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Abstract

Many database applications that need to disseminate dynamic information from a server to various

clients can suffer from heavy communication costs. Data caching at a client can help mitigate these

costs, particularly when individual PUSH-PULL decisions are made for the different semantic regions in

the data space. The server is responsible for notifying the client about updates in the PUSH regions.

The client needs to contact the server for queries that ask for data in the PULL regions. We call

the idea of partitioning the data space into PUSH-PULL regions to minimize communication cost data

gerrymandering. In this paper we present solutions to technical challenges in adopting this simple but

powerful idea. We give a provably optimal-cost dynamic programming algorithm for gerrymandering

on a single query attribute. We propose a family of efficient heuristics for gerrymandering on multiple

query attributes. We handle the dynamic case in which the workloads of queries and updates evolve

over time. We validate our methods through extensive experiments on real and synthetic data sets.
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I. INTRODUCTION

Many emerging applications need to disseminate dynamic information from a server to various

clients, especially due to the fact that an increasing amount of information becomes available

on the Web, and it can be disseminated to clients in different ways such as the internet and

wireless networks. A typical example is real-time traffic report systems, e.g., the Travel Advisory

News Network (TANN) [1] and SIGALERT [2]. In such a system, a server provides real-time

traffic information to its subscribers. By using a hand-held device, a subscriber can get the traffic

conditions of the highways she is interested in. She can ask queries such as “tell me the locations

of the accidents (if any) between the Jeffrey Road and the Santa Ana Boulevard on Highway

I-5 North.” She can also register a set of queries to the server, such as “send me an alert on

each weekday from 5 PM to 6 PM whenever the traffic speed between the Jeffrey Road and

the Santa Ana Boulevard on Highway I-5 North is below 40 miles per hour.” These systems

share the following characteristics. (1) The data provided by the server is dynamically changing.

(2) It is critical for the latest information to be disseminated to the subscribers so that they

can make timely decisions (e.g., for subscribers who are driving). (3) The network bandwidth

could be limited since the subscribers are relying on a wireless network to send queries and get

information from the server.

Two communication paradigms are widely used to disseminate information. In the PUSH paradigm,

the server sends updates to a subscriber every time there are changes to its data. Since the data

stored at a subscriber (client) is always up to date, every query can be answered on the client

side without contacting the server. This approach is preferable when the data is relatively static

compared to the frequency of the queries. In the PULL paradigm, a subscriber contacts the server

for each query, and the server does not need to push any updates to the client. This approach is

more communication efficient when updates are relatively more frequent than queries.

In this paper we study the following problem: in these systems, how to combine the PUSH

and PULL paradigms to reduce communication costs based on the distributions of the queries of

each client and the data updates on the server? To see the motivation, consider the traffic report

example. The queries asked by a subscriber could have a repetitive pattern. On each workday,

she tends to ask for traffic conditions of the highway segments she needs to take between home

and work.. If these queries are very frequently asked, relatively to the data updates (changes of
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traffic conditions) on these segments, then it is communication efficient for the server and the

client to use the PUSH paradigm for the data of these segments. On the other hand, the subscriber

can ask queries for highway segments not on her list of “frequently asked queries.” It is better

to use the PULL paradigm for the client to get data for these infrequently asked segments. As a

consequence, we can utilize the different distributions of the queries of a client and data updates

on the server to partition the entire region of traffic information, and decide a PUSH and PULL

paradigm for each area. We call the idea of partitioning the data space into PUSH-PULL regions

to minimize communication cost data gerrymandering. The name is inspired by the concept of

gerrymandering electoral districts to consolidate support for one political party. Here we want

to gerrymander data, i.e., partition it to combine regions that make the same PUSH-PULL choice.

We study technical challenges when adopting this simple but powerful idea. First, if we knew

the pattern of the expected queries at a client and the data-update distribution on the server,

what is the best way to partition the space and make a PUSH-PULL decision for each partition?

We first study this optimization problem in the case where each client and the server do not

have limitation on how many different regions that can used for the two paradigms. We develop

algorithms in Section III for the case where the client queries have conditions on a single attribute,

such as a segment on a highway. The second challenge is how to do efficient gerrymandering

when there are many clients in the system. As a consequence, the server may not be able to

have too many semantic regions for a client due to storage and efficient-dissemination reasons.

In addition, we also need efficient algorithms for deciding a PUSH/PULL-labeled partition with each

client. We study this problem in Section IV, for both the case of a single attribute on query

conditions and the general case of multiple attributes. The third challenge is how to do data

gerrymandering when the queries on the client and the data updates on the server can change

their distributions. The server needs to adapt to these changes by automatically detecting these

changes and dynamically deciding a new labeled partition with a client. We present our solution

to this problem in Section V. We also conducted extensive experiments on both synthetic data

and real data to evaluate our solutions to these challenges (Section VI).

For multiple-attribute data, it is worth emphasizing that we do not necessarily do gerryman-

dering on all its attributes because of two reasons. (1) Users may ask queries on a subset of these

attributes, and the system returns objects including data of other informational attributes. This is

true especially in Web-based applications that provide search forms. Typically these forms include
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only some of the attributes for users to specify conditions on. In this case, the query-condition

attributes are candidate gerrymandering attributes, and other attributes will not be considered in

gerrymandering. (2) Even for the candidate attributes, we do not need to choose all of them to

do gerrymandering. We can choose the gerrymandering attributes based on the skew in updates

and queries, the complexity of computing a labeled partition, and the corresponding benefits

in reducing communication costs. In Section IV-B we discuss how to choose gerrymandering

attributes, and compute a labeled partition once they have been decided.

A. Related work

Semantic data caching was proposed in [3], in which the client maintains a semantic description

of the data in its cache, and decides whether it should contact the server for data not in the

cache. The data needed from the server is specified as a remainder query. [3] focused on cache

replacement policies, without considering data updates on the server. Our work differs from this

previous work since we consider the case where the server data is dynamic, and the client site

has enough cache to store data.

Our work is closely related to the predicate-based caching scheme proposed in [4], which

uses possibly overlapping query-based predicates to describe the cached data on the client. The

server is responsible for notifying the client about data updates satisfying these predicates. There

are two main differences between our work and theirs. Firstly, our work uses the concept of

a PUSH/PULL partitioning scheme for the purpose of formalizing the notion of using semantic

regions to minimize communication costs. In our work, finding a good partitioning scheme

requires a sophisticated communication model based on the distribution of queries and updates.

Developing this allows us to systematically study the problem of minimizing communication

cost. This problem is not studied thoroughly in the other work. Second, the work in [4] does not

include any experimental evaluation to validate their heuristics. We develop efficient algorithms

to solve the gerrymandering problem, including algorithms adopted from the heuristics proposed

in [4] (Section IV-A). We also conduct an extensive experimental study on these algorithms.

Among other related work is caching in distributed database systems [5], [6], [7], [8], [9],

[9], [10]. For instance, [8], [9] studied how to cache pages of queries on dynamic data to reduce

workload on database and web servers. [11], [9] studied how to use cache tables to reduce

workload on a database server. In both cases, notification messages are sent from the server to
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the cache when there are data changes. [12] proposed that each document at a client should

have its own associated strategy for deciding whether to be pushed to a replication site or stay

at the server. Other techniques take the capabilities and load at the servers and proxies, and

clients’ coherency requirements to adaptively decide whether data should be pushed or stored

till it is pulled [13]. Some use data affinity to reduce cache misses [14]. Our work differs from

these studies since it mainly focuses on how to partition the semantic space of data and compute

PUSH/PULL labels in order to minimize communication cost, which is not studied by these works.

Thus our work complements the earlier studies.

The application of the notion of semantic regions to caching seems to be a natural notion

which has been studied in other contexts. One example is Amiri et al.’s proposal for Content

Distribution Networks [15]. They suggest a three-level architecture — web server, application

server, database — and propose a method for storing useful data at the application server to

speed up web applications. In the context of query processing, Haas et al. [16] consider the

situation where queries may need to go back to the database to execute methods on objects

they have accessed already. In this situation they suggest that the client improves performance

significantly by fetching and storing data that it might need to completely process the query.

There has also been interest in making broadcast environments adaptive by allowing clients to

request data back channel [17], [18]. The asymmetry inherent in the capabilities of nodes versus

base stations in mobile networks makes this kind of capability particularly important [19]. Our

approach involves partitioning the space into regions and studying their properties to make intel-

ligent dissemination. One area of research which proceeds on similar lines involves constructing

histograms over the range based on different parameters. For example, [20] described a method

of forming workload-aware histograms based on the density of queries over the range. Another

related area is to answer client queries using cached data with certain errors [21]. The difference

is that our work assumes each query should be answered using the latest data. A similar idea of

combining PUSH and PULL paradigms is developed in [22] to reduce communication cost to answer

queries in sensor networks. A related work is [23], which proposes techniques to disseminate

dynamic information to clients by using cooperating repositories. In our work, we assume the

server needs to disseminate information to clients without such cooperating repositories.
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II. DATA GERRYMANDERING

We use an illustrative example to show the motivation of combining the PUSH/PULL paradigms,

and formally describe data gerrymandering. Consider a car dealer with information about cars

stored in a relational table with the schema car(make, model, year, mileage, color,

price). Its data needs to be disseminated to many online car shops. Each shop receives user

queries and contacts the car-dealer source to retrieve related data. The following are example

client queries: (1) Find cars of year > 1998 & price in (5K,9K). (2) Find the average

price of cars of color = ’red’ & mileage in (30K,50K). (3) Find the number of

cars satisfying: model = ’Camry’ & mileage < 90K & price in (3K,8K).

Data gerrymandering can be used between a shop (client) and the data source (server). We

use the price attribute to illustrate its advantages. Fig. 1 shows a workload of the data updates

and queries during a time period for a particular shop. For instance, there are 2 car updates (u1

and u2) in the price range (2, 6) (all in thousands), e.g., new cars are inserted or existing cars

are deleted. Similarly, there is 1 car update (u3) in range (6, 10), 2 car updates (u4 and u5) in

range (10, 14), and 2 updates (u6 and u7) in range (14, 18). In addition, during this period users

posed 6 queries q1, . . . , q6. For instance, query q1 asked for cars in the price range (6, 18), and

query q2 asked for cars in the range (2, 14).

q6

I1 I2 I3 I4

Queries on

Updates on
2 6 10 18

q1

q3

u3 u7u2u1Server

Client

14

u6

($ in thousands)

PULL PULL PULLPUSH

Price

q5q4

q2

u5u4

Fig. 1. Queries and updates on cars by price.

