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ABSTRACT | This paper discusses conceptual frameworks for

actively involving highly distributed loads in power system

control actions. The context for load control is established by

providing an overview of system control objectives, including

economic dispatch, automatic generation control, and spinning

reserve. The paper then reviews existing initiatives that seek to

develop load control programs for the provision of power

system services. We then discuss some of the challenges to

achieving a load control scheme that balances device-level

objectives with power system-level objectives. One of the

central premises of the paper is that, in order to achieve full

responsiveness, direct load control (as opposed to price

response) is required to enable fast time scale, predictable

control opportunities, especially for the provision of ancillary

services such as regulation and contingency reserves. Central-

ized, hierarchical, and distributed control architectures are

discussed along with benefits and disadvantages, especially in

relation to integration with the legacy power system control

architecture. Implications for the supporting communications

infrastructure are also considered. Fully responsive load

control is illustrated in the context of thermostatically

controlled loads and plug-in electric vehicles.

KEYWORDS | Ancillary services; load control; power system

control; power system operation

I . INTRODUCTION

The purpose of this paper is to explore the conceptual

requirements and opportunities to develop load control

schemes that are competitive with conventional generation-
based approaches to providing power system control

services. In principle, practically any measure that can be

taken by generating units (i.e., the Bsupply side[) to ensure

that electricity generation and load are equal has an

equivalent countermeasure that can be taken by loads (the

Bdemand side[). The primary characteristic of load control

that distinguishes it from conventional generation-based

approaches is that it must deliver a reliable resource to the
power system while simultaneously maintaining a level of

service commensurate with customer expectations. These

two objectives are often in competition, and one of the

greatest technical challenges to the competitiveness of

engaging loads in power system services is to develop

approaches that balance these objectives [1].

In order to balance systemic and local control

objectives, we believe load control schemes must meet
the dual goals of being both fully responsive and

nondisruptive. In this context, we define Bfully re-

sponsive[ as enabling high-resolution system-level control

across multiple time scales. This is desirable for load

control competitiveness because conventional generation-

based approaches are themselves fully responsive. Fur-

thermore, we define Bnondisruptive[ control as having an

imperceptible effect on end-use performance [such as
building temperature, lighting levels, pump speeds, and

electric vehicle state of charge (SoC)]. Nondisruptiveness

underpins the reliability and cost of providing load control:

strategies that are disruptive run the risk of frustrating

customers to the point where they withdraw from the

program or demand higher payments to participate.

Though we will discuss price response in this paper, we

will focus on direct load control and how organizations
such as distribution utilities or third-party companies

might aggregate loads to achieve a desired response,

possibly for integration into electricity markets.
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Despite the challenges identified above, several key
advantages follow from using loads for system services.

1) Although individual loads may become unavailable

at any moment, the variability of the total

contribution of a very large number of small loads

is likely to be less than that of a small number of

large generators (for which the failure of one can

have substantial impact on the ability to provide

the desired service) [2].
2) Loads can often respond to operator requests

instantaneously, whereas generators require some

time to make output changes of any significance [2].

3) Because loads are distributed throughout the grid,

they provide the opportunity to devise spatially

precise responses to contingencies.

4) In some situations, using loads to provide system

services could reduce overall grid emissions (for
example, if relatively inefficient but fast ramping

generation is no longer required to balance grid

variability) [1].

5) The level of spatial and temporal flexibility

that loads could provide to the power system

might be used to support the growing pene-

tration of intermittent renewable electricity

generators [3].
6) Loads are already embedded in the power system,

and versatile communications platformsVranging

from broadband internet connections to advanced

metering infrastructure (AMI)Vare becoming

widely available. It may soon be the case that

the only technical impediment to reliable utiliza-

tion of loads for system services is the develop-

ment of the necessary load models and control
strategies [4].

While this paper provides a broad discussion of load

control topics, where necessary, we will focus on control

schemes that could be used to access small loads in

residential and commercial buildings. This is because

1) these loads are ubiquitous and, if utilized in large

numbers, could provide substantial, reliable system

services with limited end-use disruption, and 2) with the
aforementioned deployment of communications platforms,

control access to these loads could be very inexpensive.

We note that utilizing AMI presents a number of

challenges, most notably regarding the extent to which

conventional telemetry equipment can be replaced, and

data/infrastructure ownership issues. We will discuss these

challenges and their implications on the design of control

strategies in this paper.
The paper proceeds as follows. Section II reviews the

current supply-side grid operating paradigm, and provides

an overview of existing efforts to integrate the demand

side. A framework for achieving fully responsive, nondis-

ruptive load control is developed in Section III. Section III-B

motivates our focus on direct load control rather than price

responsiveness. Control architectures are discussed in

Section IV, and the related communications requirements
are explored in Section V. Examples of fully responsive load

control schemes are introduced in Section VI, and conclu-

sions are provided in Section VII.

II . POWER SYSTEM OPERATION
AND CONTROL

In this section, we will discuss load control functions by

first describing the major components of the conventional

supply-side power system control paradigm. Then, for each

major function, we will discuss efforts to integrate loads
into these paradigms. We will place an emphasis on

frameworks for control that have been developed in the

literature as well as some of the state-of-the-art demon-

strations of modern load control.

We are less concerned, in this paper, with applications

of load control during emergency operation. The general

concepts can, however, be extended naturally to allow load

control to assist in alleviating voltage collapse [5]. The use
of load control for damping oscillatory modes [6] is also

beyond the scope of this paper.

A. Economic Dispatch and Unit Commitment

1) Supply-Side Paradigm: Electricity demand in a power

system varies throughout the day, following patterns that

depend on, among other things, regional characteristics,

temperature, time of day, day of week, and season of the

year. Decisions to change generator output to accommo-

date variation on hourly time scales are usually made by

processes of unit commitment and economic dispatch [7].
Unit commitment establishes generator operating sche-

dules in advance of the operating time and takes into

account generator ramping capabilities and startup and

shutdown costs. Solutions are obtained via a multiperiod

optimization process such as dynamic programming,

Lagrange relaxation, or mixed integer programming. Unit

commitment determines when to bring generators online

and offline, and so is typically run one day in advance.
Economic dispatch is the process of choosing the output

levels for generators that are already online, with the

objective of minimizing the total cost of meeting demand.

Economic dispatch tends to be quite fast, and can be run

within minutes of the operating time. Both processes

require demand forecasts.

