-effort-transmit scheme are allowed to vio-

late the energy constraints in (1); however, the actual channel

inputs always satisfy the energy feasibility constraints in (1)

in all channel uses. Therefore, there is no error due to energy

shortages in the codewords and we only account for the de-

coding error at the receiver in the best-effort-transmit scheme.

The input to the channel is . Consequently, the

codeword in the codebook may be different from what is actu-

ally transmitted. That is, in the transmitted codeword, some of

the symbols in the actual codeword in the codebook are replaced

with zeros. This causes a mismatch between the encoder and the

decoder. Occurrences of such mismatches are determined by the

dynamics of the available energy in the battery, which, in turn, is

determined by the energy arrival and channel input processes.

We are able to show that the resulting mismatch is negligible

and communication with rates arbitrarily close to

is possible. We start with the following key observation.

Lemma 3: In the best-effort-transmit scheme, if ,

for almost all realizations of the energy arrival process

and the codebook , the code symbols are infeasible only at

finitely many channel uses as grows to infinity.

Proof: Let and note that

is a zero-mean sequence. By the strong law of large

numbers, only finitely many of the sequence of events

occur for any .

Selecting , this is equivalent to the assertion that for only

finitely many of the indices . Note that

. This

implies that occurs for

only finitely many of the indices. Therefore, code symbols are

infeasible, i.e., there is a shortage of energy in the battery, only

in finitely many channel uses.

In an AWGN channel, with a codebook generated with i.i.d.

Gaussian samples with variance , rates arbitrarily close

to can be achieved with probability of de-

coding error approaching zero [20]. The achievability is based

on random coding and joint typical decoding, which checks

whether the received vector is jointly typical with a codeword

from the codebook, and the associated joint asymptotic equipar-

tition property (AEP). In the best-effort-transmit scheme, there

are mismatches between the codewords in the codebook and the

actual transmitted codewords. However, if the average power

of the codewords is smaller than the average recharge rate,

, in view of Lemma 3, such mismatches are only

finitely many, as the number of channel uses goes to infinity.

This enables us to use joint typicality decoding at the receiver

to reliably decode the message. This is true essentially because

the joint AEP (see [20, Th. 7.6.1,]) is based on laws of large

numbers which are unaffected by finite number of alterations,

as the number of samples goes to infinity. More specifically, we

prove that in the best-effort-transmit scheme, if and
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joint typicality decoder is used at the receiver, the probability

of decoding error goes to zero as the block length gets large.

The following lemma provides the desired step to prove this

result.

Lemma 4: Let be an arbitrary codeword in the codebook

and be the corresponding received signal in the best-ef-

fort-transmit scheme. Let denote the set of jointly typical

sequence tuples with respect to where

and . Assume .

The following statements hold for almost all realizations of the

energy arrival process .

1)

2) Let be another codeword in . For sufficiently

large , we have

(11)

where is the mutual information between single-letter

random variables and jointly distributed as .

Proof of Lemma 4 directly follows from Lemma 3 and [20,

Th. 7.6.1,]. In particular, whenever , for almost all re-

alizations of the energy arrival process and codewords

in the codebook, there exists a finite number such that

none of the code symbols with index in any codeword

is altered due to the insufficiency of the battery energy. There-

fore, given and codeword with , the last

received symbols of are the channel responses to the

last code symbols of . As gets large, the effect of

the first received symbols becomes negligible, and hence, the

received signal is jointly typical with the transmitted codeword

for all and sufficiently large . In view of [20, Th. 7.6.1,],

Lemma 4 holds.

We note that themessage, channel noise sequence, and energy

arrival sequence are mutually independent. Consequently, we

combine Lemma 4, [20, Th. 7.6.1,], and the achievability part of

[20, Th. 7.7.1,] and conclude that if and the receiver

uses a joint typicality decoder, then in the best-effort-transmit

scheme the probability of decoding error vanishes as grows to

infinity for almost all realizations of the energy arrival process.

Finally, as the probability of decoding error approaches zero in

a randomly designed codebook , there must exist a codebook

such that the probability of decoding error approaches zero for

almost all realizations of the energy arrival process. Since rate

is achievable under an average power

constraint , we have the desired result.

Theorem 2: In the best-effort transmit scheme, rates arbi-

trarily close to are achievable.

VI. DISCUSSION

We now comment on the two capacity achieving schemes.