Each of these queries needs to be answered using the latest data at the server (the source). Since

there could be many queries from the client and data updates on the server, the communication

network between them could become a computational bottleneck. If we use the PUSH method

for the entire price domain, the server sends each update to the client as soon as the update

occurred. As a consequence, the server needs 7 interactions with the client for the 7 updates. On

the other hand, if we use the PULL method, the client contacts the server for each query. Thus the
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client needs to have 6 interactions with the server for the 6 queries. If our goal is to minimize

the number of interactions between them (without considering the size of the transferred data),

it is better to use the PULL method due to its fewer interactions.

Interestingly, we can further reduce the number of interactions by carefully choosing PUSH and

PULL methods for different intervals. In particular, suppose we use the PUSH method for interval

I2 = (6, 10) and the PULL method for the other three intervals I1, I3, and I4. In addition, the

client and the server follow a simple protocol. On the server site, any update in a PUSH interval

(u3 in this example) needs to be sent to the client, which caches all the latest data in the PUSH

intervals. An update in a PULL interval (e.g., u1 and u2) does not need to be propagated to the

client. On the client site, any query overlapping with a PULL interval (q1, q2, q3, and q4) needs

to be answered by contacting the server to get the latest data; any query not overlapping with

any PULL interval (q5 and q6) can be answered using the data on the client without contacting

the server. Using this PUSH/PULL labeling, the total number of interactions between the two sides

is reduced to 5. Notice that this reduction can be arbitrarily large if we increase the number of

queries and updates in the workload. This simple example shows that by carefully partitioning

the data into different regions and choosing a PUSH/PULL mode for each region, we could reduce

the total communication cost. This idea is called data gerrymandering.

A. Formal Definition

Consider applications in which a data source (server) has dynamic data that needs to be

disseminated to multiple clients. The server has data about objects, such as information about

cars or traffic conditions of different segments on highways). The data is dynamic; new objects

can be inserted, existing objects can be deleted, and the values of existing objects can change.

Each client issues queries on the data that need to be answered using the latest information on the

server. Each query specifies conditions on these attributes, and asks for information about objects

satisfying the conditions, such as these objects or their aggregated value (e.g., SUM, AVG, MIN).

Data gerrymandering (“gerrymandering” for short) can be adopted by each client and the server.

The client and the server choose a subset of the data attributes. The domain of each attribute

is divided into non-overlapping regions. For a numeric attribute, we can partition the domain

into intervals, as we did for the car price attribute in the example above. The gerrymandering

technique is applicable to various types of attributes, as long as the client and the server can

May 25, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

agree on a partition on the domain of an attribute.

The Cartesian product of the regions for different attributes forms a partition of the entire

semantic space of the data. The client and the server decide such a partition a-priori, which

consists of disjoint semantic regions. Each semantic region is formed using intervals for these

attributes. In addition, both sides decide a PUSH or PULL label for each semantic region. In the

example above, we chose price as the gerrymandering attribute, and decided a PUSH/PULL label

for each interval. In general, multiple attributes can be used in data gerrymandering, such as

{price, year} or {price, year, mileage}. Fig. 2 shows a labeled partition for attributes {price,

year}. Example semantic regions are “price in (2K, 6K] & year in (1999, 2001]” (labeled as

PUSH) and “price in (6K, 8K] & year in (1994, 1997]” (labeled as PULL).

Price (K)0 2 6 8 14101994

year

1997

1999

2001

2003

Legend: PUSH PULL

Fig. 2. A labeled partition for the semantic space formed by attributes {price, year}.

After deciding a labeled partition, the client and the server follow a simple protocol. On the

server side: it sends the client each update in a PUSH region, and these updates are incorporated

into the client cache. These updates are called pushed updates. Thus at all times the client has

the current data for all the PUSH regions. The updates in PULL regions do not need to be sent to

the client. On the client side: For a query whose conditions overlap with PUSH regions only, the

client answers it by using its up-to-date data in the cache. Query q6 in Fig. 1 is an example.

On the other hand, for a query that overlaps with PULL regions, the client needs to send to the

server a remainder query to retrieve the data in these PULL regions, since the client does not have

all the latest data in these regions. Formally, a remainder for a query asks for data in the PULL

regions overlapping with the conditions of the query. For instance, query q1 in Fig. 1 is a pulled

query, since its condition 6K < price < 18K overlaps with two PULL intervals I3 and I4. To

answer this query, in addition to using the cached data in the PUSH interval I2, the client also
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needs to send a remainder query to the server to ask for data in the PULL intervals I3 and I4.

III. GERRYMANDERING ON A SINGLE ATTRIBUTE

We first study the following problem: given a workload of queries from a specific client and

updates on the server that is going to come, how do we find an optimal labeled partition for this

client and the server to minimize the communication cost? Such a workload could be obtained

by analyzing queries and updates in the past. For instance, in the real-time traffic report example,

we can look at the daily queries from a subscriber and the traffic conditions on the highways.

This workload can also be obtained from the queries and updates in a time window, if this

workload will repeat in the future. We assume that once the labeled partition is decided by the

client and the server, it does not change as the workload comes in. We focus on the case of

gerrymandering a single attribute.

A. Optimization Problem

Consider a numeric attribute which we want to gerrymander between a specific client and the

server. The attribute has a totally ordered domain between a lower bound (possibly −∞) and an

upper bound (possibly +∞). Each query from the client has a range condition for this attribute,

and asks for information about objects satisfying the range condition. We are given a coming

workload, which is a sequence of client queries and server updates. We want to partition the

domain of this attribute into a set of disjoint intervals and assign each interval a PUSH/PULL label

in order to minimize the communication cost for this workload.

A communication cost model M does the following. Let A be a labeled partition for a work-

load W . For each update ui (in W ) in a PUSH interval, the model M returns the communication

cost (denoted cost(ui)) when the server sends this update to the client immediately after ui takes

place. Using gerrymandering, the communication cost of an update in a PULL interval is 0. For

each query qj (in W ) intersecting a PULL interval, the model M returns the communication cost

(denoted cost(qj)) when the client sends a remainder query to the server to get necessary data for

the overlapping PULL regions to answer qj . The communication cost of a query not intersecting

PULL intervals is 0. A query qj intersecting a PULL interval may also overlap with some PUSH

intervals. Since the client has up-to-date data for these PUSH intervals, the server does not need

to send data in these intervals. Let the set of updates falling in intervals labeled PULL under A
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be denoted by UA and the set of queries overlapping intervals labeled PULL be denoted by QA.

Then the overall cost of workload W under labeling A is: cost(WA) = cost(UA) + cost(QA),

in which cost(UA) =
∑

ui∈UA cost(ui), and cost(QA) =
∑

qi∈QA cost(qi).

Given a workload W of queries and updates and a communication cost model M, our goal

is to find a labeled partition A for the gerrymandering attribute to minimize the communication

cost: cost(WA). Notice that the labeled partition between the client and the server does not

change during the expected workload.

B. Model M1: Unit Cost

We first study the optimization problem for a simple cost model M1, in which each communi-

cation between the client and the server has a unit cost of 1. We consider this model because of its

simplicity and applicability in many cases where the communication cost is mainly determined

by the number of messages between the two sides, such as the wireless network in the real-time

traffic-report example. This cost model is also relevant in high-bandwidth setting where latency

is the main issue. Under this model, the order in which the query/update events happen in the

workload do not affect the cost, and we can treat a workload as a set of queries and updates.

We develop a dynamic-programming algorithm, denoted by “DYNPROG,” for finding an

optimal labeled partition. We begin the description of DYNPROG with a proposition that limits

the intervals that need to be considered in order to find an optimal labeled partition.

Proposition 3.1: Given a workload W with a set of updates U and a set of queries Q, let

p1 < p2 < . . . < pn be the starting and ending points of the ranges in the conditions of Q. (p1

could be −∞, and pn could be +∞.) Under the cost model M1, there is an optimal labeled

partition A whose intervals are either of the form (pi, pi+1), or the form [pi, pi]. �

A proof of the proposition is in the Appendix. Based this proposition, we make the following

simplifying assumptions about the workload for easy presentation. (1) No update occurs at the

starting and ending points of the ranges in the conditions of the queries; and (2) each range

condition is of the form (a, b). Based on Proposition 3.1, we only need to consider intervals of

the form (pi, pi+1), and ignore point intervals.

Notation: An instance of the data gerrymandering problem consists of a workload W with a

set Q of range queries and a set U of point updates. The problem instance itself is denoted by

Π(U, Q). Let the intervals of interest corresponding to Q be I1, . . . , In in order. For convenience,
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we sometimes refer to Ij as simply interval j. A labeling or a labeled partitioning A of these

intervals assigns each interval to PUSH or PULL and is denoted by a sequence of ordered pairs

(Ii, Si), where Si ∈ {PUSH, PULL}, for 1 ≤ i ≤ n. If Ij is assigned PUSH, we often denote it by

Ij ∈ PUSH. Finally, let the minimum cost of a labeling for Π be denoted by f .

We elaborate the basic idea using the car workload in Fig. 1. If we consider interval I1 in

isolation, we could choose either PUSH or PULL for it, since the number of updates in I1 is 2, and the

number of queries overlapping I1 is also 2. Of the 2 overlapping queries, q4 lies entirely within

I1, while q2 also overlaps with I2 and I3. Instead of considering just I1 in isolation, suppose we

had earlier decided to assign PULL to I2, then the (PULL) cost for q2 is paid irrespective of the

choice made for I1. In that case we would assign PULL to I1 as such a choice incurs an additional

cost of 1 (for the query q4) whereas a PUSH choice incurs an additional cost of 2. There are

further two important observations here: (1) if we decide to assign PULL to I2, then I1 would

be assigned PULL irrespective of the assignments to the remaining intervals I3 and I4; and (2)

if instead we decide to assign PUSH to I2 but PULL to I3 then by a similar argument (remember

q2 overlaps I3) I1 would be assigned PULL irrespective of the assignment to I4. This example

shows that the additional cost for a query in an interval depends on the labels for other later

intervals. In general, if a query in the current interval overlaps another interval already assigned

PULL, its cost has already been “paid for” and should not be considered any more. Based on this

observation, we use the power of dynamic programming to change our labeling decisions on the

fly as we go through the intervals.