2) Demand-Side State of the Art: In the supply-side
paradigm above, as electricity demand increases and

increasingly inefficient and expensive generation is

brought online, generation costs can become so high that

supply-side costs exceed the retail price by an order of

magnitude or more. Therefore, for several decades, many

utilities have maintained the infrastructure to curtail

electricity loads (especially air conditioners and water
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heaters) to reduce load rather than dispatch additional

generation during periods of very high demand. Fig. 1

shows a desirable redistribution of load away from the
peak. Load pattern changes such as this are intended to

reduce supply side operating costs (by reducing the need to

build and operate high marginal cost peaking generation)

and improve system reliability (by maintaining an

acceptable operating reserve).

The central challenges associated with directly con-

trolling electrical loads to contain generation costs are

that:
1) the total power and energy available for control is

limited by the obvious need to serve the primary

end-use function of the load;

2) there could be a postcontrol Bpickup[ (or

Brecovery peak[) in load that results from the

continuous operation of previously controlled

loads as they recover their desired operating state

(e.g., temperature setpoint). In some circum-
stances, the recovery peak can cause total load to

exceed that which would have occurred in the

absence of control.

Over the years, numerous papers have been written to

address these challenges. In all cases that we are aware of,

the primary control mechanism is to curtail load operation

during high demand hours and manage the subsequent

recovery peak (such as in Fig. 1). It is common to use simple
energy Bpayback[ models that do not model the specifics of

load end-use function but instead model the recovery peak

simply as a redistribution of the system-wide curtailed

energy during the control interval. Many papers focus on

developing strategies to produce a predefined load trajectory

[8]–[12]. Others treat the load trajectory as endogenous to

the model by integrating payback models into system

operator economic dispatch and unit commitment processes
[13]–[18]. Although some papers do attempt to incorporate

the end-use function of the load into the control decision-

making process [19], researchers typically use off-time as a

proxy for end-use function. However, recent papers have
started to integrate detailed thermal load models into load

curtailment decisions [20]–[22].

In the papers cited above (with the exception of [21]

and [22]), as well as in many implementations of load

management schemes, control is achieved by engaging

relays that interrupt power to loads. Those relays are

usually activated by the utility or load serving entity via a

radio signal, telephone, or modulated carrier signal sent
directly over the power lines [23].

Load control for peak shaving in modern implementa-

tions is undergoing significant transformations, with

increasing competition coming from Bthird party[ aggre-

gators who serve as intermediaries between the loads and a

system operator [24]. In this case, an aggregator (which

could be a utility) submits curtailment bids to the system

operator; if the bid is accepted the aggregator curtails a
group of loads under its control to achieve the reduction

[25]. In some cases, aggregators are using thermostat

temperature setpoint as the control input.

Communications with loads are becoming increasingly

sophisticated. One notable development has come out of

efforts at Lawrence Berkeley National Laboratory (LBNL),

Berkeley, CA. The BOpenADR[ project at LBNL has

developed automated demand response procedures for
peak load reduction, and these are now being adopted by

utilities and their customers [26]. The core concept of

OpenADR is a communications platform that uses open

internet protocols which are interoperable with different

building and industrial control systems. Via this platform,

utilities can indicate to their customers’ energy manage-

ment systems (EMSs) when the grid is operating at or

nearing capacity. Each EMS is then capable of delivering
an automated but customized and overrideable response to

the utility request. The major innovation of this approach

is its ability to interface with a variety of customer control

systems.

Many existing peak demand management programs

that utilize direct load control are disruptive and can have

significant impacts on the end use. In the case of air

conditioning, in most regions of the United States, load is
highest on the warmest days, meaning that air conditioners

are curtailed when their services are most in demand.

Though the research cited above explores the use of

feedback control, current large-scale implementations are

open loop and relatively unsophisticated with respect to

minimizing impact on the end-use function. This is at least

in part due to the historically high cost of reliable sensing

equipment; AMI and other developments that rely upon
advanced communications platforms may change this

situation.

Plug-in electric vehicles (PEVs) are appealing as

controllable loads because they could be curtailed for

significant periods of time (e.g., several hours) without

impact on end-use function. In fact, they even offer the

possibility of returning power to the grid. Provided that a

Fig. 1. A hypothetical redistribution of load from peak to off-peak

hours. (Original data taken from the Midwest Independent

System Operator website, www.midwestiso.org.)
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vehicle’s battery SoC is sufficient at the time it is needed

for on-road use, the vehicle owner has little concern for

the details of when and how quickly it is charged. (An
exception to this is related to the impact that charging

rates may have on battery state of health and its lifetime.)

PEVs could be managed not only during peak hours (when

their contribution to load may not be very large) but also

for night time Bvalley filling[ load control strategies that

distribute PEV charging to minimize total energy costs. We

will discuss this in more detail later in the paper.

B. Frequency Restoration Mechanisms

1) Supply-Side Paradigm: Although considerable effort

goes into predicting electricity demand so that generators

can be dispatched as efficiently as possible, it is impossible
to predict demand with complete accuracy. Second-to-

second and minute-to-minute fluctuations, such as those

illustrated in Fig. 2, are especially difficult to foresee and

result in a difference between nominal demand and the

generation scheduled to meet that demand (this difference

is sometimes referred to as energy imbalance). As we

explain below, these energy imbalances lead to changes in

system frequency that are usually met by changing the
output of flexible generators. A combination of three

supply-side mechanisms typically operate in unison to

achieve the desired frequency control.

First, an unanticipated change in load or generation is

initially compensated for by the addition or extraction of

kinetic energy from the rotating inertia of all synchronous

generators; this results in a change in system frequency

[27]. Second, many generators are equipped with frequen-
cy responsive governors that produce an output change

proportional to the frequency deviation (the constant of

proportionality is known as a speed-droop characteristic).

If system frequency deviates sufficiently far from its

setpoint (e.g., 35 mHz or more [28]), droop is activated to

prevent further growth of the deviation. This control

strategy is inherently decentralized and robust to small

disturbances. Furthermore, it is initiated almost instanta-
neously, although a governed generator may require some

time to achieve the output level dictated by its droop

characteristic.

