
Achieving Energy Efficiency with Transmission
Pushbacks in Sensor Networks
∗Sha Liu, †Rahul Srivastava, †Can Emre Koksal, and ∗Prasun Sinha

∗Department of Computer Science and Engineering †Department of Electrical and Computer Engineering
The Ohio State University The Ohio State University

Columbus, Ohio 43210 Columbus, Ohio 43210
{liusha,prasun}@cse.ohio-state.edu {srivastr,koksal}@ece.osu.edu

Abstract— In sensor networks, application layer QoS require-
ments are critical to meet while conserving energy. One of
the leading factors for energy wastage is failed transmission
attempts due to channel dynamics and interference. Existing
techniques are unaware of the channel dynamics and lead
to suboptimal channel access patterns. We propose a MAC
layer solution called pushback, that appropriately delays packet
transmissions to overcome periods of poor channel quality
and high interference, while ensuring that the throughput
requirement of the node is met. It uses a Hidden Markov Model
(HMM) based channel model that is maintained without any
additional signaling overhead. The pushback algorithm is shown
to improve the packet success rate by up to 71% and reduce the
number of transmissions needed by up to 38% while ensuring
the same throughput.

I. INTRODUCTION

Sensor networking applications often have stringent re-
quirements for QoS parameters such as throughput and delay.
In battery operated sensor networks, such QoS requirements
must be met while consuming the least amount of energy.
Since a high percentage of the energy is spent on data
communication, support for efficient and reliable communi-
cation is critical. However, high variability in channel quality
caused by factors such as fading, mobility, and time-varying
multiuser interference make it difficult to achieve those
objectives. Indeed, Woo et al. [1], and Zhao and Govindan [2]
have both observed a significant variability in link quality in
wireless sensor networks with radios in the 433 MHz band.
The former paper points out that the instantaneous packet
error probability varies by approximately 30% around its
mean. The latter paper, as well as Willig et al. [3], both show
that the packet-error stochastic process exhibits significant
long-term dependence.

Without any effort for adapting to the variability, the sys-
tem resources are consumed highly inefficiently. Due to high
packet loss rates, a high fraction of the energy of a node is
consumed by multiple retransmissions per packet. However,
in the currently available sensor hardware platforms (such
as MicaZ or iMotes from Crossbow Inc.), the computational
power rules out sophisticated control actions for adaptation.
Only very simple strategies (e.g., transmit or do not transmit
a packet at a given time) are implementable. Our objective

in this paper is to design an optimum packet transmission
strategy that meets the required throughput constraint while
considering the dynamics of the channel.

The existing CSMA protocol is an example of an adaptive
transmission technique. The CSMA protocol uses carrier
sensing to avoid collisions and backoffs to address the
problem of contention among nearby nodes. However, packet
transmissions may fail due to cumulative interference from
other nodes in the network. Indeed in our testbed experiments
with Mica2 nodes, we have observed that with interfering
sources that are sufficiently far away, 69% of the packets
for which the CSMA granted a transmission permit are lost.
From this example, we can conclude that the combined
effect of a large number of interfering sources can be very
detrimental and the CSMA based protocols - designed to
suppress collisions - are not effective in avoiding such losses.
Immediate solution to this problem is reducing the carrier
sense threshold that triggers a backoff and consequently
increasing the carrier sense range. This, in effect, would
enable a node to sense this combined interference and
hidden terminals to some extent, and avoid part of the
losses. However, the increase of carrier sense range makes
a node overly conservative with respect to interference and
it leads to a lowered effective throughput. Therefore, simple
adjustment of the carrier sense range is not sufficient to avoid
transmissions during poor channel conditions.

In the context of transmission rate adjustment for 802.11
networks, several solutions have been proposed based on es-
timated channel conditions [4]–[7]. In contrast, our objective
in this paper is to optimize the energy consumption with
constraint on the throughput. Our solution methodology is
also different as it explicitly models the channel based on
rigorous estimation techniques. Existing MAC layer solutions
for sensor networks such as [8]–[11], have not considered
direct modeling of the time-varying channel quality for
optimization of transmission attempts. Several back-pressure
based mechanisms have been proposed at the link layer [12]–
[15] to address high interference and network congestion.
These approaches are orthogonal to our proposed solution,
and can be used in conjunction with our solution to improve
performance, as shown in Section V.