Subproblems and Recurrence Function: To capture the intuition above, in our dynamic

programming algorithm we create subproblems from the given workload W and the sets of

updates U and queries Q. Let U(i) be the subset of updates in intervals Il, where 1 ≤ l ≤ i, and

let Q(j) be the subset of queries that do not intersect any interval Il, where (j + 1) ≤ l ≤ n.

For i ≤ j, the workload consisting of just the updates in U(i) and queries in Q(j) is denoted by

W (i, j), and the corresponding problem instance is denoted by Π(i, j) = Π(U(i), Q(j)). Let the

minimum cost of a labeling for Π(i, j) be denoted by f(i, j). We shall only care for problems

Π(i, j) where 0 ≤ i ≤ j. Solutions to these subproblems will be used to solve Π(n, n) which is

the same as our original problem Π(U, Q).

Recall the discussion for the car example; intuitively, f(i, j) is the minimum communication

cost for the queries and updates in intervals I1 to Ii, assuming that Ij+1 is the next PULL interval
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after Ii, and all the intervening intervals Ii+1, . . . , Ij are PUSH. DYNPROG is based on a recurrence

for f(i, j). There are two cases for the subproblem Π(i, j): (1) interval Ii is PUSH, and (2) Ii is

PULL. Let U(i) be the number of updates in Ii and Q(i, j) be the number of queries overlapping

interval Ii but not overlapping interval Ij+1. (Notice that U(i) is usually much less than |U(i)|
and Q(i, j) much less than Q(j).) The recurrence for f(i, j) is given below. In the Appendix

we present a formal proof of the correctness of the recurrence.

f(0, j) = 0,

f(i, j) = min




U(i) + f(i − 1, j) PUSH

Q(i, j) + f(i − 1, i − 1) PULL

for 0 < i ≤ j.

The base case when i = 0 is obvious. For i > 0, consider the case where Ii is PUSH. This implies

that the next closest PULL interval to Ii−1 is Ij+1. Thus, the minimum cost for subproblem Π(i, j)

in this case can be obtained by taking the adding the minimum cost of the subproblem Π(i−1, j)

(i.e., f(i− 1, j)) and the cost of all updates in i (i.e., U(i)). Now consider the case where Ii is

PULL. This implies that the next closest PULL interval to I i−1 is Ii. Q(i, j) includes the costs for

all queries overlapping interval Ii but not overlapping Ij+1. The queries remaining in Q(j) not

accounted for by Q(i, j) are those that only overlap intervals from I1 to Ii−1. Thus, in this case,

Π(i, j) can be solved by solving the subproblem Π(i − 1, i− 1), and adding Q(i, j) to its cost.

Finally, f(i, j) should be the minimum of the costs in these two cases.

PUSH
PULL

2
1

PUSH
PULL

2
1

2
3

PUSH
PULL

2
2

3
4

5
3

PUSH
PULL

2
2

3
5

5
4

6
5

i → 1 2 3 4

1

2

3

4

j

Fig. 3. Computing an optimal solution for the example in Fig. 1.

We use Fig. 3 to show how to compute the f(i, j) values for the gerrymandering problem in

Fig. 1. Each entry (i, j) in the table has two values: the “PUSH” value (resp. the “PULL” value)

corresponds to the minimum cost if interval Ii is in PUSH (resp. PULL) for the subproblem Π(i, j).

The minimum value (in bold) of the two is the f(i, j) value. Consider, for instance, the entry
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(1, 1). The PUSH value is U(1)+f(0, 1) = 2+0 = 2. The PULL value is Q(1, 1)+f(0, 0) = 1+0 = 1,

where Q(1, 1) = 1 since there is only 1 query (i.e., q4) that overlaps interval I1 and does not

overlap interval I2. Thus f(1, 1) = min(1, 2) = 1. Take the entry (2, 3) as another example. The

PUSH value is U(2) + f(1, 3) = 1 + 2 = 3. The PULL value is Q(2, 3) + f(1, 1) = 3 + 1 = 4,

where Q(2, 3) = 3 since there are 3 queries (q2, q5, and q6) that intersect interval I2 and do not

intersect interval I4. Thus f(2, 3) = min(3, 4) = 3.

In general, in order to find an optimal partition for the original problem Π(n, n), we fill the

entries of an n×n table. We fill all rows for a particular column, then move to the next column.

For each entry (i, j), we compute the PUSH value, the PULL value, and the f(i, j) value using the

recurrence function. We repeat the process until we fill the entry (n, n). Then we backtrack the

computation process to identify the labels for the intervals in order to achieve this minimum

f(n, n) value. In particular, if the minimum value for f(n, n) is when it is in the PUSH mode, in

the labeling In is assigned PUSH and we next look at the entry for f(n− 1, n). Again, depending

on in which mode has the minimum value, we assign the mode for interval In−1. On the other

hand, if the minimum value for f(n, n) is when it is in PULL, we label In as PULL, and next look

at the entry for f(n− 1, n− 1). This process of moving in the reverse order along the intervals

to determine their modes in the optimal solution is shown in Fig. 3 by the arrows beginning

with f(4, 4). The final optimal partition is: I2 is PUSH, and the other three intervals are PULL, as

presented in Section II. The optimal cost f(4, 4) is 5.

In the Appendix we discuss how to compute the Q(i, j) values efficiently, and prove the

following complexity result.

Theorem 3.1: Algorithm DYNPROG runs in O(nl + m) time and takes O(nl) space, where

m is the total number of updates and queries, n is the number of intervals of interest, and l is

the maximum number of intervals covered by a single query. �

The proof of correctness for DYNPROG (see the Appendix) does not depend on the particular

set of intervals I1, . . . , In used, e.g., they could be different from the intervals of interest of Q

in Proposition 3.1. We formalize this in the theorem below. It is useful when the set of intervals

used is much smaller than those in Proposition 3.1 to control the number of the partitions.

Theorem 3.2: Given a workload W with a set of updates U and a set of queries Q, and a

partition of the range (in the conditions of Q) into intervals I1, . . . , In, DYNPROG generates a

labeling with the minimum communication cost for the given set of intervals. �
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Using intervals of interest of Q as the intervals for DYNPROG ensures that the labeling generated

has the minimum cost irrespective of the set of intervals used.

C. Model M2: Constant Cost

Cost model M2 generalizes model M1 by allowing each event (update or query) to have a

constant cost. In cost model M2, each communication between client and server has a constant

cost. Different events can have different costs. This model is applicable in the cases where the

costs associated with queries and updates are not necessarily the same. The sources of this

cost asymmetry can be various. One typical reason is that the clients and the server have quite

different computing resources. Since the server needs to serve many clients, the overhead of

answering a query from a client might be different from that of pushing an update to a client,

due to complications such as concurrency control. This asymmetry is true, for instance, in mobile

networks [19], where the mobile agents have limited power compared to their base station.

Under this model M2, given a workload W , let cost(ui) be the cost of an update ui in W

under this model, and cost(qj) be the cost of pulling a query qj in W . Note that Proposition 3.1

holds for M2 as well. We modify the DYNPROG algorithm to find an optimal labeled partition

by using the following recurrence instead:

i > 0 : f(i, j) = min




U(i) + f(i − 1, j) PUSH

Q(i, j) + f(i − 1, i − 1) PULL

f(0, j) = 0.

Here U(i) is the total cost for all the updates in interval Ii, and Q(i, j) is the total cost for

all queries intersecting interval Ii but do not intersect interval Ij+1. This modified algorithm can

find an optimal solution under this cost model.

D. Model M3: Linear Communication Cost

Under this cost model, each communication is linear in the size of its transferred data. That

is, the cost of transferring data of size s is α+β× s, where α and β could be different between

pushed updates and pulled queries. Intuitively, this model considers two important types of

costs for each event. The α captures the the setup cost such as the initial transfer delay, which
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could be affected by the overhead on the server. As the number of clients served by the server

increases, the server may take more time to process each interaction with a client due to its

limited computing resources. The β × s models the costs linear to the size of data transferred.

The β value depends on the network bandwidth, and possibly the workload on the server as

well. Specifically, each pushed update sends the updated data to the client. For point updates,

the updated data is for a single object, but the size of the data transferred can vary from object

to object and from update to update. The cost of pushing an update u with parameters αu, βu,

and size of updated data su is cost(u) = αu +βu ×su, a constant irrespective of other decisions.

For each pulled query, its cost depends on the PUSH/PULL labels for other intervals. For instance,

consider the query q2 in Fig. 1. If we mark I1 as a PULL interval, then this query needs to be

pulled. However, since the cost of pulling this query depends on the data size, the cost is also

related to how other intervals are labeled. If interval I2 is labeled PUSH, then the remainder query

does not need data in I2, since the data has been cached up-to-date at the client. If interval I2

is labeled PULL, then the server still needs to send the data in this interval to the client. Let the

parameters for a query q be αq and βq. Further, let IPULL(q) be the intervals overlapping q and

assigned PULL by a labeling A. Given an interval Ii let sqi be the size of data transferred by q

from Ii. The cost of pulling q under A, cost(q), is αq +
∑

Ii∈IPULL(q) βq × sqi. In summary, the

cost of a pulled query is no longer a constant, since it depends on the PUSH/PULL labeling.

Gerrymandering under this model is more challenging. In particular, we can show that Propo-

sition 3.1 does not hold true for M3. To solve this problem, we propose a simple pre-processing

step. If first applied to a workload under M3, it allows us to apply Proposition 3.1 to the resulting

modified workload. Consider an object o. Let Uo be the set of updates on o, and Qo be the set

of queries that have o within their ranges. Given a query q ∈ Qo, let sqo be the size of data

from o transferred when q is pushed. If the condition
∑

q∈Qo
βq × sqo ≥

∑
u∈Uo

cost(u) is true,

then the interval containing only o should be labeled PUSH, irrespective of other intervals. This is

because, intuitively, just the size-dependent data-transfer cost in pulling the (interval containing)

object o is more than the cost of pushing the updates on it. Thus pulling the interval containing

just the object is always more expensive than pushing it, irrespective of other decisions. In the

pre-processing step, we mark all such intervals that satisfy the above condition as PUSH, and then

“remove” them from the original workload. By removal, we mean that we ignore updates in

such intervals and assume that the size of the data in the intervals is 0. In particular, note that
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the condition is true for all objects that receive no updates. Let the modified workload be W ′.