These first two mechanisms are fully decentralized and

therefore not well suited to restoring system frequency to

its setpoint. Instead, a third mechanism called automatic

generation control (AGC) serves this purpose.1 AGC

decision-making occurs at the level of Bbalancing
authorities[ (BAs), which are relatively large regions that

might contain hundreds of thousands or millions of

customers. When BAs are interconnected, unanticipated

changes in load or generation can result in deviations in

scheduled interauthority tie-line flows as well as frequency

deviations. Because both deviations are undesirable, AGC

calculations are usually based on a weighted sum of system

frequency and unscheduled power flows. The resulting
signal is called area control error (ACE) [7]. To minimize

ACE, AGC issues raise or lower signals based partly on

each generator’s ability to provide the desired response in a

reasonable amount of time, and partly on real-time

economic dispatch [7]. These signals are typically pulses

of varying length (and proportional to the requested output

change) that are conveyed on a dedicated communications

infrastructure which also telemeters the state of all
generators in the BA. Although the signals may be updated

based on system ACE and issued as frequently as once

every two seconds, economic dispatch targets will not be

updated that frequently due to the required computing

time.

AGC generally relies solely on instantaneous generator

availability and ACE signals (although a model predictive

control approach to AGC has been developed in [29]).
Engaging loads in the AGC process may, however, require

control strategies that forecast how loads will respond to

control signals in the future.

2) Demand-Side State of the Art: Energy imbalance is

driven by forecast errors which are, for an unbiased

forecast, roughly zero mean. For this reason, electricity

loads with some form of energy storage (either thermal in
the case of thermostatically controlled loads, or electrical

in the case of PEVs) are excellent candidates for imbalance

control. This is because their average power consumption

under imbalance control can be made to equal their

nominal consumption in the absence of control.

Many loads are Benergy constrained[ in the sense that

they will cease to provide their primary end-use function if

they do not receive a sufficient amount of energy over
some time interval (i.e., if their average power consump-

tion is too low or high). If the mean AGC response

provided by a load approaches zero over a relatively short

averaging time frame, or if its storage capacity is large, the

Fig. 2. An example of the rapid time-scale variability that loads or

fast-responding generators might mitigate via automatic

generation control.

1AGC is sometimes referred to as load frequency control or
regulation.
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load’s energy constraint is likely to be achievable. On the
other hand, if a large response relative to the load’s energy

capacity is desired, some form of dynamic optimization

may be required to minimize the impact on the end-use

function of the load. In this case, in contrast to the supply-

side paradigm, a multiperiod optimization process would

be required.

There are some early stage efforts to manage energy

imbalance with frequency-responsive load by providing the
equivalent of generator droop [30]–[32]. As with generator

droop, the approach is completely decentralized, but in the

case of loads it may be challenging for system operators to

predict or verify the system-level response that will be

produced by thousands or millions of unknown devices. An

alternative is to integrate loads into a centralized AGC-type

scheme, because it will provide the system operator with

awareness and control of the response and facilitate
restoration of system frequency to its nominal value.

We are aware of only two efforts to study the provision

of AGC with aggregated loads by some type of centralized

load control. One of these efforts is by one of this paper’s

authors [33], and addresses the ability to provide responses

on 1-min intervals with thermostatically controlled loads.

A second effort, at LBNL, is exploring the potential to use

dimmable lighting for regulation [34].
Regulatory structures exist for large-scale provision of

frequency control with loads, but as yet there has been

relatively little actual implementation. The U.S. Federal

Energy Regulatory Commission issued Order 719 in

October 2008. This order requires independent system

operators (ISOs) and regional transmission organizations

(RTOs) to allow demand resources to participate in

ancillary services markets, including AGC. This has led
to a number of studies and task forces at the United States

ISOs and RTOs. However, most programs that could

support AGC are very recent and as yet there is relatively

little actual participation of loads [35], [36]. There are a

number of reasons for such limited participation, including

unfamiliarity with a new service, minimum size, and the

requirement that the loads themselves (rather than an

aggregator) be capable of receiving and responding to AGC
commands [36]–[38]. In the case of the Electric Reliability

Council of Texas (ERCOT), power flow at the point of

metering must actually be net generation in order to satisfy

telemetry requirements [39]. Because most ISOs and

RTOs are establishing telemetry requirements equivalent

to those of generation facilities, it is likely that only large

loads will ever be capable of making the investment

required to participate under the current regulatory
environment.

C. Contingency Reserves

1) Supply-Side Paradigm: When a sudden, large loss of

power supply occurs on the grid (for example, a generator

or transmission line trips offline), a large frequency

excursion occurs. That causes frequency-responsive gen-
erators (referred to as spinning reserve) to automatically

begin increasing their output to reduce the supply

imbalance. Following such an event, it is common for

AGC to be disabled until the system operator is able to

restore grid frequency (or ACE) to its setpoint by manually

issuing raise-lower signals to reserve capacity via the

system telemetry infrastructure. This might take 5–10 min

as spinning reserve generators cannot instantaneously
increase their output. In order to have sufficient capacity

to quickly accommodate a contingency, spinning reserve

generators must be grid connected and operating in a part-

loaded state. Part-load operation is usually inefficient, so

spinning reserve increases operating cost and emissions.

As with AGC, spinning reserve generation need not be

dispatched via a multiperiod optimization process. Al-

though these generators may be limited in how long they
are capable of providing reserve power, the duration of this

limitation is typically not binding as system operators can

usually bring supplemental reserves online in less than an

hour.

2) Demand-Side State of the Art: Electricity loads are well

suited to providing reserves because they can respond very

quickly (in many cases the ramp rate is constrained only by
the speed of the communications network). For some

time, system operators have used nonselective load

shedding (i.e., disconnecting entire regions from the

grid) as a measure of last resort to avoid system collapse.

Selective load shedding (i.e., disconnecting customers or

specific customer loads based on prearranged agreements),

on the other hand, has much more potential from the

perspective of customer acceptance because noncritical
loads can be targeted for shedding. As in the case of using

loads to manage energy imbalance, those with significant

energy storage capacity (thermal or electrical) are

especially well suited for providing spinning reserve.

This is because the time required to restore the system,

and allow loads to return to normal, is often short enough

that the end-use function may not suffer [40]. A number of

recent publications and white papers have explored the
potential of using responsive loads for spinning reserve [2],

[17], [18], [32]. Furthermore, demonstration projects with

relays on residential loadsVoriginally installed for peak

load shavingVare showing promising results [40].