CSMA with
Exponential Backoff

Plain CSMA

CSMA with
Exponential Backoff and
Transmission Pushback Pushback period

(based on
channel estimation)

Channel Quality
Indicator

(for illustration only) Poor

Transmitted packet Transmitted but dropped packet

Time

Good

CSMA
Resumed

Fig. 1. Transmission Pushback: CSMA unnecessarily transmits during poor channel conditions. With exponential backoff, there will be fewer transmissions
during poor channel conditions, however opportunities to transmit during good states will also be lost. With transmission pushback CSMA can avoid periods
with poor channel quality, while making use of good channel states.

In this paper, we systematically study the problem of
addressing packet losses due to cumulative interference,
and propose a binary control technique over CSMA. Our
approach is based on exploiting the temporal correlations of
the interference process. We introduce a new concept called
transmission pushbacks, which refers to an appropriately
computed delay introduced at the MAC layer in order to
avoid periods with bad-channel quality while considering
a node’s throughput requirement. Therefore, we reduce the
number of transmissions per packet as well as the number of
transmission attempts per unit time. In case of bursty losses,
avoiding the bad channel state may also lead to a higher
throughput (visible at higher layers) despite lower number of
transmission attempts.

The main idea of transmission pushbacks is to defer packet
transmission attempts for an appropriately selected period
upon failed packet transmissions. Figure 1 illustrates the
benefits of using transmission pushbacks in comparison with
CSMA based approaches in the presence of time-varying
channels. Plain CSMA leads to failed transmissions, and thus
wasted energy, during periods with poor channel quality.
CSMA with exponential backoff may reduce such failed
transmissions, but it also cuts down the transmission attempts,
even at times of improved channel quality. Our proposed
transmission pushback mechanism predicts the duration for
which the channel quality will remain poor. Thus, unneces-
sary transmissions can be avoided to conserve energy and the
good channel states are taken advantage of. The contrast is
also highlighted in Table I which shows that Pushback along
with CSMA with exponential backoff can handle various
types of packet losses. Observe that as pushback operates
over the CSMA algorithm, improvements of the CSMA
mechanism such as [16] are orthogonal to pushback.

To determine the pushback time, we need to estimate the
channel quality and how it varies over time. We use an
adaptive channel prediction technique, based on estimating

TABLE I

TYPES OF LOSSES ADDRESSED BY VARIOUS MECHANISMS

Mechanisms Designed for Designed for interference
collision losses and channel losses

CSMA Plain Partially No
CSMA/EB Yes Partially
CSMA/EB+Pushback Yes Yes

the parameters of a simple hidden Markov model (HMM),
which represents our channel. The parameters of the HMM
are dynamically updated based solely on the binary ACK
sequence (transmission success or failure) for the previous
packet transmissions. We choose the appropriate pushback
period by considering the throughput requirement measured
by the incoming data rate, and the predicted quality of the
channel. Such an adjustment in rate, based on the throughput
requirement is also seen in lazy packet schedulers (e.g.,
[17]). The proposed approach is simple to implement over
existing CSMA based MAC solutions, as well as queue and
congestion control algorithms. Therefore it is highly suited
for existing sensor network platforms.

This paper makes the following contributions:

• Using data collected from a sensor network testbed,
temporal characteristics of the channel variations and
the interference are studied.

• A novel concept called pushbacks is introduced, that is
used to increase the packet success rate while consider-
ing the throughput constraint at each node.

• Through simulations it is shown that significant gains
in energy and/or throughput can be observed in all
scenarios using the proposed technique.

The rest of the paper is organized as follows. Section II
presents related work. Section III presents our approach to
model the channel losses. Section IV presents a description
of our pushback algorithm. Section V presents evaluation of
the proposed scheme. Finally, Section VI concludes the paper
and presents pointers to future research directions.