Proposition 3.2: Proposition 3.1 holds true for W ′ under cost model M3. �

The proof is in the Appendix. Now we describe how to modify DYNPROG to find the least

cost, assuming we are given a set of intervals for a workload W under M3. Note that if the

workload is W ′ constructed according to the preprocessing step described above, and the intervals

of interest formed according to Proposition 3.1, then we are certain that DYNPROG finds the

optimal cost. In general, for any arbitrary set of given intervals, DYNPROG finds the least cost

when gerrymandering is constrained to use those given intervals only. In the recurrence function

for DYNPROG, the cost for the PUSH case should be U(i) + f(i − 1, j), where U(i) is the total

cost for all the updates in interval Ii. The cost for the PULL case becomes

∑
q∈Q(i,j)

αq +
∑

q∈Q(i)

βq × sqi + f(i − 1, i − 1),

in which Q(i) is the set of queries overlapping Ii, Q(i, j) is the set of queries overlapping Ii

but not Ij+1, αq and βq are the M3 cost parameters for q, and sqi is the data transferred by

q from Ii. The rationale behind this formula is the following. If we mark interval Ii PULL, we

need to pay the “α” portion (in the cost model) for those queries Q(i, j) intersecting Ii but

not intersecting interval Ij+1, i.e.,
∑

q∈Q(i,j) αq. In other words, we pay these costs for these

queries only once. In addition, all the queries intersecting this interval need to pay the cost for

transferring whatever amount of data they do from this interval, corresponding to the “β × s”

portion in the cost model. This total cost is computed as
∑

q∈Q(i) βq × sqi, where Q(i) is the set

of queries intersecting this interval Ii.

IV. EFFICIENT GERRYMANDERING

In the previous section we studied how to gerrymander a single attribute, assuming that the

specific client and the server can partition the entire domain to as many intervals as needed. In

this section we relax these assumptions. We consider the cases where a client and the server need

to find a labeled partition efficiently in both time and space. This requirement is especially critical

due to the following reasons. (1) The server could be serving many clients, thus cannot allocate

too much space to manage a labeled partition with each client. In addition, it cannot spend too

much time running an algorithm for finding a labeled partition for each client. (2) When the

workload of queries from a client and the updates on the server keeps changing (Section V),
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the client and the server need to recompute a labeled partition periodically. In this section, we

develop efficient heuristics to find a good labeled partition. For simplicity we focus on the cost

model M1, and the ideas are applicable to other cost models.

A. Efficient Gerrymandering on a Single Attribute

1) Efficient Partitioning: Given a coming workload and a single gerrymandering attribute,

we want to find a good labeled partition quickly. In developing heuristics for finding such a

solution, the first problem we need to consider is how to partition the domain of the attribute

into intervals. The number of intervals affects not only the space needed by the client and the

server to store the labeled partition, but also the time of computing the PUSH/PULL labels.

One approach is to use those intervals of interest formed by the starting points and ending

points of the queries in the workload, as defined in Section III-B. This approach might introduce

too many intervals when there are many condition ranges from the queries. An alternative

approach is to divide the entire domain of the attribute into B intervals of equal width, called

“buckets,” where B can be decided based on the storage and time need between this client and

the server. This approach has the flavor of equi-width histograms [24], which split the range into

uniformly-sized buckets. One advantage of this approach is that the storage space required to

store the gerrymandering information and the corresponding running time are bounded in size

to O(B), which could be independent from the workload. We could also adopt the idea of equi-

height histograms [24] to decide intervals, which requires a function to measure the “volume”

of each bucket, e.g., by using the total number of queries and updates in the bucket.

2) Efficient Labeling: After deciding the intervals, we need to choose a PUSH/PULL label for

each interval. We present a family of heuristics for finding a labeled partition efficiently. We will

use the workload in Fig. 4 to illustrate these heuristics. The figure shows numbers of queries for

ranges. For instance, there are 7 queries with a range condition (8, 14). There are 10 intervals

of interest I1, . . . , I10. The figure also shows the number of updates for each Ii, e.g., there are

5 point updates in interval I3 = (8, 9). We use heuristics to decide the PUSH/PULL labels for those

intervals formed by those query starting points and ending points.

NAIVE: This heuristic is similar to the idea proposed in [4]. It makes a PUSH/PULL decision for

each interval locally, as if the interval were the entire range. That is, for each interval Ij , if the

number of queries intersecting this interval (i.e., Q(j)) is greater than the number of updates in
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Fig. 4. A workload for one range attribute.

the interval (i.e., U(j)), we label Ij as PUSH; otherwise, we label it as PULL. In Section VI we

show that NAIVE proves to be a good heuristic in practice with low running times and cost not

much more than the optimal on both real and synthetic data sets.

MNAIVE: It goes through the intervals from I1 to In, marking them PUSH or PULL as NAIVE,

except that whenever an interval gets marked PULL, all the queries intersecting that interval are

removed and not considered again for any future labeling decision. The intuition is that a query

passing through a PULL region is already “paid for,” and can be ignored when we consider other

later intervals. In Section VI we show that MNAIVE is, like NAIVE, very good in terms of both

running time and communication cost in all cases except when the number of updates is high.

Besides it consistently outperforms NAIVE in all cases.

PROP: This heuristic differs from the previous ones as follows. Instead of counting a query

as one unit at each intersecting interval, we divide the cost of the query amongst these intervals

proportionally to the lengths of these interval. Let w(j) represent the aggregated cost of all

queries intersecting interval Ij. That is, w(j) =
∑

q overlaps Ix

1
l(q)

, where we denote the number

of intervals intersected by a query q as l(q). This heuristic makes a deterministic local decision

for interval Ij based on the distributed query cost w(j) and update cost U(j) as follows: if

U(j) > w(j), we label Ij as PULL; otherwise, we label it as PUSH. It also applies the modification

used in MNAIVE, i.e., queries intersecting a region already marked PULL get removed from the

input and do not affect future decisions. This method is seen to be much more communication

efficient than the others when the number of updates is high (cf. Section VI).

Table I shows the results of running these heuristics and the DYNPROG algorithm on the

workload in Fig. 4. The UNIFORM algorithm decides a PULL label for the entire region. Among
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the heuristics, MNAIVE and PROP achieve the lowest cost 31. DYNPROG computes an optimal

labeled partition. Notice that these heuristics can be used with other ways to partition the domain

into intervals. For instance, the figure also shows the result of an heuristic, called BUCKETS,

which runs NAIVE on B = 5 equi-width buckets.

Heuristics I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 CostU CostQ Total

0. UNIFORM L L L L L L L L L L 0 32 32

1. NAIVE L H H H H H H H H L 23 9 32

2. MNAIVE L L H H H H H H H L 21 10 31

3. PROP L L L H L H L L H L 0 31 31

4. DYNPROG L L L H L H H H H L 11 17 28

5. BUCKETS L L H H H H H H H H 31 3 34

TABLE I

LABELED PARTITIONS BY DIFFERENT HEURISTICS FOR THE WORKLOAD IN FIG. 4 (“H” FOR “PUSH” AND “L” FOR

“PULL”). THE UNIFORM ALGORITHM DECIDES A LABEL FOR THE ENTIRE REGION. THE NEXT FOUR HEURISTICS ARE

USING THE INTERVALS FORMED BY THE STARTING/ENDING POINTS IN THE QUERY CONDITIONS. THE LAST ONE, CALLED

BUCKETS, IS RUNNING NAIVE ON B = 5 EQUI-WIDTH BUCKETS.

B. Gerrymandering on Multiple Attributes

As mentioned in Section I, for multiple-attribute data, we do not need to gerrymander all its

attributes, mainly because users could ask queries on a subset of these attributes, and we have

the freedom to choose a subset of gerrymandering attributes. Now we discuss how to choose

gerrymandering attributes, and compute a labeled partition for multiple attributes.

Choosing Gerrymandering Attributes: Given a set of candidate attributes, which could be

a subset of all the data attributes, we could choose attributes to do gerrymandering as follows.

Consider a workload that is expected to come. For each attribute, we run one of the algorithms

to find a labeled partition for the given coming workload, and compute the corresponding

total communication cost. We choose the attribute A1 with the minimum total cost as one

gerrymandering attribute. We then add another candidate attribute to A1, and run an algorithm

on both attributes to find a labeled partition and compute the total communication cost. We

choose the attribute A2 such that gerrymandering on {A1, A2} has the minimum communication
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cost. We repeat this process until (1) we use all the candidate attributes for gerrymandering, (2)

the communication cost does not decrease much, or (3) the computation becomes too expensive.

Computing a Labeled Partition for Multiple Attributes: The number of semantic regions

for the entire space could be larger than that of a single attribute. Thus it becomes more

important to find a good labeled partition efficiently for a given coming workload to reduce

communication cost. A natural extension of the DYNPROG algorithm to multiple attributes

results in an exponential-time algorithm. Thus it is appealing to extend those heuristics due

to their simplicity and better efficiency. Before using these heuristics, we need to decide a

partition for the semantic space. As in the single-attribute case, we can use the partition based

on the starting/ending points of queries in the workload on the gerrymandering attributes. This

approach produces too many regions, and the client and the server have a limited number of

regions to consider. In this case, we can consider a partition formed by equi-width buckets for

each attributes, while we can decide the number of buckets for each attribute based on the

distribution of queries and updates on that attribute. In principle, many techniques on building

multidimensional histograms (e.g., [25]) can be adopted to find a partition.