Several electricity markets (including ERCOT, ISO

New England, and PJM in the United States, and systems

in the United Kingdom, Norway, Finland, and Australia)

have instituted programs to use loads as reserves [37], [41],
[42]. These programs typically focus on large industrial

loads. Furthermore, in many cases, the control strategy is

relatively crude. For example, in the case of ERCOT,

contingency reserves can be activated in one of two ways.

First, for smaller events, Bvoice dispatch[ is practised (i.e.,

the system operator picks up a telephone). Second, if the

event is large enough and frequency drops by roughly 0.5%
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of nominal, loads with underfrequency relays will auto-
matically trip. Because the system response to a large

quantity of load tripping under these circumstances is not

well understood, ERCOT limits the total capacity of load

that can participate in spinning reserve activities to half of

their total reserve capacity. The program is fully

subscribed [39].

Several third party aggregators are entering the

contingency reserves market [25], [43]. In contrast to
the ERCOT approach of dispatch by voice, these organiza-

tions are using advanced communications equipment to

activate loads.

III . ACHIEVING FULLY RESPONSIVE
LOAD CONTROL

As described previously, our objective in this paper is to
explore frameworks that make loads competitive with the

supply side for providing system-level services. In this

regard, we have defined the goal that load control be fully

responsive (enabling high-resolution system-level control

across multiple time scales) and nondisruptive (control

action has an imperceptible effect on end-use performance).

In general, the existing demand-side strategies dis-

cussed in the previous section fall short of this goal. For
example, with the exception of [21] and [22], the body of

load shifting work above controls local power but does not

monitor end-use performance. This makes the goal of

nondisruptive load control harder to achieve than if local

conditions were monitored and/or used as the control

input. In the case of frequency restoration mechanisms,

decentralized schemes, though potentially useful, do not

facilitate system-level objectives. The efforts to provide
spinning reserve with loads may be closest to achieving the

goal of nondisruptive control, since curtailment events can

be short enough to avoid disruption. However, this

addresses only one time scale of control.

In this section, we explore some of the key conceptual

issues that influence the achievability of fully responsive

nondisruptive load control.

A. Dual Objectives of Load Control
With advanced metering infrastructure and other

emerging grid Bcyber-infrastructure[ developments, it is

becoming increasingly feasible to control loads to provide

the system services discussed above. At least two

challenges must be addressed for this to succeed. First,

strategies for incorporating load control into power system

operations must be consistent with the legacy system and
responsive to system-level requirements. Second, load

control schemes must achieve end-user acceptance.

Without acceptance, loads cannot be recruited for control.

Worse yet, if acceptance erodes over time, customers who

were previously recruited may withdraw from a load

control program, possibly when their capacity is needed

most, such as during a contingency event. This issue,

known as Bresponse fatigue[ [44], is central to load control
program design and its long-term value.

Therefore, as we stated in the introduction, one of the

central challenges facing a fully responsive load control

program is delivery of a reliable resource to the power

system while maintaining a level of service for end users.

In other words, effective approaches to load control must

balance the dual objectives of two levels of control. These

levels of control could frequently be in competition. This is
almost always the case in peak-load shifting programs that

rely on air conditioning loads as the primary source of

controllable capacity (where system-level load needs to be

shifted most on days when air conditioning is most in

demand).

These requirements suggest the need to take end-use

function into consideration as load control decisions are

made. An intuitive strategy would be to control loads
whose end-use function will be least affected by the

control action. For example, one might choose to

selectively control thermal loads that are closest to their

desired temperature setpoint, since they can absorb a

greater service disruption than others. This can be done

either by 1) dictating the power consumption of each

device but basing control decisions on feedback from loads’

end-use function status, or 2) by directly controlling the
end-use function (e.g., temperature setpoint) with the

expectation that power consumption will change according

to some known model.

As with the services described in the previous section,

there are challenges associated with coordinating thousands

or even millions of loads in a way that minimizes end-use

impact, or guarantees a certain level of end-use function

[45], [46]. These challenges stem from, among other things,
information and communications bandwidth requirements,

model fidelity, and controller design. These issues are

addressed later in the paper.

B. Price Response Versus Direct Control
Methods for engaging loads in power system services

can be distinguished by whether they issue a signal that

reflects instantaneous electricity generation costs. Price-
based signals are effective inputs for integrating loads in

longer time scale economic dispatch functions, and are

comprehensively reviewed in [47]–[49].

We will not, however, consider price response as a

mechanism for achieving fully responsive nondisruptive

control for several reasons. First, electricity markets do not

presently clear on time scales faster than 5 min.

Consequently, price signals are not used for fast services
such as regulation and spinning reserve on the supply side.

(We note that the 5-min threshold between price-based

and nonprice-based load response dates back at least as far

as the seminal work of Schweppe et al. in 1980 [47]).

Second, having direct control over loads increases the

system operator’s ability to predict the loads’ responses

(though price response forecasts certainly are possible),
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and provides third-party aggregators certainty over how
much capacity they can bid into ancillary service markets

[43]. Finally, customers, especially small ones, may be

disinterested in (or incapable of) identifying their own

demand curve (i.e., instantaneous quantity responsiveness

as a function of real-time price) if their objective is to

receive a service that is a function of energy use over

time (e.g., thermal comfort) rather than instantaneous

consumption.
Instead, in this paper, we will focus on control strategies

that employ a nonprice-based signal (perhaps a Bfunctional[
quantity like temperature setpoint or a signal that directly

dictates power consumption). To ensure customer accep-

tance, this type of direct control will need to be capable of

guaranteeing some level of end-use function, and we will

explore mechanisms to do so in cases where communica-

tions bandwidth is constrained. Such strategies could make
use of financial incentives to encourage customers to

consider greater flexibility in their quality of service (as in

so-called incentive-based programs [50] or with interrupt-

ible service contracts [51], [52]).

It is worth noting that one of the main criticisms of

nonprice responsive load control is that customers often

receive payment for load reduction from some baseline, yet

the baseline is impossible to directly measure [53]. This is an
important issue for load curtailment over longer (e.g.,

multihour) time scales when the baseline is a time-varying

quantity that needs to be modeled, and at the very least there

is a need to develop reliable baseline modeling methods

[54]. On the shorter time scales for AGC and spinning

reserve, however, the quantity of interest to the system

operator is the change in consumption from one instant to

the next. This can be measured, either by real-time
telemetering equipment (which would likely reside at the

substation level and measure power changes in aggregate) or

by a local gateway, which could send data to a central

coordinator for verification purposes in real time or after the

fact. We note that in its current form, AMI does not record

data quickly enough to serve this purpose.