II. RELATED WORK

Transmission Rate Adaptation: Transmission strategies
based on channel estimation has been considered in the
context of 802.11 networks [4]–[7]. More specifically, the
past packet success and failure reports have been used to
design strategies to dynamically adapt the physical layer
transmission rate to optimize the throughput. ARF [4] uses
a heuristic to predict the channel quality based on past
transmission success and failure records, but it is ignorant
of the underlying time-varying properties of the channel.
RBAR [5] uses RTS/CTS to get immediate feedback from
the destination to learn about the quality of the channel and
determine the transmission rate. However, these packets have
high overhead especially in sensor networks where the data
packet sizes are comparable to the size of RTS/CTS packets.
In OAR [6] during good channel periods the transmitter
opportunistically transmits multiple packets back-to-back at
a high data rate. In contrast to the opportunistic nature of
[6], our solution uses a rigorous channel model to predict
the duration for which the channel will continue in a poor
state. In [7], authors present a history based mechanism to
predict the quality of the channel and adjust the transmission
rate. Our objective of optimizing energy consumption for a
given throughput constraint is different from the past work.
Our solution methodology is also different as it uses rigorous
estimation of dynamic channel properties.

MAC and Link Layer for Sensor Networks: Various MAC
layer protocols have been proposed to conserve energy in
sensor networks by sleep scheduling. These protocols can
be categorized as either synchronized or unsynchronized.
SMAC [10], TMAC [18] and DMAC [11] are examples of
synchronized MAC layer protocols. These MAC protocols
require periodic message exchange for synchronization. In
these protocols nodes wake up for a short duration at synchro-
nized times and sleep otherwise to conserve energy. In order
to address the overhead of synchronization, unsynchronized
approaches have also been proposed. BMAC [19] and SP
[20] are two such examples that make use of long preambles
before data transmission to ensure that the receiving node will
receive the packet. More recently, CMAC [9] and XMAC [8]
have been proposed to avoid the overhead of long preambles.
Anycasting has been considered in the joint design of MAC
and routing layers to operate in unsynchronized networks
[21]–[24]. However, none of these solutions have considered
the time-varying properties of the underlying channels in the
design of the channel access mechanism.

In order to address high interference and network con-
gestion, several back-pressure based mechanisms have been
proposed for sensor networks [12]–[15]. CODA [12] uses a
moving average of channel samples to detect the onset of
congestion and sends back-pressure messages to control the
data rate of upstream nodes. Fusion [13] uses the concept
of hop-by-hop flow control and prioritized MAC along with

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deferred Time Slots (k)

C
on

di
ti

on
al

P
ro

ba
bi

lit
y

of
Fa

ilu
re

P(A
n+k

=F|A
n
=S)

P(A
n+k

=F|A
n
=F)

Fig. 2. Conditional probability of failure as a function of deferred time
slots setting p = 0.6 and α = 0.8.

token buckets to control the packet rate at each node. IFRC
[14] and RAIN [15] use variations of the AIMD (Addi-
tive Increase Multiplicative Decrease) and the back-pressure
mechanisms. Various schemes have been proposed that select
the backoff counter [25] and the backoff window [26] based
on the channel state.

We conclude this section by observing that these solu-
tions are unaware of the time-varying characteristics of the
channel, and hence still do blind retransmissions ignorant
of current channel condition. In addition, MAC protocols
with backoffs tuned to channel conditions do not address
the time-scales associated with channel variations as shown
in Figure 1. On contrary, the pushback algorithm proposed in
this paper can learn the channel characteristics and schedule
retransmissions accordingly. In fact, our solutions can be used
in conjunction with the above link layer mechanisms and
bring extra benefit as shown in our simulation results.

III. CHANNEL MODEL

In this section we describe our channel loss model and
its parameters and give an experimental justification for
our model. We use this channel loss model to derive the
theoretical expressions for Packet Success Ratio (PSR) and
throughput as functions of channel and system parameters.
We describe how to estimate these parameters based on
the available measurements at the sensor nodes in the next
section.

A. Channel Model

Let An, n � 1 be the process, which takes on an ‘S’ or an
‘F’ depending on whether a packet transmitted at time n is
successfully decoded at the receiver or not. We assume that
only one packet can be transmitted in each time slot and that
An is a wide-sense Markov of order 1 for the packet error
process. We will discuss the validity of this assumption later,
but first we describe An further.