After deciding a partition, it is straightforward to extend those heuristics to decide PUSH/PULL

labels for the semantic regions in the partition. Take the MNAIVE heuristic as an example. In

the multi-attribute case, we go through the semantic regions following a certain order. For each

region, we compute the total cost costu for the updates in the region, and the total cost costq

for the queries intersecting this region. If costu < costq, we mark this region PUSH; otherwise,

we mark it PULL, and ignore all queries intersecting this region when considering later regions.

We can choose any order to go through the regions, e.g., by using an increasing order based on

the total cost of intersecting queries for each region.

V. GERRYMANDERING FOR DYNAMICALLY EVOLVING WORKLOADS

There are many situations where the techniques developed so far will serve us adequately for

the case where distributions of queries and updates are repetitively changing. In this case, we can

use an earlier workload to find a labeled partition, and use the partition to do gerrymandering for

a time period in which a similar workload is expected to be come. For instance, in the example

of the online car shop, after analyzing the weekly queries on the client queries and data updates

on the server, its web master finds that the distributions of different weeks are similar. One
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reason could be due to the fact that car buyers tend to do research on cars by issuing queries

throughout the week, while many cars can be added or sold on weekends, causing a lot of data

updates on the server. In this case, the web master can use the distribution of one week to decide

a labeled partition, and use it for every week; and correspondingly use the distribution from one

weekend as a template for all the weekends in the future.

In this section we study how to do adaptive data gerrymandering where if it is hard to find a

repetitive workload. Challenges arise when past input patterns do not contain enough information

about the future, i.e., when the patterns of inputs change with time. A natural and efficient

approach to the dynamic setting is to extend the heuristics we gave in Section IV-A. Consider,

for example, the heuristic NAIVE. The arrival of a new query or update means that some interval

or region might shift from having more queries to having more updates or vice versa. If this

happens, we may switch the label of this region. To deal with evolving distributions, a client and

the server can keep the queries and updates in a time window, and use them to detect substantial

changes. These events can also be used as a distribution for the future. Two questions need to be

answered. (1) When can we say that the distribution has changed significantly enough to warrant

recomputing a labeled partition? (2) How do we efficiently compute a new labeled partition?

We study these problems in this sections. To be specific in our discussion, we use the dynamic

programming DYNPROG for the single-attribute case as an example, and the ideas are generally

applicable to other heuristics in the multiple-attribute case as well.

A. Detecting Changes in Workload Patterns

We first develop criteria for determining when the pattern of the distribution has changed

enough to warrant a recomputation of our current labeling. We give three heuristics for this

purpose. Each of these heuristics is valid for all three cost models discussed in Section III, but

we present them in terms of M1. The first two heuristics, DYNNAIVE and DYNPROP, take

local views of the intervals and trigger a recomputation when a large number of intervals appear

to be incorrectly labeled. The third one, DENSITY, takes the communication cost per input

as the criterion and demands recomputation when this density shows signs of growing beyond

error. We discuss here the recomputation trigger mechanisms for these heuristics, postponing the

discussion of how they relabel.

DYNNAIVE. Intuitively, the idea behind this method is that a PUSH interval should be numerically
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dominated by queries, and hence it should be relabeled when this domination recedes. Symmet-

rically a PULL interval needs to be relabeled when the domination of the number of updates is in

decline. To realize this intuition formally, we begin with a workload of queries and updates X

and run the dynamic program on it obtaining a solution (IX , SX), where IX is a set of intervals

and SX , the partition, is a function from IX to {PUSH, PULL}. For each interval i ∈ IX we compute

its base ratio, γX(i) as follows:

γX(i) =




Q(i, |IX |)/U(i) if SX(i) = PUSH

U(i)/Q(i, |IX |) if SX(i) = PULL

The base ratio for a “good” interval i should be greater than 1. The larger it is, the less is the

cost incurred by the interval i. It gives us a base case against which to measure the performance

of the interval. If in the future the value of the ratio drops significantly below its original value,

it indicates that i is now “bad” (incorrectly labeled).

Let the input stream since the dynamic program was previously run on X be denoted by Y .

We compute γY (i) by considering the labeling SX but computing the ratios only for the queries

and updates which are part of Y . We trigger a recomputation if too many intervals have become

bad. Formally, the recomputation is triggered based on two parameters α, β < 1 as follows (these

two parameters are different from those in cost model M3): A new labeling is required if at

least β · n intervals have γY (i) ≤ α · γX(i).

DYNPROP. This method has the same flavor as DYNNAIVE except that the way in which we

count queries is different. We distribute the weight of each query evenly over all the intervals

it intersects. Instead of using the number of queries to compute the base ratio of interval i, we

use the sum of the weights contributed by each query to interval i. Compared to DYNNAIVE,

DYNPROP tends to assign lower values to base ratios of PUSH intervals, and higher values to

those of PULL intervals. Using the earlier notation, we add: For a query q ∈ X , hX(q, i) = 1 if

q intersects interval i. Now we can define a query weight per interval as follows:

QW(i) =
∑
q∈Xq

hX(q, i)∑|IX |
i=1 hX(q, i)

,

where Xq ⊆ X is the set of all queries in X . This query weight function makes sure that if a

query stretches across k intervals, each interval receives weight 1/k from it. The base ratio for

this heuristic is η(i) defined as follows:
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ηX(i) =




QW(i)/U(i) if SX(i) = PUSH

U(i)/QW(i) if SX(i) = PULL

As before, we recompute based on two parameters α, β. A new labeling is required if at least

β · n intervals have ηY (i) ≤ α · ηX(i).

DENSITY. Given an input workload X , as before we compute a dynamic programming solution

(IX , SX). The communication cost of this solution is the number of updates pushed plus the

number of queries pulled (see Section III-A). Denote it by C(X, IX , SX).

C(X, IX , SX) = |{u ∈ Xu|u ∈ i, SX(i) = PUSH}|

+|{q ∈ Xq|∃i : q ∈ i, SX(i) = PULL}|

For the subsequent input Y , we compute C(Y, IX , SX), i.e., the communication cost of the

queries and updates in Y under the labeling SX in the interval partition IX . Given a parameter

α > 1, a new labeling is required if the cost density of the new queries and updates deviates

from the cost density for the original input X . Formally, trigger a recomputation when

C(Y, IX , SX)

|Y | > α · C(X, IX , SX)

|X| .

The intuition is that the communication cost per item should stay low through the life of the

system. If this cost density starts increasing, it indicates that we are using a faulty labeling.

B. Recomputing a Labeled Partition

Having decided that the current labeling is unsatisfactory, we have to recompute it. Note that

here we continue to use the static algorithm described earlier, DYNPROG. We simply provide it

with a new workload. A naive approach would be to give it as input all the queries and updates

seen so far. But running the dynamic program again on the old input and the new input together

is inefficient and unnecessary. We propose two reductions to provide a smaller workload which

is additionally more relevant to the evolving communication scenario.

Removing redundant items. We claim that all updates and queries in the old workload X which

were in PUSH regions can be removed. The intuition is that, once an update has been pushed,

the communication cost for it has been paid already. Thus removing it and all queries which

overlap it will start off that interval as a clean slate, making it less likely for new updates to be
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pushed (unless they get a large number of queries to justify the pushing). We ensure that queries

overlapping with some PULL regions are not entirely removed. They are only removed from PUSH

regions, and might continue into the next run of the dynamic program as non-contiguous entities.

That is, we might get a single query comprising a number of non-contiguous fragments.

A windowing approach. Having removed the redundant items as above we can additionally

keep a parameter L that limits the number of queries and updates used to recompute the labeling.

That is, when we recompute the labeling, we only use the last L queries and updates at the server,

having removed items from before the previous run which got labeled PUSH. The advantage of

this approach is that the labeling is more reflective of the recent events. Additionally the running

time of each run remains roughly the same. The actual cost incurred in relabeling regions might

involve updates which were not included in the window. This is because if a region was earlier

marked PULL and is now relabeled PUSH, then all the updates from the beginning (possibly before

the window began) that have not been pushed have to be pushed now.

VI. EXPERIMENTS

In this section, we present our experimental results to demonstrate the usefulness of data

gerrymandering, and compare the performance of the proposed approaches for different scenarios.

A. Experimental Setting

We have set up two experimental environments with a single client and a single server. In

the first environment, we simulated both the client and the server using an emulator on a single

machine with four Pentium PIII Xeon 500MHz processors with 512KB cache each and overall

memory of 4 GB, and a Linux operating system. In the second environment, the server was

a Solaris machine with a 502 MHz UltraSPARC CPU and 768 MB memory, running SunOS

Release 5.9 Version. The client was a linux machine with two AMD 250Mhz CPUs and 4 GB

memory. All the programs were implemented in C compiled using a GNU C compiler.

For both environments, we generated workloads that included a sequence of queries at the

client and a sequence of updates at the server. Each event had an arrival time. We controlled

a generated workload by adjusting the parameters including the number of queries, the number

of updates, the distribution of query lengths, and those parameters in the various cost models.

Given a generated workload, we ran different algorithms to compute a labeled partition. In the
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first experimental environment, for the labeled partition generated by each algorithm, we can

compute the cost of each event (query or update) by using the parameters in a cost model. In the

second experimental environment, we measured the clock time of each event. For a pulled query,

its elapsed time was measured from the moment the query was issued, until the client received

all the results. This time should include the time of sending the query, the time for the server to

handle the request,, and the time to transfer back the query results. Similarly, for a pushed update,

we measured the time from the moment the update was pushed from the server to the client,

until the time the server received the acknowledgment from the client. Since the real network

in our computing environment had a very high bandwidth and a very small transfer delay, we

needed to simulate the parameters in those cost models. There are different ways to simulate

these parameters, and we used the system function sleep() to simulate the total elapsed time.

For instance, in cost model M3, for a pulled query that needs to retrieve s objects from the

server, we let the server process wait for α+β×s milliseconds before sending the results to the

client. Our experimental results (described in Appendix) showed that these two environments

give consistent results. We conducted other experiments by using the first environment.

Data: We used both a real data set and a synthetic data set. The real data set included

real updates and queries from the logs of the Sloan Digital Sky Survey (SDSS) [26]. The

synthetic data set included synthetic workloads generated with controlled variations in number

of queries, number of updates, query lengths, etc., to evaluate our algorithms under different types

of inputs. Using these workloads we tested our methods in simulated client-server environments.