C. Motivating Examples: Uncoordinated
Load Control

In assessing the role and value of fully responsive load

control, it is helpful to consider alternatives that offer

more autonomous control of loads. The examples pre-

sented in this section use time-based and price-based

control strategies and show that the lack of coordination

inherent in autonomous control may lead to unexpected

and undesirable collective behavior.
In both examples, we consider PEV populations with

required charge for each vehicle uniformly distributed

over the range 10–20 kWh, and vehicle charge rates

uniformly distributed across a range of 3–6 kW.

The first example considers time-based control of

4 million PEV loads. Fig. 3 shows the underlying (non-PEV)

demand over a daily cycle, together with the total demand

when PEV loads are included. The PEV charging loads are

set to switch on between approximately 3.5 and 8.5 h after

the original peak, with turn-on times uniformly distributed
over that range.

It can be seen that this control strategy partially fills the

evening load valley, but has the undesirable outcome of

creating a second load peak around 6 h after the original

peak. Conceptually, customers could be assigned switch-on

times that were more widely distributed. Such a strategy

would help moderate the PEV-induced peak, but would be

somewhat inconsistent with the underlying desire for
autonomy. Also, keep in mind that switch-on times are

already spread over a 5-h period.

Price-based control strategies can take numerous

different forms. This example uses a hysteretic form of

control, whereby the charger switches on when price falls

below a lower threshold and switches off when the price

rises above an upper threshold. A range of PEV population

sizes, up to 4 million PEVs is considered. The PEVs face
the hypothetical supply curve shown in Fig. 4. The switch-

on price for PEVs was uniformly distributed over the range

$60–70 per MWh, while the switch-off price for each PEV

was uniformly distributed between $3 and $10 above its

Fig. 3. Total load demand due to time-based control of 4 million PEV

loads. (Original data taken from the Midwest Independent System

Operator website, www.midwestiso.org.)

Fig. 4. Hypothetical supply curve for PEV charging,

with price ¼ 0:0012D5 þ 18, where D is total demand in MW.
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switch-on price. Resulting demand patterns for different

PEV population sizes are shown in Fig. 5.

The dominant feature in Fig. 5 is the spontaneous
emergence of significant oscillations around the 7-h mark

for the largest population size. This oscillatory process is

driven by interactions between energy price and demand.

An increase in total demand due to PEV load causes an

increase in energy price, which may be sufficient to curtail

some of the PEV load. Interestingly, these oscillations are

not present for the smaller PEV population sizes, suggesting

that this form of control may be sufficient for small numbers
of PEVs, but that as the number of vehicles increases more

sophisticated control strategies may be needed.

Furthermore, the oscillations are not always present

even for the larger population size. Outcomes are

dependent upon the random selection of PEV switch-on

prices, with the likelihood of spontaneous oscillations

strongly influenced by the width of the switch-on price

range. With a tight range, demand varies greatly for a
relatively small change in price. As the price range widens,

the sensitivity of demand to price reduces. This sensitivity

can be thought of as an important gain in this load

scheduling process. The jitter and oscillations apparent in

Fig. 5 suggest a gain that is too high.

If load control is truly autonomous, the switch-on price

band cannot be shaped a priori, but rather is determined by

customer choice. Numerous factors may influence that
choice, from gasoline prices to travel plans for the

following day. In any case, price-based control strategies

face challenges in achieving an adequate level of control

while ensuring robustness to the uncertainties inherent in

customer behavior.

D. Load Control Metrics
The potential contribution of a load to a control request

can be described in terms of its availability and willingness
to respond to the request. The first of these metrics refers
to the amount of load available for switching in or out by

the control action. The measure of willingness, on the

other hand, weights that load to reflect the impact of the

control action on the end-use function. Consider the case

of a residential customer who has a number of appliances

available for control. A local customer-based load manager

would monitor the status of those devices, and assess the

total load available for switching, both in and out.
Furthermore, each device would communicate its willing-

ness to be switched. For example, refrigeration would be

very willing to be switched out when nearing the end of its

cooling phase, but quite reluctant had cooling only just

begun. The load manager would consolidate all the

appliance information into a load model suitable for

higher level coordination by an aggregator or utility. Such

a scheme is presented in [46], where the willingness
measure is quantified in terms of a price function.

The willingness measure forms the basis for mapping

between the controllable loads and the control services

that they can most appropriately provide. Loads that were

most willing to participate would be well suited to AGC

regulation. Less willing loads could be called upon to

provide contingency reserves.

Fig. 5. Total load demand due to price-based control of varying numbers of PEV loads.
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The concepts of availability and willingness describe the
immediate state of load controllability, but do not facilitate

the management of temporal constraints. Control decisions

might be made that leave insufficient controllability over

time. There would seem to be benefits in loads providing

information describing their energy requirements and

delivery time frame. It would then be possible to build, and

continually update, a load control schedule that maximized

controllability over a finite horizon while satisfying energy
delivery constraints. A challenge lies, however, in commu-

nicating those constraints to the system operator in a way that

leads to control decisions that maximize the use of loads

without compromising end-use function.

Centralized acquisition of the amount of information

needed to achieve precise controllability of every individ-

ual load would require substantial communications and

processing resources. Load control strategies that avoid
such extensive cyber-infrastructure are considered in

Section IV. An alternative to acquiring information from

every load is to randomly sample the loads, and build a

statistical assessment of load controllability [55].

E. Choice of Input Signal
In current operating paradigms, control of power system

elements involves requesting changes in quantities that are
of direct relevance to the operating state, e.g., real or

reactive power, or terminal voltage. Load control could

follow this route by choosing real power as a control input

signal. Because most loads have relatively little inertia

(unlike rotating generators), power responses could be fast

and precise, even if thousands or millions of loads are under

control. However, to accomplish nondisruptive control,

such a strategy would require knowledge of the relationship
between power consumption and end-use function. Because

each load is subject to slightly different conditions and has

slightly different characteristics, it could be necessary to

model or measure the state of every device in the population

under control. Without significant device-level monitoring,

this approach risks poor end-use performance in some

loads, and possible response fatigue.