A sequence An, n ≥ 1 is said to be wide-sense Markov
if the probability of a future value, An+m, is completely

determined by its most recent value, i.e. An and the time
difference (m) between the two events. The autocovariance
function for such a process is exponential. More specifically,
suppose the process is in steady state1 at time n and let
P (An = F) = p. Then the autocovariance function of An is
KA(m) = p(1− p)α|m| for some α, |α| < 1. Here p is the
long-term loss probability and α quantifies the “coherence”
or correlation between a successful (failed) transmission
in the future based on the present observation. The loss
probability p increases with the number of interfering users
and the noise in the channel and α is a measure for the burst
length for the failed transmissions.

For this wide-sense Markov process, the probability of a
successful (failed) transmission in a future time slot, con-
ditioned on a successful (failed) transmission in the present
slot, is unique (Appendix I):

P (An+m = F|An = S) = p(1− αm) (1)

P (An+m = S|An = S) = 1− p(1− αm) (2)

P (An+m = F|An = F) = p + (1− p)αm (3)

P (An+m = S|An = F) = 1− p− (1− p)αm. (4)

Hence only a pair of parameters is sufficient to represent
the channel with the first order Markov assumption. For the
purpose of illustration, the conditional probabilities of failure
for p = 0.6 and α = 0.8 are plotted in Fig. 2. The “deferred
time slots” represents the number, k, of time slots waited
before the next transmission attempt after an event S or F.

We can form an underlying Markov chain corresponding
to this wide-sense Markov process as follows. The Markov
chain has two states S (Good) and F (Bad) and the chain
makes a transition between these states depending on An

taking on an S or an F as shown in Figure 3. One can evaluate
the parameters p and α for the associated Markov process
given the transition probabilities, x and y for this Markov
chain and vice versa as shown in Section III-B. The channel
model is an HMM, since x and y are unknown initially and
we estimate them based on the observed values of An using
a maximum likelihood estimator. Based on these estimated
values, we calculate the two channel parameters α and p,
which is detailed in Section IV. Note that the reason for
estimating x and y initially is due to the simplicity of the task
(based on observation of An). The reason why we pursue our
analyses with α and p afterwards, instead of x and y, is that
the performance metrics of the pushback algorithm are tied
to α and p more naturally.

In fact, HMMs have been used to model the channel
behavior previously by representing the (bit or packet level)
error process in wireless communications [27]–[29]. While
not as simple as a Bernoulli or an independent loss channel
model, Markov models are more capable of characterizing

1We assume that the process started at time n = −∞. In practice the
data transmission is only finite, however we make this technical assumption,
since we do not have any information about the initial channel state.

S F

x
y

1−y

1−x

Fig. 3. Markov chain representation of the channel.

the statistical dependencies which might occur in a wireless
channel.

From the two curves in Fig. 2, one can see the reasoning
behind choosing a pushback duration conditional on an
event F only. If we schedule the next packet for immediate
transmission (i.e., k = 1) after an S, we have the best
chance of observing another S. Intuitively, we are taking
advantage of the good channel state. On the other hand, if
we defer scheduling the transmission (i.e., k > 1) of the
next packet after an F, we lower the probability of failing in
that transmission. The longer the deferral time, the higher the
probability of an S in the next transmission. However, waiting
indefinitely can cause the throughput to drop significantly.
So we need to strike a balance between these two require-
ments, throughput and probability of success. Hence, with
the Markov channel model, the problem reduces to finding
the appropriate pushback period after a failed transmission.
In the next subsection, we will derive the expressions for the
throughput and packet success rate for this scheme using our
channel model.

B. Channel Parameters

To find the channel parameters, packet success ratio and
throughput, we sketch the Markov chain associated with
our first order Markov process. Our main objective here
is to find the throughput as a function of the number of
deferred time slots, k, on a transmission failure2. Once we
have this function, we can choose k according to the desired
throughput based on the incoming data rate. To validate this
model using real data, we also find the expression for the
PSR.