In the save-and-transmit scheme, the available channel uses are

divided into two phases. The saving phase duration is se-

lected as with and this, along with the

unlimited sized battery, allows averaging out the uncertainty in

the available energy. Remaining channel uses are used

for channel coding with an average power constraint equal to

the average recharge rate. Although for a fixed block length ,

there is a nonzero probability that available energy in the bat-

tery is not sufficient to put the designed code symbol into the

channel, this probability approaches zero as gets large. The

save-and-transmit scheme does not use the information about

the amount of available energy in the battery at any given time.

In contrast, the best-effort-transmit scheme uses this informa-

tion. Whenever battery energy is sufficient to send the designed

code symbol, that code symbol is put to the channel, and if

the energy in the battery falls short of sending the designed

code symbol, a zero symbol is put to the channel. The best-ef-

fort-transmit scheme interacts with the battery energy level and

adapts the transmission so that the message is reliably trans-

mitted. It is clear that the extra information that the best-ef-

fort-transmit scheme uses brings no advantage in terms of the

achievable rates. However, this information enables the trans-

mitter start transmission of the message right away and code-

words are infeasible in at most finitely many channel uses. In the

save-and-transmit scheme, the saving period has to grow

to infinity for eradicating any energy shortages throughout the

data transmission, which is a consequence of the lack of inter-

action between the channel input and the battery energy level.

We note that both save-and-transmit and best-effort-transmit

schemes need unlimited sized batteries. It is more obvious that

the save-and-transmit scheme needs an unlimited sized battery,

since the battery energy needs to go to infinity in the saving

phase as the block length gets large. The fact that the best-ef-

fort-transmit scheme also needs an unlimited sized battery is

less obvious. While the best-effort-transmit scheme starts trans-

mission right away, since , eventually, the battery en-

ergy goes to infinity. In fact, this is the reason that energy short-

ages occur only in finitely many channel uses. Essentially, after

a large enough channel use index, the battery has so much en-

ergy that no energy shortages occur.

It is also worth noting that stochastic energy levels at the

transmitter connect the problem considered here to the problem

of communicating over state-dependent channels with state in-

formation available at the transmitter only, where the state is

the energy arrival sequence [16]. Although the availability of

the state information at the transmitter and/or receiver boosts

the capacity of state-dependent channels in general [16], the ca-

pacity of the AWGN channel with an energy harvesting trans-

mitter with an unlimited battery does not change whether the en-

ergy arrival information is available at the transmitter/receiver

or not. In fact, in the save-and-transmit and best-effort-transmit

schemes, neither the transmitter nor the receiver needs to know

the energy arrival information.

Moreover, we note that memory may affect the capacity of

state-dependent channels in general [21]; however, the capacity

of the AWGN channel with an energy harvesting transmitter

with an unlimited battery is invariant to the memory in the en-

ergy arrival process, so long as the energy arrival process is

stationary and ergodic. That is, an i.i.d. energy arrival process

and a non-i.i.d. energy arrival process with the same average ar-

rival rate will yield the same capacity so long as the non-i.i.d.

energy arrival process is stationary and ergodic. Clearly, the

converse argument in (3) is still valid in this case since the
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sample mean of the energy arrival process has the same lim-

iting property. Furthermore, the save-and-transmit and best-ef-

fort-transmit schemes achieve the capacity in this case on the

grounds that laws of large numbers hold for stationary and er-

godic class of random processes [18]. In particular, Lemmas 1,

3, and 4 generalize to this class of energy arrival processes after

simple modifications in their proofs.

Finally, we remark that the save-and-transmit and best-ef-

fort-transmit schemes and the capacity results presented in this

paper can be straightforwardly generalized to a single-user

fading or multiple-input multiple-output channel, or various

multiuser channel models, such as the multiple access channel,

broadcast channel, interference channel, relay channel, and

wiretap channel, etc., with energy harvesting transmitters, as

long as the transmitters are equipped with unlimited sized

batteries. With save-and-transmit and best-effort-transmit

schemes, we can achieve the rates that are achievable with

corresponding average power constraints.

VII. OPTIMAL POWERMANAGEMENT IN A LARGE TIME SCALE

We have seen that energy harvesting systems can achieve

classical AWGN capacity if the recharge process is i.i.d. and the

block length is sufficiently large. However, the recharge process

can deviate from its i.i.d. characteristic in a large time scale.