We measured the communication costs under the three cost models in Section III. In particular,

once an algorithm or heuristic produced a labeled partition for a workload, we added the cost

of each pulled query and each pushed update, where the costs were based on the cost model. In

addition, we measured the actual running time for each algorithm.

B. Static Workloads

We implemented the optimal algorithm and the heuristics discussed in Sections III and IV:

DYNPROG (which gives the optimal labeled partition), UNIFORM (in which a single PUSH or

a PULL decision is made uniformly for the entire domain, based on which is cheaper), NAIVE,

MNAIVE, PROP, and BUCKETS (with B = 500 buckets). We first focused on the case with a

single range attribute under the communication cost model M1, i.e., each pushed update or pulled
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query has the same cost. In these algorithms, UNIFORM can be looked upon as an approach

without Data Gerrymandering, and thus serves as a baseline to compare other algorithms with.

Its cost depends only on the relative costs of queries and updates, and not on their distributions

along the range attribute. We ran the algorithms above on real workloads from the SDSS as well

as on synthetic workloads. For the real workload the emphasis was on verifying the usefulness

of gerrymandering. For the synthetic workload, the emphasis was a detailed evaluation of our

algorithms in various scenarios.

1) Real Static Workloads: For real-life workloads we used the database of the SDSS, in which

objects are heavenly bodies such as stars and galaxies, and have over 400 attributes, including

light intensities in various wavelengths, spectral data, measurement parameters, and, importantly,

a two-dimensional position coordinate called “(ra, dec) values.” Many of the queries received

by the SDSS are range queries on both or one of these coordinates. Further, as the SDSS

telescopes cover new regions in the sky, new objects are inserted into the database. Moreover, as

the measurement and pre-processing techniques undergo improvements and modifications, old

values are updated.

0 5000 10000 15000 20000 25000 30000
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BUCKETS

MNAIVE

DYNPROG

Communication Cost.
0 5000 10000 15000 20000 25000 30000
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NAIVE
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MNAIVE

DYNPROG

Time (ms).

Fig. 5. Communication costs and running times for a real SDSS workload.

We used a selection of 30,000 range queries from the query logs of Data Release 1 of the

SDSS [27]. For updates, we used a selection of 50,000 updates in the database between its Early

Data Release and the Data Release 1. These queries and updates are effectively random “slices”

of the actual queries and updates; they were chosen for us by the SDSS team, without any regard

for the performance of gerrymandering on them. In Fig. 5 we show the communication costs and

running times of the optimal DYNPROG and the heuristics. The machine used here (different

from the rest of the experiments) had four 296 MHz UltraSPARC-II CPUs with 3 GB memory.
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Compared to the cost of the baseline UNIFORM, the cost of the optimal DYNPROG was less

by a factor of more than 7. Thus, gerrymandering can indeed save on communication costs.

The heuristic MNAIVE had a cost that was more than the optimal by a factor of just 1.13. Its

running time was, however, less than that of DYNPROG by a factor of more than 7. Similarly,

BUCKETS had a cost about a factor 1.47 more than the optimal, but a running time about 125

times less. Thus, for this workload, MNAIVE and BUCKETS were efficient heuristics.

2) Synthetic Static Workloads: For the synthetic workloads, we generated queries and updates

as follows: The midpoints of queries and the updates formed clusters (usually 5 in number) on

the range attribute; each cluster followed a Gaussian distribution, the mean and variance of which

were chosen uniformly at random. The lengths of the queries followed a Gaussian distribution as

well. We used well-known techniques [28] to generate the Gaussian. We use G(µ, σ) to denote

a Gaussian distribution with mean µ and standard deviation σ.

For each of the static-workload single-attribute algorithms, we measured the running time

and the communication cost for the output labeled partition. In addition, we measured how

these numbers changed for these algorithms as we increased the number of updates, increased

the number of queries, changed the query lengths, and assigned different costs to the queries

(for the communication cost model M2). For each setting, we ran the experiments on 100

different workloads, and computed the average (the results were very stable). We also measured

the communication costs under cost model M3 and for the multi-attribute versions of these

algorithms (see Section IV-B) on two-dimensional data.

Effect of Number of Updates. We first evaluated the algorithms as the number of updates

changed. Fig. 6(a) shows the communication costs. As expected, DYNPROG always computed

a labeled partition of minimum communication cost. Among the other algorithms, PROP was

the best most of the time, while BUCKETS was the worst. When there were 8, 000 updates,

the labeled partition generated by DYNPROG required about 3, 000 messages, while PROP

required 4, 200 messages, and BUCKETS required more than 6, 000 messages. The baseline

scheme, UNIFORM, required 8, 000 messages.

The “query-grabbing” heuristics, NAIVE, MNAIVE, and BUCKETS, performed poorly for

large numbers of updates (greater than 16, 000), and had a cost greater than UNIFORM. The

reason is that they disregard the possibility of a query overlapping several intervals — as if it

occurs entirely within the current interval under consideration. It is equivalent to replacing a
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Fig. 6. Effect of number of updates. (6000 queries; query-length distribution: G(500, 400).)

long query that covers r intervals with r single queries, one for each interval. As a result, these

heuristics are biased towards assigning the PUSH mode for each interval. This tendency caused

them to fail when the number of updates was large. In contrast, the “query-sharing” heuristic

PROP does not have a PUSH bias, and performs well for number of updates more than 8, 000.

The query-sharing heuristic is outperformed by the query-grabbing heuristics when the number

of updates is small. Intuitively, this happens because a large number of intervals are nearly

empty of updates. Sharing the weight of a query with such intervals is a “waste” and can lead

to sub-optimal solutions. Query-grabbing heuristics do not have this problem. We observed this

separation between the two types of heuristics in many experiments.

Fig. 6(b) shows the running times for different algorithms. All methods except DYNPROG

and UNIFORM needed about the same amount of time, 1.5 seconds. DYNPROG took around

7.5 seconds, and UNIFORM required almost-zero time. Moreover, for all the algorithms, the

running time did not change very much as we increased the number of updates. The reason is

that the running time is mainly affected by the intervals created by the queries. Since the query

workload was similar for different runs, the generated intervals were also similar.

Effect of Number of Queries. We evaluated the effect of the number of queries. Fig. 7(a) shows

the communication costs for the labeled partitions generated by different algorithms. It highlights

the power of gerrymandering. Consider the costs for 10, 000 queries. The baseline UNIFORM had

a cost of 10, 000 messages, while the optimal DYNPROG had about 1, 500 messages. MNAIVE
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was the best among the heuristics when there were more than 8, 000 queries. At 10, 000 queries

its cost was about 2, 500 messages. This figure also shows the difference in performance between

query-grabbing algorithms and query-sharing algorithms based on the relative size of queries and

updates (discussed in detail in the previous subsection).
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Fig. 7. Effect of number of queries on communication cost. (M1; 10,000 updates; query-length distribution: G(500, 400).)

Fig. 7(b) shows the running times of the algorithms. The time of all of them (except UNI-

FORM) grew linearly as the number of queries increased. The reason is that the complexity of

most of them is closely related to the number of intervals of interest. More queries can create

more intervals (the effect is roughly a linear increase), causing the running time to increase.

Among all these methods, DYNPROG required the most amount of time. For instance, when

there were 10, 000 queries, it took DYNPROG about 14 seconds, while the other methods took

less than 5 seconds. This figure, when contrasted with Fig. 6(a), shows clearly that the running

time is affected more by a change in the number of queries, rather than a change in the number of

updates. We also did experiments on the effect of query lengths, and the results are in Appendix.

Effect of Query Costs under Model M2. Next we considered cost model M2, and studied

the DYNPROG and the heuristics modified suitably for this model. Each update has unit cost.

The cost of each query is uniformly distributed at random between 1 to 20. In this set of

experiments, the range attribute values were between 1, 000 and 30, 000. The results are shown

in Fig. 8. Consider the communication costs, and compare the results with the earlier ones in

Fig. 6 (a). Note that the only difference between the two situations is that now the queries have
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an average weight of 10. In the earlier results, UNIFORM switched from a PUSH to a PULL when

the number of updates increase beyond number of queries, at 6, 000. Here we would expect the

switch to take place when the number of updates is about 60, 000, beyond the range shown. Thus,

as expected, the new results should be similar to only the “left” half of Fig. 6 (a). In particular,

note that the query-sharing heuristic PROP performs much worse than the other heuristics. All

the query-grabbing heuristics perform well, with MNAIVE being quite close to DYNPROG.
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Fig. 8. Effect of query weights on communication cost. (M2; 6, 000 queries; query-length distribution: G(500, 400).)

Effect of Query Costs under Model M3. Next we considered model M3, where queries

and updates have communication cost which is linear in the size of the transferred data. The

algorithms and the heuristics are also modified suitably. In these experiments, we directly

constructed the intervals of interest as per Proposition 3.1 without any preprocessing as described

in Section III-D. As such, the solution of DYNPROG is optimal under the constraint that the

intervals of interest be necessarily used. For simplification we assumed that α is 3 and β is 0.01

for all queries. In addition for an interval Ii, each query overlapping it transfers data of size

N(i), where N(i) depends linearly on (it is, in fact, half of) the total size of data transferred by

updates in Ii. The results are shown in Fig. 9.

Fig. 9(a) shows that at around 18,000 updates, UNIFORM switched from PUSH to PULL, because

the total query cost grows at half the rate of the update cost. Compare the results for M3 with

those for M1: Fig. 9(a) with Fig. 6(a) and Fig. 9(b) with Fig. 7(a). The query-grabbers NAIVE,

BUCKETS, and MNAIVE perform better than the query-sharer PROP when the relative number
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Fig. 9. Cost Model M3. (Query-length distribution: G(500, 400).)

of updates is small and vice versa. This is evident in both Fig. 9 (a) and (b). In particular, in

Fig. 9, the performance of query-grabbers is worsening, while in Fig. 9 (b) the performance of

query-sharer PROP is clearly worsening. In Fig. 9(b), once PROP makes an error there is a

snowballing effect because it removes pulled queries. If we compare the results for M3 with

those for M1, the difference between the better-performing (according to relative number of

updates and queries) heuristics and the optimal is less pronounced. (Note that the scales in the

figures are different for the two models.) This is to be expected since in M3 each query has an

additional “local” component (βq) compared to just the “global” component (αq) in M1. Since

the heuristics tend to make local decisions, more of their decisions are correct in M3.

