Achieving Efficient Polynomial Multiplication in Fermat
Fields Using the Fast Fourier Transform

Selcuk Baktir
Worcester Polytechnic Institute
Worcester, MA 01609, USA

selcuk@wpi.edu

ABSTRACT

We introduce an efficient way of performing polynomial mul-
tiplication in a class of finite fields GF(p™) in the frequency
domain. The Fast Fourier Transform (FFT) based frequency
domain multiplication technique, originally proposed for in-
teger multiplication, provides an extremely efficient method
for multiplication with the best known asymptotic complex-
ity, i.e. O(nlognloglogn). Unfortunately, the original FFT
method bears significant overhead due to the conversions
between the time and the frequency domains, which makes
it impractical to perform multiplication of relatively short
(160 — 1024 bits) integer operands as used in many appli-
cations. In this work, we introduce an efficient way of per-
forming polynomial multiplication in finite fields using the
FFT. We show that, with careful selection of parameters,
all the multiplications required for the FFT computations
can be avoided and polynomial multiplication in finite fields
can be achieved with only O(m) multiplications in addition
to O(mlogm) simple shift, addition and subtraction opera-
tions. We show that, especially in constrained devices where
multiplication is expensive, polynomial multiplication in the
suggested finite fields using the FFT outperforms both the
schoolbook and Karatsuba methods for practically small fi-
nite fields, e.g., relevant to elliptic curve cryptography.

Keywords

Finite fields, polynomial multiplication, Fast Fourier Trans-
form (FFT), Fermat numbers, Fermat transform, elliptic
curve cryptography, coding theory

1. INTRODUCTION

Finite fields have many applications in coding theory [4, 3]
and cryptography [9, 5, 11]. Hence efficient implementation
of finite field arithmetic operations is desired. The classical
polynomial multiplication method has quadratic complex-
ity, i.e. O(m?), given in terms of ground field multiplica-
tions and additions. The complexity may be improved to

Permission to make digital or hard copies of all or part of this work for

Berk Sunar
Worcester Polytechnic Institute
Worcester, MA 01609, USA

sunar@wpi.edu

O(m*823) using the Karatsuba method [8]. Despite the
significant improvement gained by the Karatsuba method,
the complexity is still not optimal. Furthermore, the im-
plementation of the Karatsuba method is more burdensome
due to its recursive nature. The known fastest multiplica-
tion algorithm, introduced by Schénhage and Strassen [15],
performs multiplication in the frequency domain using the
Fast Fourier Transform (FFT). Application of Fast Fourier
Transform (FFT) algorithms, first introduced by Cooley and
Tukey [6], speeds up the Fourier transform computations im-
mensely leading to fast FFT multiplication algorithms [15]
with asymptotic complexity O(nlognloglogn) [7]. However
the size of the operands for which FFT multiplication out-
performs regular multiplication is very large, which makes
FFT multiplication impractical for most applications. The
burden in the FFT based multiplication algorithms are due
to the costly inverse and forward FFT operations which are
usually performed with floating point numbers using com-
plex number arithmetic.

Although FFT integer multiplication algorithms have been
under close scrutiny, not much work has been done for ap-
plication of the FFT for polynomial multiplication in finite
fields. In this work, we propose the use of the FFT for
efficient computation of polynomial multiplication in finite
fields for practically small operand sizes, e.g., relevant to el-
liptic curve cryptography. We show that by selecting special
parameters, FFT computations can be performed efficiently
by using finite field arithmetic merely with integers, rather
than complex number arithmetic with floating point num-
bers. We show that with the drastic improvements gained in
the FFT computations, the proposed FFT polynomial mul-
tiplication in finite fields becomes efficient for practically
small fields, and even outperforms the Karatsuba multipli-
cation algorithm in constrained environments where multi-
plication operation is expensive compared to simpler opera-
tions such as addition, subtraction and bitwise shift.

2. BACKGROUND

2.1 Number Theoretic Transform (NTT)

personal or classroom use is granted without fee provided that copies areThe number theoretic transform was introduced by Pollard
not made or distributed for profit or commercial advantage and that copies [12]. For a finite field G(p) and a sequence (a) of length d
bear this notice and the full citation on the first page. To copy otherwise, t0 \hose entries are from G(p), the forward NTT of (a) over

republish, to post on servers or to redistribute to lists, requires prior specific G

permission and/or a fee.
ACM SE’06March 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 ACM 1-59593-315-8/06/00045.00.