Our Markov chain has two states, S and F as illustrated in
Fig. 3. The current state is S if the final packet transmission
is successful and F, otherwise. Note that a transition does not
necessarily occur every time slot, rather it occurs for every
packet transmission attempt. Since we schedule a transmis-
sion immediately after a successful event, the expression for
x is obtained by substituting k = 1 in (1). Direct application
of (3) gives the expression for y.

x = P (An+1 = F|An = S) = p(1− α) (5)

y = P (An+k = F|An = F) = p + (1− p)αk (6)

Notice that the transition probabilities at state F are functions
of k as well as p and α. This is due to the effect of the
pushback period of k time slots after the failed transmission

2Upon a successful transmission, the deferral time is 1 (no deferral).

attempts. The associated steady state probabilities are there-
fore functions of k as well, and these probabilities for state
S and state F are respectively,

πS(k) =
(1− p)(1− αk)

p(1− α) + (1− p)(1− αk)
(7)

πF(k) = 1− πS(k).

We define the packet success ratio (PSR) as the total fraction
of the packets that are successfully transmitted, i.e., it is equal
to the steady state probability, πS(k) of state S.

To formulate an expression for throughput, consider the
following: on a transmission attempt, we wait for k time
slots in state F and 1 time slot in state S for the next
transmission attempt. Thus, the average number of slots per
attempt is πS(k) + kπF (k). Consequently the number of
packet transmissions per slot,

X(k) =
1

πS(k) + kπF (k)
=

p(1− α) + (1− p)(1− αk)
kp(1− α) + (1− p)(1− αk)

.

(8)

The resulting throughput, ρ(k), is thus

ρ(k) = πS(k)X(k)

=
(1− p)(1− αk)

kp(1− α) + (1− p)(1− αk)
. (9)

We tested the validity of our Markov model using an
experimental setup in the Kansei testbed [30] by setting
up a wireless link between two sensor motes. This link
was encircled with seven sensor motes spread around the
perimeter of a 20 m2 area. We measured the packet success
rate between two motes, while the rest of the motes acted
as sources of interference. For this experiment, the wireless
link transmitted 36 byte packets at 100 ms interval. We
programmed the nodes causing interference to transmit bursts
of packets once every second. The burst size was selected
according to a uniform distribution between [0,15]. We
estimated the two parameters, α and p using the ACK-level
data of the entire trace of 30 mins. Note that the purpose
of this experiment was to validate the model. In our actual
algorithm, the estimation of the two parameters is much
simpler and does not depend on a long trace of data. The
theoretical packet success rate based on the estimated α and
its actual experimental value are plotted in Fig. 4 as a function
of k. This plot gives credence to the Markov model.

IV. THE PUSHBACK ALGORITHM

The objective of the pushback algorithm is to estimate
the period for which the channel will remain in a poor
state and defer retransmissions accordingly in order to con-
serve energy. In addition, the algorithm must provide similar
throughput as CSMA for a reduced number of transmission
attempts.

The proposed pushback algorithm is based on CSMA. If a
transmission is successful, the next transmission is scheduled

0 5 10 15 20 25
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Skipped Time Slots on Packet Loss (k)

A
ct

ua
l
an

d
T

he
or

et
ic

al
P

SR

Actual PSR

Theoretical PSR Fit

Fig. 4. Comparison of the actual PSR gain achieved by our pushback
algorithm and the theoretical fit using (7).

by CSMA. However, in case of a failed transmission, the next
transmission is pushed back by k slots after which CSMA
takes effect. Note that a pushback “slot” is a packet slot, i.e.,
the time it takes to transmit a packet. Therefore it is different
from the contention slot of CSMA. Also, even though the
value of k is generated deterministically, the randomness of
the backoff period (in contention slots) of CSMA avoids
persistent pushbacks caused by local synchronization of
nodes due to similar channel conditions.

When nodes boot up, an initial value kinit is assigned to
k, and then k is recalculated periodically each time the m-
th (predefined) transmission failure happens using a simple
mechanism based on the estimates of the channel parameters
and throughput constraint. Our computation is both practical
to implement and is also shown to perform well using
simulations in Section V.