Multi-attribute Data Gerrymandering. We implemented the multi-attribute versions of the

above algorithms (see Section IV-B) and tested them on the synthetic data for two attributes,

generated in a manner similar to the single-attribute data, and the number of updates varying

from 1,000 to 10,000 when the number of queries was fixed at 4,000. The results are in Fig. 10.

When there were 2,000 queries, the cost of the baseline was 2,000, while the cost of MNAIVE

and PROP were both less than 400, less by a factor of about 5. In general, the more attributes,

the more regions in the partition, and the more are the benefits.
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Fig. 10. Two-attribute workloads. Effect of number of queries. (M1; 2000 updates.)

C. Evolving Workloads

There are various possible combinations of the algorithms for evolving workloads (Section V).

We implemented two of the discussed algorithms: (a) DYNNAIVE with the windowing tech-

nique,1 and (b) DENSITY with the windowing technique. We ran these algorithms on two

datasets. The first is as described in Section VI-B.1, and the second is similar, except the queries

are from Data Release 4, and the updates are from those between Data Release 3 and 4. In

addition we used the model M1 for the first dataset, and M2 for the second, based on the actual

number of tuples returned by the queries on the SDSS database.

The actual SDSS workload, in fact, has all updates before all queries, and so can be solved

efficiently even by our algorithms for static workloads. In our first experiment, to create a

workload that actually evolves dynamically, we took a random permutation of the queries and

updates. For DYNNAIVE we chose α = 0.5, β = 0.25, and for DENSITY we chose α = 2.

Fig. 11 (a) shows the communication cost incurred by the algorithms at various stages of the

sequence. It also shows the cost of a “static” DYNPROG that created a labeled partition based

on the first 200 events. Instead of looking at just the total communication cost incurred we study

the performance of the methods for recomputation based on the cost per query or update in the

input stream. The method DENSITY is a benchmark of sorts because it keeps the cost density

1Notice that DYNNAIVE resembles the algorithm suggested in [4].
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Fig. 11. Cost for evolving workloads based on SDSS data.

low. The plots suggest how the two algorithms responded to the sequence. Consider the static

DYNPROG and DENSITY. To begin with, both had a cost density of 0.2 units per event. Then,

at 8,000 events, the workload pattern changed and the cost density for DENSITY rose to 0.94

units per event, and the algorithm responded by recomputing its partition. As a result, its cost

density reduced to about 0.1 units per event and remained nearly steady after that. The static

DYNPROG, however, was unable to rectify for the changed workload and so its cost density

increased to 0.53 units per event. The algorithm DYNNAIVE performed similarly to, but not

quite as well as, DENSITY. It too responded to the change in the workload and had a final cost

that was about 60% of the static algorithm. Thus in practice DYNNAIVE works reasonably well

to keep the cost density low, while being very simple to implement.

In our second experiment, we first filtered the SDSS dataset (from Data Release 4), removing

queries that did not overlap a minimum threshold number of updates, and removing updates that

did not overlap a minimum threshold number of queries. Thus we eliminated the “easy” regions

in which even local decisions work well. Then we constructed a workload of 350,000 events

by repeatedly choosing SDSS queries and updates in such a manner that the distribution of the

queries and updates changes dramatically at 200,000 events. The objective was to stress-test our

algorithms for evolving workloads. The costs were modeled using M2: each update costs 1 unit,

and each query costs as many units as the number of tuples returned by the query on the SDSS
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database. For DYNNAIVE we chose α = 0.2, β = 0.25, and for DENSITY we chose α = 2. We

plot the results in Fig. 11(b). As expected, for the static algorithm the cost per event jumps to

about 614 at 200,000 events from an initial value of about 1. Both DYNNAIVE and DENSITY

adapted to the change. They both show remarkably similar behavior, implying that both were

triggering recomputations at similar points, and have a final cost per event of about 0.5.

Summary of Experiments: (1) DYNPROG always achieves the least communication cost,

but always takes the highest amount of time. (2) The query-grabbing heuristics (NAIVE and

MNAIVE) outperform the query-sharing heuristic (PROP) when the number of updates is

relatively smaller than the number of queries. The latter is better when the number of queries is

relatively smaller than the number of updates. (3) The performance of BUCKETS is variable;

there is no guarantee that equi-width partitions result in a good labeling. (4) The performance

of MNAIVE is always better than that of NAIVE.

VII. CONCLUSIONS

We introduced data gerrymandering as a technique for reducing communication cost of queries

on dynamic data in client-server environments using client-side caching. Its idea is to partition

the semantic space of a subset of the attributes, and decide a PUSH/PULL label for each region in

the space, based on the distributions of queries and updates. We studied the technical challenges

when adopting this simple but powerful idea. We developed a dynamic programming algorithm

to find an optimal solution for a single gerrymandering attribute, and proposed efficient heuristics

to compute labeled partitions. We studied the optimization problem by considering various costs.

We discussed how to choose a subset of attributes to do gerrymandering, and how to compute

labeled partitions for multiple attributes. We studied how to use gerrymandering for evolving

workloads of queries and updates. Our extensive experiments on real-life and synthetic workloads

show that this technique can significantly reduce communication costs.

ACKNOWLEDGMENT

Michael T. Goodrich was supported in part by the National Science Foundation under grants

CCR-0225642, CCR-0311720, and CCR-0312760. Chen Li and Michal Shmueli-Scheuer were

supported in part by the National Science Foundation under CAREER grant IIS-0238586 and

IIS-0331707.

May 25, 2006 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 35

REFERENCES

[1] Travel Advisory News Network, “http://traffic.tann.net/.”

[2] The SIGALERT System, “http://sigalert.com/.”

[3] S. Dar, M. J. Franklin, B. Jonsson, D. Srivastava, and M. Tan, “Semantic data caching and replacement,” in VLDB, 1996.

[4] A. M. Keller and J. Basu, “A predicate-based caching scheme for client-server database architectures,” The VLDB Journal,

vol. 5, no. 1, pp. 035–047, 1996.

[5] J. Wang, “A survey of web caching schemes for the Internet,” ACM Computer Communication Review, vol. 29, no. 5, pp.

36–46, October 1999.

[6] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “Caching on the World Wide Web,” TKDE, vol. 11, no. 1, pp. 95–107, 1999.

[7] M. J. Franklin, Client Data Caching: A Foundation for High Performance Object Oriented Database Systems. Kluwer,

1996.

[8] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal, “Enabling dynamic content caching for database-driven

web sites.” in SIGMOD Conference, 2001.

[9] K. S. Candan, D. Agrawal, W.-S. Li, O. Po, and W.-P. Hsiung, “View invalidation for dynamic content caching in multitiered

architectures.” in VLDB, 2002, pp. 562–573.

[10] O. Wolfson and S. Jajodia, “Distributed algorithms for dynamic replication of data,” in PODS, 1992, pp. 149–163.

[11] A. Tomasic, L. Raschid, and P. Valduriez, “Scaling access to heterogeneous data sources with DISCO,” IEEE Transactions

on Knowledge and Data Engineering, vol. 10, no. 5, pp. 808–823, 1998.

[12] G. Pierre, M. van Steen, and A. Tanenbaum, “Dynamically selecting optimal distribution strategies for web documents.”

IEEE Transactions on Computers, vol. 51, no. 6, pp. 637–651, June 2002.

[13] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. J. Shenoy, “Adaptive push-pull: Disseminating dynamic

web data,” in WWW ’01, 2001, pp. 265–274.

[14] M. Ji, “Affinity-based management of main memory database clusters,” ACM Transaction on Internet Technology, vol. 2,

no. 4, pp. 307–339, November 2002.

[15] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “Dbproxy: A dynamic data cache for web applications,” in ICDE,

2003, pp. 821–831.

[16] L. M. Haas, D. Kossman, and I. Ursu, “Loading a cache with query results,” in Proc. of the 25th Intl. Conf. on Very Large

Data Bases (VLDB ’99), 1999, pp. 351–362.

[17] S. Acharya, M. Franklin, and S. Zdonik, “Balancing push and pull for data broadcast,” ACM SIGMOD Record, vol. 26,

no. 2, pp. 183–194, June 1997.

[18] S. S. Kim, Y. Chung, S. Y. Jung, and C.-S. Hwang, “Optimistic transaction processing algorithms in pure-push and adaptive

broadcast environments,” in Proc. 8th Intl. Conf. on Parallel and Distributed Systems, 2001, pp. 289–296.
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APPENDIX

A. Proof of Proposition 3.1 in Section III-B

Proof: We need to show, essentially, that it possible to obtain an optimal labeled partition

without considering intervals of the form (s, t), (s, pi), (pi, t), or [s, s], in which s, t are not

endpoints of the ranges in Q. As shown in Fig. 12, consider a labeled partition A and two

consecutive endpoints pi and pi+1 of the range conditions in the queries. The cost of the labeling

A is denoted by cost(A). Suppose A has two adjacent intervals Ia and Ib, whose common end s

lies between pi and pi+1. Without loss of generality, assume Ia is in PUSH mode and Ib is in PULL

mode. (If they have the same mode, we merge them into one interval with their mode, which

effectively removes the intervals with endpoints at s.) Modify A by merging Ia and Ib into one

PULL interval and thus get a new labeled partition A′ which does not have an interval with an

endpoint at s. Now we show that under M1, we always have cost(A′) ≤ cost(A). The reason

is that although A′ has a region Ia that is now PULL, but was PUSH in A, no query overlapping

Ia is PULL in A′ that was not also PULL in A. In fact, it is feasible that cost(A′) is actually less

than cost(A) since updates in Ia that were PUSH in A are not so in A′. We repeat this merging

process until we get a new labeled partition that is as specified in the proposition.
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Ia Ib

pi s pi+1
Range attribute →

Fig. 12. Intervals of interest.

B. Correctness proof of DYNPROG in Section III-A

We give a formal proof of correctness for the DYNPROG algorithm. A constrained problem is

one in which an additional constraint has to be satisfied: Given Π(U, Q), the problem Π(U, Q; C)

is a constrained problem in which the solution has to satisfy the predicate C. E.g., Π(U, Q; I i ∈
PUSH) is the problem in which the solution is the minimum cost labeling that assigns PUSH to I i.