(p), denoted by (A), can be computed by utilizing a d-th
primitive root of unity, denoted by r, from G(p) or a finite
extension of G(p) as

SY

-1

4; = ar? ,0<j<d-1, 1)

<
Il
=

(2)

where a; and A; denote the elements of (a) and (A), respec-
tively for 0 < i < d — 1. Similarly, the inverse NTT of (A)
over GF(p) can be computed as

s

d
DS AT 0<i<d-1. (3)

S

a; =
0

<

In this setting, (a) and (A) are referred to as the time and
frequency domain representations, respectively, of the same
sequence. The above NTT operations over GF(p) are per-
formed by utilizing a d-th primitive root of unity r defined
as follows.

Definition 1. r is a primitive d** root of unity modulo p
if
d
r®=1 (mod p)
and
¥t~ 140 (mod p)

for any prime divisor ¢ of d.

2.2 Convolution Theorem and Polynomial Mul-

tiplication in ¢r(p™) Using the NTT

According to the convolution theorem, computing the con-
volution of two sequences in the time domain is equivalent
to computing the componentwise parallel multiplication of
their frequency domain representations. The convolution
of two d-element sequences (a) and (b) results in another
d-element sequence (c¢) and can be shown as follows:

d—1
¢ = Y abijmeaa, 0<i<d-—1. (4)
j=0
Let (A), (B) and (C) denote the NTTs of (a), (b) and (c),
respectively. The above convolution operation in the time
domain is equivalent to the following computation in the
frequency domain:

Ci = Ai-B;, 0<i<d—1. (5)

Hence, convolution of two d-element sequences in the time
domain, with complexity O(d?), is equivalent to simple pair-
wise multiplication of the DFT's of these sequences and has a
surprisingly low O(d) complexity. Note in (4) that, the con-
volution is computed by making the sequences (a) and (b)
periodic with d. This is equivalent to the cyclic convolution
of the two sequences.

2.2.1 NTT based Polynomial Multiplicationdr¥ (p™)

The finite field GF(p™) is generated by using an m‘" de-
gree irreducible polynomial over GF(p) and comprises the
residue classes modulo the irreducible field generating poly-
nomial. Hence, in polynomial basis representation, the el-
ements of GF(p™) are represented by polynomials of de-
gree m — 1 with coefficients in GF(p)[9]. Multiplication of
two polynomials is basically the same as the acyclic (lin-
ear) convolution of the polynomial coefficients. We have

seen that cyclic convolution can be performed very efficiently
in the frequency domain by pairwise coefficient multiplica-
tions. Hence, it will be wise to represent the elements of
GF(p™), which are (m — 1)* degree polynomials, with at
least d = (2m—1) element sequences by using the m polyno-
mial coefficients and appending zeros at the higher ordered
m — 1 positions, so that the cyclic convolution of two such
sequences will be equivalent to their acyclic convolution and
give us their polynomial multiplication. We can form se-
quences by taking the ordered coefficients of polynomials.
For instance,
a(z) = ap + a1z + @z’ + ...+ am_1z™

a polynomial over GF(p) and an element of GF(p™) with
a; € GF(p) for 0 < i < m — 1, can be interpreted as the
following sequence after appending d — m zeros to the right:

(a) = (a0, a1,a2,...,am-1,0,0,...,0) . (6)

For a(z),b(z) € GF(p™), and for d > 2m — 1, the cyclic
convolution of (a) and (b) yields a sequence (c) whose entries
can be interpreted as the coefficients of a polynomial ¢(x)
such that ¢(z) = a(z) - b(x). The computation of this cyclic
convolution can be performed by simple pairwise coefficient
multiplications in the frequency domain. The following steps
realize the polynomial multiplication c(x) = a(z) - b(x) :

1. Interpret the coefficients of a(x) and b(z) as elements
of the sequences (a) and (b), respectively, and append
zeros to the right to make their lengths exactly d.

2. Convert (a) and (b) into their respective frequency do-
main representations (A) and (B) using the NTT op-
eration of (1).