In particular, the mean value of the recharge process may vary

after a long duration that is sufficient to decode the transmitted

message. In the classical example of sensor nodes fueled with

solar power, mean recharge rate changes depending on the time

of the day. As an example, the mean recharge rate may vary in

1-h frames and the sensor may be on for 12 h a day, in which

case, a careful management of energy expenditure in each frame

will be required to optimize the average performance during the

day. Consider time frames (see Fig. 4). The duration of each

frame is . For each frame , the average recharge

rate is and units of power is allocated for data transmis-

sion. Hence, in frame , units of energy enters the system

and units of energy is spent. is sufficiently large so

that bits are reliably sent in this duration. As-

suming zero initial energy in the battery and unlimited battery

storage capacity, the causality constraint on the energy expen-

diture due to the energy arrivals is

(12)

The designer knows the mean recharge rates for all and cal-

culates before the communication and adjusts the average

power of codewords in frame to during transmission.2We

allocate a transmit power to each frame subject to causality con-

straint so that average throughput in frames is maximized

(13)

2Changing the average power of codewords requires using different code-
books in each frame. However, scaling a common codebook by frame power

works as well. This can also be interpreted as a codebook with dynamic
power allocation [21] in slow time variation.

Fig. 4. large time frames. Each frame is sufficiently long to achieve AWGN
capacity with average power constrained to the allocated power in that frame.

A first observation about the optimization problem in (13) is that

any power vector with is strictly subop-

timal because is a monotone increasing function. Hence,

the constraint in (13) for can be cast as an equality. We

will refer to power vectors satisfying (13) as feasible in the fol-

lowing. We denote the solution of the optimization problem in

(13) as . The rest of this section is devoted

to characterizing the optimal power vector .

We will solve the optimization problem in (13) by using tools

from majorization theory and Schur convexity [22]. We start

with the following definition.

Definition 1: Let and be

two -dimensional nonnegative vectors and let denote the

th largest component of . Then, is said to be majorized by

, denoted by , if

(14)

(15)

The majorization relation measures how spread a vector is

from its mean value. It can be shown that [22] any -di-

mensional vector majorizes the constant -di-

mensional vector with each coordinate equal to . If a

function is Schur convex, then

implies . If is

Schur convex, then is Schur concave. The following result

[22] will be useful.

Lemma 5: If where is

convex, then is Schur convex.

The objective function in (13) is Schur concave since

is concave. Therefore, the solution of the optimization problem

in (13) is the transmit power vector which is the most ma-

jorized feasible power vector, i.e., is the optimal transmit

power vector if for all feasible . Thus, we need to

find the most majorized feasible transmit power vector.

In order to understand how themost majorized feasible power

vector may look like, we first consider the simplest scenario.

Suppose that amount of energy is available in the battery

for some nonnegative constant and the recharge process is

zero. In this case, the uniform power vector is majorized

by every other feasible vector. For the original problem, if the

constant vector is feasible, then it is majorized

by any other feasible vector. However, the constant vector may

not be in the feasible set. This is due to the causality of energy
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arrivals: while energy can be spread to future to equalize powers

as much as possible, if large amounts of energy arrive in later

frames they cannot be spread to earlier frames to equalize the

powers.

We now generalize the intuition obtained from the previous

discussion for an arbitrary energy arrival case. In particular, we

adapt the idea of allocating power as constant as possible for the

general case taking the causality constraints into consideration

using an energy curve approach. This approach has appeared

in the context of energy minimal transmission in [23] where

authors characterize energy minimal policy in a delay-limited

scenario as the tightest line below the data arrival curve. Later

in the context of energy harvesting systems, similar structural

properties have been observed in the policies with minimum

transmission completion time in [6] and [7]. In this paper, we

will obtain the optimal power management vector as the tightest

line below the cumulative energy arrivals. First, we define the

cumulative energy arrivals as

(16)

and by convention . Since the power vector should

be made as constant as possible, it is determined such that its

cumulative energy expenditure is the tightest piecewise linear

curve below . Therefore, the algorithm divides the frames

into constant power bands ,

. In particular, the optimal power vector is con-

stant over , . By convention,

, , and the remaining are determined as

follows:

(17)

As we find the tightest line below the energy arrival curve,

takes the constant value over the th band

. We claim that the following power vector is

optimal:

(18)

To prove optimality, we show in the next theorem that ob-

tained via this procedure is the most majorized feasible transmit

power vector.

Theorem 3: defined through (17) and (18) is the most

majorized feasible power vector.

A proof of the Theorem 3 is provided in Appendix D which

uses direct verification of the majorization conditions in (14)

and (15). Since the objective function is Schur concave, by The-

orem 3, in (18) is the optimal power vector.