The proposed mechanism for computing k is based on
the formulation presented in Section III. First, k is set to an
initial value kinit, and based on the ACK-level observations of
success and failure in the recent past, a maximum likelihood
(ML) estimation of parameters α and p is made. In fact,
estimating the transition probabilities of the Markov chain
(parameters x and y in Fig. 3) is sufficient for the desired
ML estimation. Indeed, given the ML estimates x̂ and ŷ (of
x and y respectively), we show in the technical report [31]
that the solution (α̂, p̂) to the system of Equations (5) and
(6) gives the ML estimates of α and p which characterize
the channel. In addition, to ensure that a node can sustain
the incoming rate of packets, the computation of k must take
the incoming packet rate into account. We use the running
average of the incoming packet rate, ρnew = γ/te+(1−γ)ρold,
to represent the throughput constraint. Here ρnew (ρold) is
the new (previous) estimate of the throughput requirement,
te is the time elapsed since the last packet arrival and γ is
smoothing factor. Using ρnew (throughput constraint), α̂ and
p̂, Equation (9) can be used to compute the new value of k.

To avoid the complexity of direct computation of k, we

TABLE II

LOOKUP TABLES USED IN THE PUSHBACK ALGORITHM.

Table Equations Purpose
Tα(x, y, k) Eqns. (5), (6) To compute α for given x, y and k.
Tk(p, α, ρ) Eqn. (9) To compute k for given p, α and ρ.

propose the use of look-up tables. The first table Tα̂(x, y, k)
contains the values of α̂ corresponding to k and discretized
x and y. The second table Tk(p̂, α̂, ρ) contains the values of
ρ(k) corresponding to k and discretized α and p. A brief
description of the various tables used is given in Table II.
These tables will not change during the operation of the node,
so they can be computed offline and uploaded. The available
storage spaces on the nodes will determine the size of the
tables. From our experimental experience, it should suffice to
have a 10×20×20 table. For instance, this table can have 10
values of k (2 to 11), 20 values of p (0 to 0.95 in increments
of 0.05) and 20 values of α (0 to 0.95 in increments of
0.05). These numbers could be stored as integers between 0
and 100. Hence, the two tables would take 8K bytes.

In summary, upon the m-th transmission failure, function
Pushback() (Algorithm 1) is called. In this algorithm, The
ML estimates x̂ and ŷ are calculated in lines 3 and 4. A table
lookup is employed to find the value of α̂ corresponding
to x̂, ŷ and k, and then p̂ can be calculated according to
Equation (5). Finally the pushback period k is estimated
using another table lookup with the appropriate values of
p̂, α̂ and ρ.

Algorithm 1: Pushback()

if (failureCount = m) then1

failureCount← 0;2

x̂← Number of S→F transitions
Total number of stays in S states ;3

ŷ ← Number of F→F transitions
Total number of stays in F states ;4

α̂← Tα̂(x̂, ŷ, k);5

p̂← x̂/(1− α̂);6

k ← Tk(p̂, α̂, ρ);7

end8

Delay the retransmission for k slots;9

A. Remedial Mechanisms

The pushback algorithm above can work well if the real
packet loss pattern is captured well by our channel model in-
troduced earlier and the transition probabilities are accurately
measured. However, either of them may deviate from reality,
in which case the throughput may not be maintained if k is
chosen too aggressively. Hence, we introduce two remedial
mechanisms to solve such problems.

1) Measuring Actual Pushback Amount: In our pushback
algorithm, the delay amount, k slots, is calculated according
to the state transition probabilities and the throughput con-
straint. However, after delaying k slots, nodes may need to
delay their retransmissions further due to contentions from

other senders. This could lead to the loss in throughput
since the delaying amount is longer than expected by the
model. Hence, the running average of the difference between
the calculated delay amount and the actual delay amount is
maintained, and subtracted from the newly calculated k.