3. Multiply (A) and (B) together to compute (C) as in
().

4. Convert (C) back to the time domain representation
(c) using the inverse NTT operation of (3).

5. Interpret the first 2m — 1 coefficients of (c) as the co-
efficients of the product polynomial c¢(z).

3. POLYNOMIAL MULTIPLICATION IN FER-
MAT FIELDS Gr(p™)

In this section, we utilize the FFT for speeding up the for-
ward and inverse NTT operations in the computation of
polynomial multiplication in a special class of Fermat fields
GF(p™) where p is a Fermat prime of the form p = 22" 41
and m = 2™. Here we call a finite field with a Fermat prime
characteristic a Fermat field. We briefly explain how the
FFT works, and refer the reader to [10] for further informa-
tion. We derive the complexities of the forward and inverse
FFT operations. Finally, we present the complexity of poly-
nomial multiplication in GF(p™) using the FFT.

3.1 NTT Modulo A Fermat Prime

Definition 2. A Fermat number, i.e. F, = 22" +1 for
a positive integer n, that is also prime is called a Fermat
prime.

Fermat primes are popular choices as finite field character-
istics due to their computational advantage in the modular

reduction operation. Modular reduction by a Fermat prime
can be performed by simple addition/subtraction and shift
operations.

There exist further advantages of Fermat primes in the
computation of polynomial multiplication in GF(p™) us-
ing the NTT. If p is chosen as a Fermat prime, i.e. when
p = 22" + 1, then 92" = (mod p) and r = 2 is a d'"
primitive root of unity where d = 2”1, In this case, since d
is a power of 2, the FFT can be applied very efficiently for
computation of the NTT of a sequence of length d, signif-
icantly reducing the complexity of NTT polynomial multi-
plication in finite fields. In Table 1, we give the list of the
Fermat primes and values for d and m that allow for ap-
plication of the FFT and thus possibly efficient polynomial
multiplication in GF(p™) in the frequency domain. In fact,
after coming up with the idea of using Fermat numbers as
the finite field characteristic for efficient NTT computations,
we realized that the idea of computing finite transforms in
rings of integers modulo Fermat numbers were already pro-
posed by Rader in [14, 13]. Such transforms were defined
as Fermat transforms and proposed for fast convolution and
digital filtering by Agarwal and Burrus [1, 2]. Hence, with
this paper, it happens that we do not invent or propose a
totally new transform technique, yet we propose the use of
Fermat transform in finite fields for practically efficient finite
field polynomial multiplication which may find applications
in coding theory and cryptography.

Table 1: Fermat primes p = 22" + 1 and d, m values for
FFT polynomial multiplication in GF(p™) .

n p=22" {1 d m field size (in bits)
0 3 2 1 2
1 5 4 2 6
2 17 8 3,4 15, 20
3 257 16 6,7,8 54, 63, 72
4 65537 32 13, 14, 15, 16 221, 238, 255, 272

3.2 Fast Fourier Transform

The symmetry of the NTT computation and the periodicity
of the d** primitive root of unity, i.e. 7, can be exploited
significantly using the FFT algorithms. In the FFT compu-
tations, the NT'T of a large sequence is computed in terms
of the NTTs of smaller subsequences. When the sequence
length d is a power of 2, computation of a d-element NTT
can be performed by recursively computing the NTTs of the
two subsequences with half the length of the original one,
drastically reducing the complexity of the NTT of the orig-
inal sequence.

The NTT of a d-element sequence (a), where d = 2% for
some positive integer k, can be expressed as follows:

d—1
Aj = Z airij

i=0
i even 1 odd

= Z air + Z air (7)
0<i<d—1 0<i<d—1
4 4

= Z azir® + Z ll2i+17“(2i+l)j
i=0 i=0
4 4

= Y au(r) +r7 Y ann ()7, 0<j<d-1.
i=0 i=0

Note that 7% is a (£)" primitive root of unity in GF(p).
Hence, the above d-element NTT computation of Aj;, for
0 < j <d-—1, can be performed with two (g)-element NTTs
which are the NTTs of the (g)—element sequences consisting
of the even indexed elements and the odd indexed elements
of (a). In (7), the first and the second summations corre-
spond to the (£)-element NTTs of even and odd indexed
elements of (a), respectively. Here, A; needs to be com-
puted for 0 < 7 < d—1, not for 0 < j < g — 1. However,