An illustration of the operation of the optimum power man-

agement algorithm is presented for a four frame case in Fig. 5.

Lines are drawn from the cumulative energy point to

the future points for all and the one with the

minimum slope is chosen which has the index . The corre-

sponding slope is the allocated power for all frames between

Fig. 5. Operation of the algorithm that finds optimal power management.

and . In the depicted example, there are frames and

, , , and . We start with cal-

culating the slopes by connecting to for ,

which are , , , and . We observe that

the minimum slope is obtained by connecting to .

Hence, the optimal power level in frame 1 is . We next

determine power levels for , which are larger than .

Proceeding similarly, by connecting to for

, the minimum slope is obtained by connecting

and , and hence, the optimal power levels are

for . There are constant

power bands where .

VIII. NUMERICAL RESULTS

The optimum power management algorithm takes the arrival

rate vector and outputs the optimal power vector

. We let the arrival rates of energy in all frames

follow an i.i.d. exponential distribution. A benchmark algorithm

is simply no power management algorithm, i.e., . In this

simple scheme, the energy arrival rate in each frame is taken as

the communication power in that frame. This scheme yields an

average throughput

(19)

which is a lower bound. However, if the designer has the infor-

mation of arrival rates in future frames, then the optimal power

management algorithm can improve the average throughput. It

is clear that an upper bound for the average throughput is

(20)

which assumes that is available at the beginning, and

therefore can be spread evenly over all time.

The comparison of the performances of the optimal power

management algorithm with the upper bound and the

lower bound (no power management) is given in Fig. 6 for

frames. We observe that as the variance of the arrival

rates increases, the advantage of optimal power management

becomes more apparent with respect to no power management.

Another observation is that the difference between the upper

bound and the average throughput with optimal power man-

agement also increases as the standard deviation of the arrival
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Fig. 6. Average throughput versus mean/standard deviation of the arrival rate
for frames.

Fig. 7. Average throughput versus mean/standard deviation of the arrival rate
for frames.

rate is increased. Hence, the causality constraint becomes more

restrictive as the variation in the arrival rate is increased.

The comparison of the performances of the optimal power

management with the upper bound and the lower bound

(no power management) is given in Fig. 7 for a

frame system. We observe that the upper bound and the av-

erage throughput with the optimal power management scheme

are strictly smaller for frames. This difference becomes

more apparent when the variance of the arrival rates is higher.

The upper bound has smaller value because arrival rates cannot

be averaged sufficiently in frames. Moreover, since

frames is not long enough to react to peaks in the arrival

rate by saving and spreading the energy for future frames, av-

erage throughput with the optimal power management scheme

is smaller in this case.

IX. CONCLUSION

We established the capacity of the AWGN channel under

stochastic energy harvesting where an unlimited sized bat-

tery buffers communication energy between an uncontrolled

recharge process and the transmitter. This nature of the energy

arrivals yields an unprecedented power constraint on each code

symbol. Remarkably, communication can be performed at the

capacity of the average power-constrained AWGN channel.

We first presented a save-and-transmit scheme in which data

transmission occurs in two phases. In the first phase, energy

is collected and in the second phase, data are transmitted.

Next, we provided an alternative best-effort-transmit scheme

that achieves the capacity without utilizing an initial saving

phase. Finally, we extended our model to time-varying recharge

rates in large time scales. We obtained optimal offline power

management for maximum average throughput and illustrated

its operation geometrically.

APPENDIX A

PROOF OF LEMMA 1

In view of the instantaneous energy constraints in (1) in each

channel use, in order to prove the statement of the lemma, we

need to show that for any and sufficiently large

(21)

In the saving phase, for . Hence,

the events for the saving phase.

For convenience, we use the index for the saving phase, i.e.,

and the index for the transmission phase, i.e.,

. We have ,

and . Note that , and ,

, are independent. Thus, we need to show that

for sufficiently large

(22)

By the strong law of large numbers [18], we have as

(23)

since as . Then, (23) implies for any

(24)

Choosing , there exists sufficiently large such

that

(25)

Therefore, since , for all , (25)

implies

(26)
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In order to reach (22), it remains to show that

can

be made arbitrarily small by selecting sufficiently large. We

first apply the union bound

(27)

By the weak law of large numbers [18], for every , ,

and sufficiently large

(28)

Define the event . Condi-

tioning on and using the law of total probability, and in

view of the independence of and , we have for any ,

, and sufficiently large

(29)

(30)

(31)

Note that neither nor depends on . Using

(31) in (27), for sufficiently large , we have

(32)

Then, using (26) and (32), combined with the union bound, we

get

(33)

which is what we need in (22).