2) Controlling the Pushback Amount at the Interface
Queue: Once our channel model deviates from the actual
channel, simply adjusting the k as in Section IV-A.1 may
still not work very well. To cope with such situations, we let
the interface queue impose a pushback control policy to speed
up the packet forwarding once the queue is excessively built
up. This policy simply commands the pushback algorithm
to fall back to CSMA (using k = 1) if the queue length is
above a certain threshold. In our evaluations, this value is set
to half of the queue capacity.

V. SIMULATION EVALUATION

We conduct simulations in ns2 [32] to compare the per-
formance of our pushback algorithm with plain CSMA with
and without binary exponential backoff in wireless sensor
networks. Here the CSMA without exponential backoff (de-
noted as CSMA) simulates BMAC, the default MAC layer
protocol, while CSMA with exponential backoff (denoted as
CSMA/EB) represents other general CSMA protocols. We
also study the performance improvement when the pushback
algorithm works jointly with other congestion control mecha-
nisms such as based on rate control and back-pressure. In this
section, the radio propagation model used in our simulations
is introduced, followed by the simulation results.

A. Radio Model

The CSMA (MAC and PHY) protocol simulated in ns2 has
two shortcomings. First, it fails to consider interference from
nodes outside the carrier sensing range. However, the cumu-
lative interference from more than one node sufficiently far
away may still affect packet receptions. Second, it does not
calculate the packet loss probability according to the Signal-
to-Noise Ratio (SNR). In our simulations, we extended the
physical layer of ns2 to combine all sources of noise and
interference to calculate the SNR and then use Equation (9)
in [33] to calculate the packet success rate.

In our simulations, we use a radio propagation model based
on the shadowing model implemented in ns2. Consequently,
the received power level at a receiver is determined by

[
Prec(d)
P rec(d0)

]
dB

= −10β log
(

d

d0

)
+ XdB,

where Prec(d) is the received power at this receiver which
is at a distance d away from the sender, β is the path loss
exponent, P rec(d0) is the average received power level at a
reference distance d0, and XdB is a Gaussian random variable
with mean 0 and standard deviation σdB (called shadowing
deviation).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.15 0.1 0.05

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Data Rate (Packets/Second)

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0

 5

 10

 15

 20

 0.2 0.15 0.1 0.05

E
ne

rg
y

T
ax

Data Rate (Packets/Second)

Pushback
CSMA/EB

CSMA

(b) Energy Tax

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0.2 0.15 0.1 0.05

T
hr

ou
gh

pu
t

Data Rate (Packets/Second)

Pushback
CSMA/EB

CSMA

(c) Throughput

 0

 10

 20

 30

 40

 50

 60

 0.2 0.15 0.1 0.05

N
or

m
al

iz
ed

 D
el

ay

Data Rate (Packets/Second)

Pushback
CSMA/EB
CSMA

(d) Normalized Delay

Fig. 5. Simulation results for various data rates.

In standard ns2, XdB is independent for different packets.
However, XdB usually varies according to some random pro-
cess (see e.g., [33] [34]) and we use an order 1 autoregressive
model (AR(1)) as follows.

XdB(t) = φXdB(t− 1) + Z(t),

where φ is called the channel coherence coefficient which
quantifies the memory in channel variations and Z(t), the
error term, is independently and identically distributed with
normal distribution N (0, σ2

Z). To make the variance of
XdB(t) independent of φ, we choose σZ = σdB

√
1− φ2.

In our simulations, the time is discretized such that 1 slot
is roughly equal to the average time to transmit a packet,
and the value of XdB(t) is constant within a time slot. Note
that in the modified shadowing model, if the autoregression
coefficient φ = 0, then the model just falls back to the default
shadowing model provided by ns2. In our evaluation we also
study the impact of different values of the channel coherence
coefficient, φ.

B. Simulation Evaluations

We conduct simulation evaluations on our pushback algo-
rithm in data gathering networks. The node located at one
corner of the area serves as the sink, while all other nodes
generate data periodically to be sent to the sink. We evaluate
the performance of all three protocols (CSMA, CSMA/EB

and CSMA/EB with Pushback) under different data rates,
channel coherence coefficients φ, and network sizes. We also
show that Pushback can be used to enhance the performance
of rate control and backpressure based algorithms. Additional
results for different shadowing deviations, node densities in
grid and random topology, and packet sizes can be found
in the technical report [31]. The metrics focused on in this
study include the following four.