(r®)7 is periodic with £ for a d"" primitive root of unity r

iid ; .
and d even and therefore T2 = —r7. Thus, the equalities
d d
g1 . 71
2\i(j+4
azi(r?)" Ut = 3 " ag(r*)
i=0 i=0
and
d d
d 27! d 27!
d oni(j4d , 9uis
PIt3 § :a2i+1(7“)7«<J 5)] § :a2i+1(r)1]
=0 i=0

hold. Therefore, once A; is computed for 0 < j < g —1as
in (7) by performing two (g)—element NTTs, % — 1 multipli-
cations for multiplications of the second summations by
(for 7 = 0 no multiplication is necessary for a multiplication
by) and % additions for merging the two summations to-
gether, we can compute A; for % < j < d—1 immediately by
using the same already computed summations and with only
additional g subtractions for merging the two summations.

The inverse FFT of a d-element sequence can be computed
in a similar manner as the forward FFT. The inverse NTT
of a d-element sequence (A), where d = 2% for k a positive
integer, can be expressed as follows:

d—1
1 —ij .
ai:gjioA]’T y nggd—l

Computation of the above inverse NTT operation can be
performed by the inverse FFT in the same manner as the
forward NTT is performed using the forward FFT. The only
difference in the inverse FF'T computation is that there are
minus signs in front of the powers of r and d additional
constant multiplications are performed due to the multipli-
cations by d .

The forward and the inverse FFTs of d-element sequences,
for d = 2% where k is a positive integer, can be performed
by recursively computing the d = 2¥ element (inverse)NTTs
in terms of two d’ = 27! element NTTs as shown in (7) for
2 < i < k. Hence, with the FFT algorithm, computation of
a 2"-clement (inverse) NTT is reduced to the computation of
27=1 2_clement (inverse) NTTs in addition to some multipli-
cations (due to the multiplications by 77 or %), constant
multiplications by d~! (for the inverse FFT computation)
and additions/subtractions for merging the summations as
shown in (7).

3.3 Complexity of the FFT Computations in
Fermat Fields

In this section, we derive the complexities of the forward
and the inverse FFT computations of sequences of length
d = 2" over Fermat fields GF(p) where p = 22" 4+ 1 is a
Fermat prime. We present the complexities for r = 2 which

is always a d-th primitive root of unity in this scenario. Since
the forward and inverse FFT operations consist mainly of
multiplications by powers of r, i.e. r% and r~% for 0 <
i,7 < d—1, when r = 2 all these multiplications can be
achieved by 51mple shift operations (by at most d — 1 bits
since r is a d*" primitive root of unity and r* = pimedd
for any integer i), thereby reducing the complexity of FFT
operations significantly. We utilize the following notation for
denoting the complexities of computations in our complexity
derivations:

e F*: Complexity of the forward FFT of a d-element
sequence for d = 2F,

e M: Complexity of a multiplication in GF(p),

S’: Complexity of a shift operation in GF(p),

A: Complexity of an addition in GF(p),

S: Complexity of a subtraction in GF(p).

C: Complexity of a multiplication by a constant num-
ber in GF(p), e.g. complexity of a multiplication by
d™! in the inverse FFT computation.

In this setting, the recursive complexity of a d = 2% element
forward FFT computation can be stated as

j:k — 2‘7_—1671 + (21671 _ I)M +2k71A+2k71$.

Note that, rather than 2871, 28~ —1 multiplications are re-
quired due to multiplications by powers of r. This is because
of the fact that one of these multiplications in the FFT com-
putation is the multiplication by the zeroth power of r, i.e.
r9, which equals one, and hence can be avoided. The non-
recursive complexity of the above forward FF'T computation
is found as

k
FEo= 2PFO4 Y oM@ -

j=1

DM +27TA+2771S)

k
=) 2@ M+ 2TTA+2TLS)
1

Jj=
= (k2" 2 DM+ 2T A+ R2FIS
_ (dlogz d+1)M+d10g2 A—i—leZdeSA

Note that F° equals 0, since the FFT of a l-element se-
quence equals itself. For r = 2, no multiplications are re-
quired at all for the computation of the forward FFT op-
eration since all of the required multiplications are due to
multiplications by powers of r and hence can be performed
by simple shifts. Hence, for 7 = 2 the new complexity for a
d = 2* element forward FFT computation becomes

dlog, d dlog, d
2 2

Complexity of the inverse FFT computation is the same
as the complexity of the forward FFT computation, except
for the additional d = 2¥ constant multiplications by d~!
Hence, we may write

d log2

Flreay = (—d+ 1S + A+ S.