APPENDIX B

CALCULATION OF (8) AND (9)

For convenience, we use for the saving

phase and for the transmission phase as

in Appendix A. Since for , we have

(34)

where and thus for .

Let the event be . By

the law of total probability, we have

(35)

Note that we have

(36)

(37)

From the central limit theorem [18], for i.i.d. samples of a

random variable with zero mean and variance , we have

(38)

where . In view of the fact that

almost surely as , we have

(39)

Applying (39) for , , we get

(40)

where we assume that the variance of is finite and equal

to . We can have this, for instance, when has finite

variance, . In this case, as is Gaussian and independent

of , we have . As a consequence,
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. Since

is continuous in , in view of (36) and (37), we have

(41)

By the weak law of large numbers [18],

for all and evaluating (35) as , we get

(42)

(43)

which is (8).

When , as in the aforementioned derivation,

this probability becomes

(44)

(45)

(46)

(47)

which is (9).

APPENDIX C

PROOF OF LEMMA 2

We need to show the following result for sufficiently large :

(48)

We have again for

. As in the transmission

phase, we cannot proceed by using the strong law of large

numbers. Recall that in the proof of Lemma 1, the strong law

of large numbers is invoked in (25) by choosing ;

however, in this case, since ,

is not allowed as a selection. Our proof for the

case uses a stronger version of Marcinkiewicz–Zygmund type

strong law of large numbers that is originally proved in [19]. In

particular, we use [19, Corollary 2.16], which we state next for

completeness.

Theorem 4 (Corollary 2.16 in [19]): Let be

a sequence of i.i.d. random variables with

and let be a triangular array

of constants satisfying

where for some . Let

, , and let . More-

over, for some and , we assume .

Then

(49)

As in Appendix A, we use the index for the saving phase,

i.e., and the index for the transmission phase,

i.e., . We start by noting that the condition in

(48) is equivalent to the following for all and sufficiently

large :

(50)

where . Note that the random variables

are independent of and , while

. In order to show (50), we replace where we

take the triangular array in Theorem 4 as . Note that

this agrees with requirement as this selection leads to

for any .

By the weak law of large numbers [18], for every ,

, and sufficiently large

(51)

Define the event . Condi-

tioning on and using the law of total probability in a similar

fashion to the corresponding steps in Appendices A and B, we

have for any , , and sufficiently large

(52)

Therefore, we need to show that for any , , and

sufficiently large

(53)

Now, we let for some

and . Moreover, we note that for

. To see this, we first note and ,

. Hence, we get for

and hence . Since is zero-mean Gaussian

with variance , for . That is, the

hypothesis implies , which is a

requirement for Theorem 4. Therefore, by Theorem 4, we have

(54)
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Equation (54) implies for any

(55)

Therefore, for any , there exists sufficiently large such

that [cf., (25)]

(56)

In particular, we have for and

(57)

where we use the fact that for all

. In order to show (53), it remains to prove that for suffi-

ciently large

(58)

Using the union bound, we have

(59)

We note that as

. Hence, (58) holds for sufficiently large .

Therefore, under the hypothesis of Lemma 2, probability of

energy shortage goes to zero as gets large. This establishes

Lemma 2.

APPENDIX D

PROOF OF THEOREM 3

First, we observe that the transmit power vector defined

in (17) and (18) has monotonically increasing entries, i.e.,

. This is true, because otherwise we could con-

struct a line with a smaller slope that connects two energy arrival

points and this would contradict the definition of the algorithm

in (17) and (18).

Let be the indices of constant power bands

and let be any feasible power

vector. We will show that by verifying that all of the

conditions in (14) are satisfied. Note that the condition in (15)

is satisfied by definition of feasibility.

Since the algorithm produces monotone increasing

powers, , . In particular,

and as is feasible, we have

(60)

Moreover, by feasibility, we have the equality

. Hence, (60) and the equality implies

(61)

Applying (61) at

(62)

By rearranging the terms

(63)

Since is ordered and for ,

we have the following:

(64)

The remaining conditions are verified similarly. Again, since

the algorithm yields monotone increasing powers, for

, . By applying (61)

at , we have

(65)

(66)

Then, we must have

(67)

Repeating this argument, we verify all conditions required to get

(14) for and in places of and .
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