Define analogously, Π(i, j; C) and f(i, j; C).

Recall that a labeling A for Π(U, Q) is a sequence of ordered pairs (Ii, Si), where Si ∈
{PUSH, PULL}, for 1 ≤ i ≤ n. The subproblem Π(i, j), 0 < i ≤ j, doesn’t have any updates or

queries in intervals Ij+1, . . . , In, and thus even a sequence of just j ordered pairs is a sufficient

labeling. In fact, a sequence of just i ordered pairs is sufficient as well: in Π(i, j) intervals

Ii+1, . . . , Ij do not have any updates and so, without loss of generality, these intervals can all

be labeled PUSH. Thus we use an ordered sequence of i pairs to denote a labeling for Π(i, j)

with the understanding that the labels for Ii+1, . . . , Ij are all PUSH unless otherwise specified. We

use the expression A∪ (Ii, PULL) to denote a labeling in which all intervals have their labels as

specified by A, except for Ii which is PULL. cost(A) denotes the cost of A.

As before, pull queries are queries that intersect intervals labeled PULL and push queries are

the remaining queries. Also, the cost of a PUSH interval is the cost of its updates. The proof of

correctness of the dynamic program follows from the following Lemma 1.1 and Lemma 1.2.

Lemma 1.1: f(i, j) = min{f(i, j; Ii ∈ PUSH), f(i, j; Ii ∈ PULL)}. �

Proof: The optimal solution for Π(i, j) labels Ij one of PUSH or PULL.

Lemma 1.2: For 0 < i ≤ j, f(i, j; Ii ∈ PUSH) = U(i) + f(i − 1, j) and f(i, j; Ii ∈ PULL) =

Q(i, j) + f(i − 1, i − 1). �

Proof: Consider the problem Π(i, j; Ii ∈ PUSH). Let A′ be the optimal partition for Π(i −
1, j). Now, A = A′ ∪ (Ii, PUSH) is a partition for Π(i, j; Ii ∈ PUSH). We claim that the cost(A) =

cost(A′) + U(i). To see this, first consider the updates: A PUSH interval in A is either a PUSH
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interval in A′ or is Ii. In the former case its update cost is included in the term cost(A′), and

in the latter case the update cost is U(i). Now consider the pull queries. Every query in Q(j)

that is a pull query according to A, is a pull query according to A′; since the interval Ii is a

PUSH interval. So the cost of all pull queries in A is included in the term cost(A ′). This proves

our claim. We next show that A is an optimal solution for Π(i, j; Ii ∈ PUSH). For proof by

contradiction, assume that there exists a labeling B with strictly lower cost for Π(i, j; Ii ∈ PUSH).

Clearly, B can be decomposed into B′ ∪ (Ii, PUSH), where B′ is a partition for Π(i − 1, j). As

before, cost(B) = cost(B′) + U(i). This implies that cost(B′) is strictly less than cost(A′), the

optimal cost for Π(i − 1, j). This is a contradiction.

The proof corresponding to the problem Π(i, j; Ii ∈ PULL) is similar and presented here for

completeness. Let A′ be the optimal labeling for the problem Π(i − 1, i − 1). Now, A = A′ ∪
(Ii, PULL) is a labeling for Π(i, j; Ii ∈ PULL). We claim that cost(A) = cost(A′) + Q(i, j). To see

this, first consider the updates. For every PUSH interval in A there is a corresponding PUSH interval

in A′; since Ii is a PULL interval. So its cost is included in the term cost(A ′). Now consider pull

queries. For every pull query in A there is either a corresponding pull query in A′ or the query

overlaps Ii, but not both (since no query in Q(i− 1) overlaps Ii, and all the intervals Ii+1, ..., Ij

are marked PUSH in A). In the former case its cost in included in the term cost(A′) and in the

latter case its cost is included in the term Q(i, j). This proves our claim. To show that A is the

optimal labeling for Π(i, j; Ii ∈ PULL), assume for a proof by contradiction that there exists a

labeling B with strictly lower cost. Again, as before, B can be decomposed into B ′ ∪ (Ii, PULL),

where B′ is a labeling for Π(i− 1, i− 1). It also follows that cost(B) = cost(B ′) + Q(i, j). This

implies that cost(B′) is strictly less than cost(A′), the optimal cost for Π(i − 1, i − 1). This is

a contradiction.

C. Computing Q(i, j) Values Efficiently in DYNPROG

We discuss how to compute Q(i, j) values Efficiently in DYNPROG, as described in Sec-

tion III-A.

We compute the Q(i, j) values in n phases, where n is the number of intervals of interest.

Begin sequence of queries sorted first by their start points and then , in case of ties, by their end

points. Let l be the maximum number of intervals intersected by any single query. In phase i,

we compute the Q(i, j) values for j = i, . . . , i+ l−1. Through the different phases we maintain
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an array R of n values. At the beginning of phase i, for every j ≥ i, R(j) is the number of

queries that start in an interval before Ii but end at interval Ij . At the beginning of phase 1, all

values of R(j) are 0.
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Fig. 13. Computing Q(2, 4).

In phase i, look at the sorted sequence of queries and for each query Q(i, j) that starts in

interval Ii and ends in some interval Ij , add 1 to R(j). Now R(j) is the number of queries that

start in interval Ii or earlier, but end at interval Ij. Note that Q(i, i) is the value R(i). Similarly,

Q(i, i + 1) is the value Q(i, i) + R(i + 1). In general, Q(i, j) is the value Q(i, j − 1) + R(j).

Thus, by a single pass through l values of R, we can compute all the Q(i, j) values for this

phase. After this phase, we move to phase (i + 1). Fig. 13 shows a run of this computation on

the example given in Fig. 1.

D. Complexity analysis of DYNPROG

As before, n is the number of intervals of interest and l is the maximum number of intervals

intersected by any single query. The number of queries in the workload is denoted by mq, and

the number of updates is denoted by mu. Therefore, the size of the input is m = mq + mu. A

simple geometric argument shows that (n + 1) ≤ 2mq. (If we assume all queries are distinct we

can also say 2mq ≤ n(n − 1).)

For the space complexity we just need to consider the size of the table for f(i, j) and the

space required to compute and store the Q(i, j) values. Both these terms are O(nl). For the time

complexity, most tasks, e.g., computing intervals of interest, take O(m lg m) time. In computing

the Q(i, j) values, each query Q(i, j) is considered only once, which takes O(mq) time. For

each of the n phases, l values of R are looked up in O(nl) time. The time to fill the entries of

the table for f(i, j) takes O(nl) time. Thus algorithm DYNPROG runs in O(nl + m) time and

takes O(nl) space.
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E. Proof of Proposition 3.2 in Section III-D

Proof Sketch of Proposition 3.1 for W ′ under M3. Consider the intervals Ia and Ib in

Figure 12. Let it be that in optimal labeling A, Ia ∈ PUSH and Ib ∈ PULL. Merge Ia and Ib into

one PULL region to get A′. cost(A′) is the same as cost(A) except that (1) we add the additional

size-dependent data-transfer costs for the queries that were originally PULL only for Ib in A and

are now PULL for Ia as well in A′, and (2) we subtract the cost due to the updates in Ia that

were PUSH in A but are not so in A′. The pre-processing step described earlier ensures that in

W ′, the cost subtracted in (2) is more than the cost added in (1). 	


F. Comparison of Two Experimental Environments

To see if the two environments described in Section VI-A give consistent results, we generated

a sequence of updates and queries, with their intervals of arrival times following a Poisson process

with the mean of 300 and standard deviation of 100. The number of queries was set to 2000;

the condition range of the queries was [1000, 10000]; the length of queries followed a Gaussian

distribution, with the mean of 300 and standard deviation of 200. We used the cost model M3,

and set α = 100 and β = 0.1 in both settings.

We evaluated the algorithms in these two environments. Figures 14(a) and (b) show the

results of the two experimental environments. Figure 14(a) is the results of the first experimental

environment, and the y-axis is using the normalized cost. Figure 14(b) is the results of the second

experimental environment, and the y-axis is using the total elapsed time (in seconds). They show

that the results in the two environments are very consistent. Since the second environment needs

much more time to run different experiments, in order to run many rounds of experiments

to evaluate the effect of different parameters, in the remaining experiments, we used the first

experimental environment.

G. Experiments on Effect of Query Lengths

We did a set of experiments to evaluate the effect of query lengths on the performance of

different methods. The setting was described in Section VI-B. The range attribute values were

between 1, 000 and 30, 000. The number of updates, as well as the number of queries, were

fixed at 8, 000. We let the (mean of the) query lengths vary from 500 to 5, 000. The results are

shown in Fig. 15. Regarding the communication cost, observe that the relative performance of the
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(a) Single-machine emulation environment.

1000 2000 4000 6000 8000
0

100

200

300

400

500

600

Number of Updates

R
ea

l C
os

t [
S

ec
]

DYNPROG
UNIFORM
NAIVE
BUCKETS
MNAIVE
PROP

(b) Two-machine environment.

Fig. 14. Results of two experimental environments

heuristics does not change with increasing query lengths. Since we did not design any particular

heuristic to perform better than any other heuristic when query lengths increase, we consider

this result interesting, but not surprising. Further, the cost for each algorithm increases with

increasing query lengths; the increase is more pronounced at first, and then seems to saturate.

This is as expected. As a query’s length increases the cost of pulling it remains the same, but

the cost of pushing it increases as it now overlaps more updates. Increasing query lengths, in

general, result in longer intervals, containing more updates. As a result, the cost due to an

interval labeled PUSH keeps rising — which increases the total cost — until it becomes more

economical to label the interval PULL. As more such intervals are labeled PULL the increase in

the total cost is less pronounced. We note that MNAIVE performs quite well, and BUCKETS

performs quite poorly. As discussed earlier, with increasing query lengths very few buckets are

labeled PUSH. DYNPROG outperforms all others in terms of the communication cost but has the

longest running time.
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Fig. 15. Effect of query lengths on communication cost. (M1; 8, 000 updates; 8, 000 queries.)
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