Alternatively, a functional quantity, such as temperature,
lighting intensity, or PEV battery SoC could be chosen as the

input signal. Then, assuming that the control mechanism at

the end user is operating properly, it becomes less important

to monitor the state of the loads. The challenge shifts to

estimating how the load power will respond to the input

signal. Making these predictions at the level of individual

loads would be computationally challenging without

detailed knowledge of each load’s characteristics. It could
instead be possible to predict the aggregate response with a

reduced form model, if all loads receive the same input

signal [33]. This type of approach appears to present less risk

of response fatigue, but greater uncertainty over the

aggregate power response, though system diversity reduces

some of this uncertainty. Section V-B provides a discussion

of issues concerning aggregate power feedback.

IV. CONTROL ARCHITECTURES

A. Centralized Load Control
A centralized load control strategy would require that

the power system operator issue command directly to

individual loads. Though this is the present practice for

generation control, it would obviously be significantly

more challenging to achieve for thousands or millions of

loads. Furthermore, as discussed above, feedbackVeither
on the end-use function or power demandVwould likely

be required to achieve reasonable performance. If response

fatigue is an issue, using a functional quantity as the input

signal could be a better option, because using power as the

input signal would require monitoring the load functional

states. This would be impractical for a large system. Issuing

control signals (especially if they are functional quantities

rather than power) for millions of devices would not,
however, fit well into the legacy system.

B. Hierarchical Load Control via Aggregators
Rather than have millions of devices interact with high-

level power system controls as in the centralized model,

load aggregators (which could include third-party firms or

load serving entities) can serve as intermediaries, as shown

schematically in Fig. 6. This hierarchical structure

provides a framework under which load aggregators could

Fig. 6. Schematic representation of a hierarchical load

control strategy.
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engage a very large number of loads within the legacy
operating paradigm.

In this model, each load aggregator has jurisdiction

over a certain group of loads, and provides an interface

between those loads and the higher level controls. It

acquires information from participating loads which

describes their availability and willingness to respond to

control actions, as discussed in Section III-D. The

aggregator can then use the information provided by
individual loads to build a model of the responsiveness for

the entire group. The exact form of that model depends on

the role that the group may be called upon to perform. For

example, in the case of AGC, the model would describe the

load increase/decrease achievable in the short term.

To seamlessly integrate into the existing system, the

aggregator should appear as a Bvirtual power plant[ [22] to

the higher level controller, and accept the same commands
(e.g., raise/lower) as those received by an individual

generator. Aggregators should then be capable of dispatch-

ing their loads to respond to the higher level commands.

This implies that the aggregator must interpret the control

signals received from the higher level controller, and pass

on instructions that are meaningful to the loads.

Aggregators may not have the ability to tailor

instructions for individual loads. To do so would require
each aggregator to maintain a detailed database that

dynamically updated to accurately reflect the composition

of the load group. A simpler approach would be for the

aggregator to broadcast a common signal to all loads in the

group, allowing the loads to interpret that signal and

respond accordingly. The examples in Section VI present

possibilities for such signals.

C. Opportunities for Distributed Control
As discussed in Section II-B, the legacy control system

includes frequency responsive generators that operate

independently of the centralized control system. It would

be relatively straightforward to enable loads to be

frequency responsive as well. As a next step in the

direction of decentralized control strategies, system ACE

could be broadcast to loads [30]–[32].
The challenge of a completely decentralized approach

is that local decisions may result in an over- or undersupply

of the required response, and local controllers may work

against each other to achieve their desired goal. This

challenge is not newVgenerator droop is designed

specifically to avoid conflict among decentralized con-

trollers. However, it then becomes impossible to maintain

a system-level setpoint value such as frequency with the
decentralized approach alone.

This could be addressed by establishing a distributed

control structure, where controllers communicate to

achieve a common goal [29]. However managing the

quantity of information that needs to be exchanged could

be challenging, and coordination times may be excessive.

There may be opportunities to collect individual load states

and control decisions at a centralized location, and
redistribute that information in an aggregated form [56]

that is manageable and useful to loads.

V. COMMUNICATIONS REQUIREMENTS

Each of the control architectures discussed in Section IV

places its own particular requirements on the supporting

communications networks. Nevertheless, all communica-
tions networks must take into account the highly

distributed nature of loads. This section considers a range

of issues that arise in seeking to establish coordinated

control of large numbers of loads. We will focus on

advanced metering infrastructure because it is being

widely deployed. However, many of the issues (latency,

bandwidth, data ownership) discussed have relevance

beyond AMI.

A. Infrastructure
As mentioned earlier, the most practical forms of load

control tend to utilize control commands that are

broadcast across all loads, rather than targeted to specific

installations. Such signals could be delivered via the AMI

network, though alternatives include delivery over each

individual customer’s broadband internet connection. The
challenge of the latter option is that the communications

network would be owned by another party, who is not

directly involved in power system operations. This could

lead to complications with maintenance, reliability, and

the ability to issue high priority signals to the loads under

control. Furthermore, distribution companies have an

incentive to build and utilize AMI capacity because it can

be included in their rate base, whereas broadband
connections cannot. Finally, in practice, it may be that

successful control strategies will be capable of using either

communications platform. This would provide a comfort-

able level of redundancy in the communications infra-

structure that would ensure loads could reliably engage in

power system controls.

AMI takes different forms, but typically consists of a

home area network that communicates with the electricity
meter, a wireless local area network that collects meter

information in a Bcell relay,[ and a broadband connection

for passing that meter information from the cell relay onto

an AMI collection point.

B. Bandwidth Requirements
The bandwidth required to support fully functional

load control is not significant because relatively little
information (e.g., a vector of temperature states and

power consumption) is required to describe the state of

individual loads. However, current AMI wireless local area

network (LAN) communications protocols may signifi-

cantly limit the rate at which data can be collected. This is

because meter read requests are issued at a limited

frequency, on the order of once every 5 s. If unique
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requests are required for each unique meter, as is
currently the case for collecting AMI electricity consump-

tion data in some AMI networks, then it would take one

cell relay well over an hour to query 1000 m (a typical LAN

size). The AMI network also needs to collect electricity

consumption data for billing, and it typically does this

three times per day. With these frequency limitations and

competing AMI network uses, the ability to collect load

state information for control purposes may be limited. On
the other hand, because the update rate of cell relays is on

the order of seconds, if they can be configured to collect

data from all meters in their LAN once per update, then

the speed of information gathering would be more than

adequate.