Fhverse = (K251 =28 DM+ 2" C k2" A+ k2"'S
_ (dlo§2d A+)M +dC + dlo§2d./4+ dlo;oer

Again, for » = 2, all multiplications can be achieved by
simple shift operations. Furthermore, all of the d constant
multiplications by d~' = 27% = 2?7% (mod p) can also be
achieved by simple shifts. Hence, the above complexity of
the inverse FFT computation becomes

dlog, d dlog, d dlog, d
2 2 A+ 2

In Figure 1 (Appendix), for illustration we present a flow
diagram showing the computation of a 32-element FFT. On
the left hand side of the diagram is the input sequence (a)
with elements ao, a1, az,...,a31 and on the right hand side
are the elements Ao, A1, As, ..., As1 of (A), the FFT of (a).
In the flow diagram, the values of every branch entering into
a circled node from the left are added up to produce the
value of the node. Every branch coming out from the right
hand side of a node has the value of that node. Even though
not all of the branches are drawn as directed, all branches
move from left to the right. If a branch does not have a
directed arrow at the end of it, then its value equals the value
of the node which it originated from. Otherwise, the branch
value equals the node value weighted by a certain power of
r shown next to the arrow. The flow diagram for the inverse
FFT computation would be similar to the one in Figure 1,
except the exponents of r would have minus signs in front of
them and at the end all of the 32 sequence elements would go
through a final multiplication by the constant d~*. One may
find, both in the above complexity formulas and in Figure 1,
that 49 multiplications, 80 additions and 80 subtractions are
required for the computation of a 32-element FFT.

S.

fi’jzverse(r:Q) = (1)8, +

3.4 Complexity Analysis of Polynomial Mul-
tiplication in G¢r(p™) Using the FFT for
p:22n+1 and m <2

Using Fermat primes p = 22" 4+ 1 as the field characteristic,

polynomial multiplication in GF(p™), where m < 2", can

be efficiently achieved in the frequency domain using the

FFT with d = 2, since in this case r = 2 is a d** primitive

root of unity where d = 22" .

Remember in Section 2.2.1 that for performing polyno-
mial multiplication in the frequency domain, we first need
to compute the NTTs of the input sequences. Then, we do
pairwise multiplications in the frequency domain. Finally,
we find the time domain sequence for the resulting polyno-
mial with a final inverse NTT computation.

In Section 3.3, we presented the complexities of the FFT
and the inverse FF'T computations for arbitrary sequences of
length d = 2F with r = 2. However, in polynomial multipli-
cation in GF(p™) we know that all but the first m elements
of the input sequences are zeros. Since d > 2m — 1, for
d = 2" at least the higher d — m = 2% — ng—“j = 2k-!
coefficients of the input sequences are zero. Hence, while
performing the forward FFT computations of the input se-
quences, at least 2871 additions and 2*~! subtractions (re-
lated to the zero elements) at the bottom of the FFT re-
cursion need not be computed, e.g. see Figure 1 for d = 2°
where ai6,0a17,...,as1 are all zeros, " =1 and % = —1

(Appendix). Hence, the complexity of the forward FFT
computation for polynomial multiplication becomes

dlog, d dlog,d—d dlog,d—d
Flogy = (FBEE—d+1)§/+ 82y E082 0 Cs

Similarly, we know that multiplication of two polynomials,

both with degree m—1, results in a degree 2m—2 polynomial.
Therefore, the higher ordered d — 2m + 1 elements of the d-
element sequence for the resulting product of the polynomial
multiplication are zero and need not be computed in the
final inverse FFT computation. For m < g the highest
ordered element of the sequence for the product is always
zero and need not be computed. For instance, albeit not
significant, for m = d/2 we can save a subtraction and a
constant multiplication by d~! (or a shift for » = 2) by
avoiding the computation of the highest ordered element
of the product sequence in the inverse FF'T computation.
Hence, the complexity of the inverse FFT computation for

polynomial multiplication becomes

dlog, d dlog, d

k _ / dlog, d
]:in'uerse('r:2) - (2)S + 2

2

A+ (-1S.