To institute closed-loop feedback control in either the

centralized or hierarchical control strategies described

above, power measurements must be acquired at some
level and communicated to the central operator or

aggregator on relatively fast time scales, perhaps on the

order of seconds. If cell relays are unable to collect data

from all meters in their LAN once per update, it might be

possible to use aggregated data from distribution substa-

tion telemetry equipment. However, the loads in the

control population may be only a fraction of the capacity

connected to the substation. Therefore, it will be necessary
to implement some type of filtering to extract the response

of the aggregated loads from variation in the rest of the

substation loads.

If a common signal is broadcast to all loads, compu-

tational requirements associated with signal construction

are not likely to be significant. Given that data transfers

should be secure, the greatest computational burden may

be associated with encryption/decryption algorithms.

C. Data and Infrastructure Ownership
The issue of data and AMI ownership may need to be

carefully considered in the development of load control

schemes. The actual load data and AMI will be owned by

the distribution company. However, the entity that

handles load control functions (such as a third party

aggregator) need not be the same organization. There are
likely to be legal and technical issues involved in giving

these third parties access to the distribution company’s

property. In the case of hierarchical control, such as

illustrated in Fig. 6, communications between the

aggregators and the system operator take the form of

consolidated models. Individual loads are not identifiable,

so the same data ownership issues will not arise at that

higher level.

D. Latency
It is well known that time delays within control loops

can result in degraded performance and even instability

[57]. Time delays in the measurement process cause the

controller to operate on old information. On the other

hand, time delays in the actuation process result in the

control action influencing the system later than intended.
In both cases, closed-loop performance will usually be

degraded, especially when fast response times are required

and/or frequent control updates are issuedVas with

spinning reserve and automatic generation control.

Because load control involves highly distributed resources,

time delays in the communications processes are unavoid-

able. However, it remains to be seen if those delays

significantly undermine the performance of any load
control scheme.

The load control structure presented in Fig. 6 effec-

tively decouples the process of building aggregate load

models from the use of those models. As suggested above,

most of the communications delay is confined to the model

building process. Consequently, latency will influence

behavior primarily through the higher level controller’s

use of models that may be out of date. This is insignificant
under normal load variation conditions. However, if the

controller calls for a large load change, for example, in

response to a need to deploy spinning reserve, the delay in

model rebuilding may result in subsequent control actions

that are inaccurate and potentially destabilizing.

VI. EXAMPLES

In this section, we will discuss two load control

applications where the control system is configured to

control an end-use function (building temperature and

battery SoC). These approaches are hierarchical in the
sense that they involve at least two control layers, namely,

the local controller, which serves the end-use function,

and one or more other controller(s) whose purpose is to

maintain a system level (real power) objective by adjusting

the end-use function. However, in principle, the approach

could be used in either the centralized or aggregator

architectures discussed above.

A. Thermostatically Controlled Loads
Thermostatically controlled loads (TCLs) comprise

roughly 50% of electricity consumption in the United
States [58] and represent an excellent end-use class for

load control due to their ability to store energy in the form

of temperature gradients. They can be deferred for limited

periods of time without any appreciable loss of end-use

function. TCLs might be an especially good end-use class

for balancing faster time-scale fluctuations from intermit-

tent renewable electricity generators, such as wind

turbines and photovoltaic devices.
For example, Callaway [33] has developed control

algorithms and theoretical results suitable for frequency

restoration and short time-scale economic dispatch ancil-

lary services with the specific goal of managing wind plant

variability. The paper focuses on developing a model to

map changes in thermostat setpoint to changes in power

demand for large aggregated populations of TCLs. The
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model can be formulated as a minimum variance controller

that computes changes in thermostat setpoint required to

achieve desired aggregated power responses.

Fig. 7 depicts one of the central results of the paper.

The top panel of the figure shows two lines. The first is the

zero-mean high-frequency component of a wind plant’s
output plus a direct current (dc) shift equal to the average

demand of the TCL population under control. The second

line is aggregate demand from the controlled population

(in this case, 60 000 air conditioners), where they are

subjected to shifts in their temperature setpoint as shown

in the bottom panel of the figure (these shifts are dictated

by the minimum variance controller). The middle panel of

the figure shows the controller error, which is relatively
small.

In Section III-D, load controllability was discussed in

the context of availability and willingness to participate.

These concepts are implicitly taken into account in the

hysteretic form of control associated with thermostats. As

the temperature nears either end of the deadband, a TCL

becomes available for control. It becomes increasingly

willing to participate in control as the temperature
approaches the switching limit. However, once the TCL

has switched state (encountered the deadband limit), it is

temporarily no longer available for control.

Assuming relatively constant ambient temperature, the

controllability of a large population of TCLs will vary little

over time. However, large temperature changes affect the

availability of TCLs for control. For example, a significant

drop in ambient temperature would eventually result in far
fewer air conditioning loads. System operations would

need to take account of such temporal changes in load

controllability.

B. Plug-In Electric Vehicles
PEVs are expected to comprise around 25% of all

automobile sales in the United States by 2020 [59]. At

those penetration levels, PEVs will account for 3%–6% of
total electrical energy consumption. It is anticipated that

most vehicles will charge overnight, when other loads are

at a minimum. The proportion of PEV load during that

period will therefore be quite high. Vehicle charging tends

to be rather flexible, though must observe the owner-

specified completion time. PEVs therefore offer another

excellent end-use class for load control.

Motivated by the control strategy for TCLs developed
in [33], a hysteretic form of local control can be used to

establish system-level controllability of PEV charging

loads. The proposed local control strategy is illustrated in

Fig. 8. The nominal SoC profile is defined as the linear

path obtained by uniform charging, such that the desired

total energy Etot is delivered to the PEV over the period

defined by owner-specified start and finish times. The

nominal SoC profile lies at the center of a deadband; for
this example, the deadband limits are given by

�þðtÞ ¼ SoCðtÞ þ 0:05Etot

��ðtÞ ¼ SoCðtÞ � 0:05Etot (1)

where SoCðtÞ is the nominal SoC at time t.
When the charger is turned on, the SoC actually

increases at a rate that is faster than the nominal profile, so

Fig. 7. Load control example for balancing variability from

intermittent renewable generators, where the end-use functionVin

this case, thermostat setpointVis used as the input signal.

See [33] for more details.