Table 2 gives a complexity analysis of polynomial multi-
plication in GF(p™) using the FFT for r = 2, d = 2*, and
m = 2871 for a positive integer k. For the same parame-
ters, Table 3 compares the complexities of the FF'T polyno-
mial multiplication, the schoolbook multiplication and the
recursive Karatsuba algorithm. For the derivation of the
complexity of Karatsuba algorithm presented here, the in-
terested reader is referred to [11]. Finally, Table 4 gives the
complexities of the three methods for the specific case of

m=2%d=2%and p= 22! + 1 for polynomial multiplica-
tion in the 256-bit field GF((22 + 1)'°).

Table 3: Complexity upper bounds of schoolbook,
Karatsuba and the FFT methods for multiplication
in GF(p™) in terms of GF(p) operations for p = 22" +1
and m <2" .

| [#Mult. | #Shift | #Add. | #Subt. |

Schoolbook m? (m —1)2
Karatsuba mlog23 - 6mlos23 -
- —8m + 2 -
FFT 2m 3mlogy,m | 3mlogy, m | 3mlogy, m
—m+ 2 +m +m —1

Table 4: Complexities of polynomial multiplication
in GF(p*®) for p = 92! +1.
[[#Mult. | #Shift | #Add. | #Subt. |

Schoolbook 256 - 225 —
Karatsuba 81 - 360 -
FFT 32 178 208 207

As demonstrated in Tables 3 and 4, finite field polyno-
mial multiplication may be achieved with dramatically less
number of coefficient multiplications than the schoolbook
and Karatsuba methods of multiplication even for practi-
cally small field sizes, e.g. relevant to elliptic curve cryp-
tography. For computationally constrained platforms such
as cell phones and wireless sensor nodes implementation of
computationally excessive cryptographic algorithms is still
a requirement for securing confidential information. In such
constrained platforms where multiplication instruction may
not be readily available, or is too costly compared to sim-
pler operations such as additions, subtractions or bitwise
shifts, a significant performance improvement can be gained
by utilizing the FFT polynomial multiplication algorithm.

4. FUTURE RESEARCH DIRECTIONS
4.1 Time and Energy Efficiency

Battery powered portable devices such as cell phones, per-
sonal digital advisors and wireless sensor nodes are becom-
ing more widespread, and in many applications they need
to run cryptographic algorithms which require performing
costly arithmetic operations. Hence, energy efficiency be-
comes a critical issue.

Multiplication is inherently more complex than simple
arithmetic operations such as addition, subtraction and shift.
Therefore, a multiplier circuit is designed significantly larger
in area to make it perform as fast, e.g. in digital signal pro-
cessors, or otherwise it takes a longer time to perform mul-
tiplication with a simple and small multiplier circuit. In any
case, either due to large circuit area and more switching ac-
tivities or due to longer processing time, the total energy
consumed in performing a multiplication would be signif-
icantly larger than that for addition, subtraction or shift
operations. Since the algorithm proposed in this paper re-
quires a much smaller number of coefficient multiplications
for performing polynomial multiplication, we believe that
it will be more energy efficient. It may be interesting to
investigate the time and energy efficiency of the proposed
approach over several computational platforms.

4.2 Generalization

The FFT polynomial multiplication algorithm proposed in
this work applies to a class of Fermat fields where the field
characteristic is a Fermat prime of the form p = 22" +1
and the field extension degree is 2. It may be interesting
to investigate if the proposed approach may be modified or
generalized to apply efficiently to a wider class of finite fields.

5. CONCLUSIONS

We proposed an efficient way of performing polynomial mul-
tiplication in a class of Fermat fields using the FFT. We
showed that, unlike the originally introduced FFT multipli-
cation algorithms proposed for integer multiplication, FFT

based polynomial multiplication in Fermat fields can be achieved

efficiently for practically small operand sizes. Furthermore,
we showed that all of the multiplications required for the
FFT computations can be avoided and polynomial multi-
plication in a Fermat field can be achieved with only O(m)
multiplications in addition to O(mlogm) simple shift, ad-
dition and subtraction operations. Finally, we claim that in
computationally constrained environments where multipli-
cation is expensive, polynomial multiplication in such Fer-
mat fields outperforms both the schoolbook method and the
Karatsuba algorithm for practically small operand sizes.