Fig. 8. Hysteresis-based PEV charging scheme.
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the upper deadband will be encountered. At that point, the

charger turns off. The lower deadband steadily increases

over time. When the actual SoC intersects the lower

deadband, the charger again turns on. This process is

repeated until the PEV is fully charged, as shown in Fig. 8.

The figure also shows that the charger draws power as a
sequence of pulses. Note that if PEVs are capable of

modulating their power consumption, the simple hyster-

etic local controller used here could be replaced by a more

sophisticated controller.

This approach is appealing from a system-level control

perspective, as the local control objective is a functional

quantity (in this case, a desired SoC profile) rather than

power. As discussed earlier, the system-level controller can
then make adjustments to the end-use function. Provided

it is possible to predict changes in aggregated power

demand as a function of end-use function adjustments,

system-level control decisions can be made on the basis of

preserving end-use performance.

To illustrate the system-level consequences of this

charging process, we will use an example that consists of

20 000 PEV loads. The charging start and finish times for
the PEVs were uniformly distributed over the ranges

30–90 and 510–570 min, respectively. The energy required

by each PEV was uniformly distributed over 12–20 kWh,

and charger power was uniformly distributed over 3–5 kW.

The total load drawn by the collection of PEVs is shown in

Fig. 9. Early oscillations are the result of transient

synchrony across the population of loads. Over time,

however, the total demand reaches steady state as behavior
becomes more heterogeneous. Demand ultimately returns

to zero as all PEVs progressively complete their

charging.

Control of PEV charging load can be achieved by

adjusting the SoC deadband, akin to adjusting the

temperature deadband in the control methodology devel-

oped for TCLs in [33] and outlined in Section VI-A.

Referring to (1), the deadband adjustment has the form

�þðtÞ ¼ SoCðtÞ þ 0:05þ uðtÞð ÞEtot

��ðtÞ ¼ SoCðtÞ � 0:05� uðtÞð ÞEtot (2)

where uðtÞ is the control input at time t. This is illustrated
in Fig. 10. Notice that adjustments to the deadband cause

variations in the on/off timing of the charger, but that the

owner-specified completion time is still honored. This can

be observed by comparing Figs. 8 and 10.

Whilst variations in the duration of the power pulses

are inconsequential for individual PEVs, their cumulative

effect over a large number of PEVs can be quite significant.

Controllability of total PEV demand can be illustrated
using a tracking example. Referring to Fig. 11, the

controller switches on at 40 min, and forces total PEV

demand to follow the path indicated by the dashed line,

until 450 min. Beyond that time, the control signal ramps

back to zero. A simple integral form of control is used, with

the deadband adjustment generated according to

uðtÞ ¼ uðt� 1Þ þ K Pdesðt� 1Þ � Ptotðt� 1Þð Þ (3)

where Pdes is the power along the desired track, and Ptot is
the total power of the PEV population. By lowering the

deadband, PEV chargers that were about to turn off do so a

little earlier, and chargers that were already off remain off

a little longer. The overall effect is a reduction in load.

Similar logic applies for raising load. The control signal

corresponding to the response of Fig. 11 is shown in

Fig. 12. The outcome of this strategy, in terms of its effect

Fig. 9. Total demand of a population of 20 000 PEV loads. Fig. 10. PEV charging, with control adjustments to the deadband.
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on an individual PEV, is shown in Fig. 10. Notice that

significant controllability of total demand can be achieved

with quite modest adjustments to PEV deadbands.

The control algorithm (3) adopted for this illustration

takes no account of the underlying dynamics of the

population of PEVs. A more sophisticated controller tailored
to a model of population dynamics could significantly

improve tracking fidelity. Furthermore, the control strategy

used in the example does not consider the diminishing

availability of load control as PEVs progressively reach their

fully charged state. As suggested in Section III-D, control

strategies must ensure that such temporal constraints are

addressed. These issues are the focus of ongoing research.

VII. SUMMARY AND CONCLUSION

This paper has explored some of the opportunities and

challenges associated with implementing fully responsive,

nondisruptive control strategies for aggregated electric loads.

We discuss these control actions in the specific context of
grid operations such as automatic generation control,

spinning reserve, and economic dispatch/unit commitment.

The central challenge for nondisruptive load control is

that there are dual, often competing, control objectives:

first, to achieve desirable aggregated power consumption

patterns, and second, to maintain acceptable end-use

performance (e.g., temperature of conditioned spaces or

PEV battery SoC). These objectives can be managed by
quantifying metrics of load availability (a measure of the

physical capacity available for control) and willingness to

participate in aggregated control activities (determined by

constraints on the quality of end-use function). To the

extent that total energy consumption over a time horizon

determines end-use function (rather than instantaneous

power), control decisions at one moment in time will

constrain the set of possible future decisions. These
temporal constraints are directly related to the willingness

and availability measures. It is likely that these three

factorsVavailability, willingness, and temporal con-

straintsVwill need to be considered in some form or

another for any successful aggregated load control strategy.

Communications infrastructure must be considered in

the design of any control paradigm. In the case of

aggregated load control, issues of data and infrastructure
ownership, latency in communications processes, and the

frequency of control signal updates will be particularly

important. Because it will likely be ubiquitous, AMI has

good potential as a communications platform, but is limited

in its ability to collect device-specific information on rapid

time scales. Perhaps the most promising way to use AMI

will be to broadcast one common signal to all loads (which

can be done on relatively short time scales) and then extract
feedback control information from aggregate power

measurements at distribution substations. The choice of

the broadcasted signal is an important consideration; a

functional quantity, such as thermostat setpoint deviation,

may make the most sense since it leaves the task of

maintaining end-use function to the local controller.

However, using an input signal other than desired power

consumption means that a model which relates the
aggregate power to changes in the functional quantity

will be needed for any type of forward-looking control

strategy.

There are a number of possible control architectures,

including centralized, hierarchical, and distributed con-

trollers. The hierarchical model may hold the most

promise because: 1) it creates an avenue for third parties

to organize loads and bid them into energy and ancillary
service markets, and 2) it may allow the system operator to

conceptualize load groups managed by each aggregator as

individual resources, similar to individual units on the

supply side. This provides a relatively seamless route to fit

Fig. 12. PEV control signal for driving the total load response of Fig. 11.

Fig. 11. Total demand of 20 000 PEV loads, controlled to

track a specified path.
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aggregated load resources into the legacy control para-
digm. However, the distributed control approach, where

loads provide the equivalent of generator droop, is also

promising. h
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