6. ACKNOWLEDGMENTS

This work was supported by the US National Science Foun-
dation under Grant No. ANI-0133297.

7. REFERENCES
[1] R. C. Agarwal and C. S. Burrus. Fast Digital
Convolution Using Fermat Transforms. In Southwest
IEEE Conf. Rec., pages 538-543, Houston, Texas,
USA, April 1973.
[2] R. C. Agarwal and C. S. Burrus. Fast Convolutions
Using Fermat Number Transforms with Applications

Table 2: Complexity analysis of polynomial multiplication in Fermat fields GF(p™), where p = 22" +1 and

m = 2", using the FFT .

[(c)=(a)*(b) [#Mult. | #Shift [#Add. [#Subt. |
1. (A) = FFT((a)) - mlogom —m+1 mlog, m mlogom
2. (B) = FFT((b)) - mlogom —m+1 mlog, m mlogy, m
3.(C)=(A)-(B) 2m - -
4. (c) = FFT~1((0)) - mloggm +m mlogam+m | mloggm+m—1

[Total Cost: [2m [3mloggm—m+27] 3mloggm+m [3mlogom+m—1]

to Digital Filtering. IEEE Transactions on
Computers, ASSP-22(2):87-97, April 1974.

[3] E. R. Berlekamp. Algebraic Coding Theory.
McGraw-Hill, New York, New York, USA, 1968.

[4] R. E. Blahut. Theory and Practice of Error Control
Codes. Addison-Wesley, Reading, Massachusetts,
USA, 1983.

[5] I. Blake, X. Gao, R. Mullin, S. Vanstone, and
T. Yaghgoobin. Applications of Finite Fields. Kluwer
Academic, 1999.

[6] J. Cooley and J. Tukey. An Algorithm for the
Machine Calculation of Complex Fourier Series.
Mathematics of Computation, 19:297-301, 1965.

[7] R. Crandall and C. Pomerance. Prime Numbers.
Springer-Verlag, New York, NY, USA, 2001.

[8] A. Karatsuba and Y. Ofman. Multiplication of
Multidigit Numbers on Automata. Sov. Phys. Dokl.
(English translation), 7(7):595-596, 1963.

[9] R. J. McEliece. Finite Fields for Computer Scientists
and Engineers. Kluwer Academic Publishers, 2nd
edition, 1989.

[10] A. V. Oppenheim, R. W. Schafer, and J. R. Buck.
Discrete-Time Signal Processing. Prentice-Hall, Upper
Saddle River, New Jersey, USA, 2nd edition, 1999.

[11] C. Paar. Efficient VLSI Architectures for Bit-Parallel
Computation in Galois Fields. PhD thesis, (Engl.
transl.), Institute for Experimental Mathematics,
University of Essen, Essen, Germany, June 1994.
ISBN 3-18-332810-0.

[12] J. M. Pollard. The Fast Fourier Transform in a Finite
Field. Mathematics of Computation, 25:365—-374, 1971.

[13] C. M. Rader. Discrete Convolutions via Mersenne
Transforms. IEEE Transactions on Computers,
C-21(12):1269-1273, December 1972.

[14] C. M. Rader. The Number Theoretic DFT and Exact
Discrete Convolution. In IEEE Arden House
Workshop on Digital Signal Processing, Harriman,
NewYork, January 1972.

[15] A. Schonhage and V. Strassen. Schnelle Multiplication

grosser Zahlen. Computing, 7:281-292, 1971.

APPENDIX
I N N i
DO N\ £
S SRR A A £
OGN/ i
= N AN\ £
DO AN NI i
== G2 AN e
B S S A i
I NN S LY i

OWM mn
IZ\\-IIIIO'M'OWNWW

"N‘O‘Nﬂﬂllll XX\\\\\
§ .&NONWIIIIIIIA\\\\\\

"MOWIIIOQ\VIIII_\\\.

. XKL N\
AM XX N\ \\%,
SCAANT/ARRN /A

Figure 1. Flow diagram for 32—element FFT computat