• Throughput: number of packets received at the sink in
500 seconds.

• Packet success rate (PSR): average success rate for
each transmission attempt in the network.

• Energy tax: average number of transmissions needed to
deliver one packet to the sink.

• Normalized delay: average delay per hop.

Each set of simulations is carried out for 10 times with dif-
ferent random seeds, and the error bar denoting the minimum
and maximum values of each simulation set is also plotted.
In all simulations, the default parameter values simulating
the XSM nodes [35] are summarized in Table III.

1) Data Rates: The pushback algorithm takes advantage
of the flexibility provided by nodes that can afford to delay
the retransmissions (e.g., the ones away from the sink)
without reducing the throughput. On the other hand, some
nodes (e.g., those close to the sink) may have very small room

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Coherence Coefficient

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ne

rg
y

T
ax

Coherence Coefficient

Pushback
CSMA/EB

CSMA

(b) Energy Tax

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
hr

ou
gh

pu
t

Coherence Coefficient

Pushback
CSMA/EB

CSMA

(c) Throughput

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
or

m
al

iz
ed

 D
el

ay

Coherence Coefficient

Pushback
CSMA/EB

CSMA

(d) Normalized Delay

Fig. 6. Simulation results for various channel coherence coefficients φ in a 5 × 5 network.

TABLE III

SIMULATION PARAMETERS

Packet Size 100 bytes Ack Size 5 bytes
Bandwidth 19.2 Kbps Transmit Power 0 dBm
Backoff Slot 0.4167 µs Pushback Slot 18.33 ms
β 4 [33] σdB 4
φ 0.8 Data Rate 0.1 packet/sec.
Number of nodes 25 (5 × 5) Node separation 45 m

for pushback (i.e., k ≈ 1) since they need to accommodate
higher data rates. In this section, we evaluate the pushback
algorithm for data generation rate at each non-sink node
varying from 0.01 packets/second (pps) to 0.2 pps. Fig. 5
shows the simulation results, from which it can be observed
that when data rate is low (< 0.15 pps in this case),
the pushback algorithm can improve the PSR by 51% and
71% when compared to CSMA/EB and CSMA respectively.
Observe that the network throughput is saturated beyond 0.15
pps data rate. For even higher data rates, the improvement in
PSR is smaller, but the throughput is higher than the CSMA
protocols. This implies that with pushbacks the queue drop
rates are reduced. Similar improvement in energy tax can
also be observed. Note that for data rates higher than 0.18
pps the queuing delay caused by the pushback algorithm
results in higher normalized delay. The queuing delay is also
caused due to the higher throughput provided by pushback. In

this region, the network’s capacity is reached, as depicted by
the throughput curve. If applications can tolerate delay then
even at data rates beyond the network’s capacity, pushback
is preferable over CSMA protocols.

2) Channel Coherence Coefficient: The pushback algo-
rithm is very effective in the presence of temporal correlation
in channel losses. Such correlations may be caused by
channel coherence or correlated interference. In this section,
we evaluate the performance of the pushback algorithm
under channel coherence coefficients φ ranging from 0 to
0.8. Fig. 6 shows the simulation results. It can be seen
that by utilizing the pushback algorithm, the improvement
in PSR over CSMA/EB is between 46% to 63%, and it
increases with φ. Similarly, there is a reduction in energy tax
between 33% to 38%, which increases with φ. Meanwhile,
the throughput is maintained, and even though the latency
is higher, the difference is small for large φ. As expected,
the pushback algorithm is more effective when the channel
is more coherent. The results also show that even in case of
low channel coherence, our pushback algorithm can bring
significant benefit in PSR and energy tax.

3) Network Size: The benefit of the pushback algorithm
depends on the amount of delay nodes can afford before
retransmissions as discussed in Section V-B.1. In a large
network, even though the rate of data generated at each node

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 10 20 30 40 50 60 70 80 90 100

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Network Size

Pushback
CSMA/EB

CSMA

(a) Packet Success Rate

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50 60 70 80 90 100

E
ne

rg
y

T
ax

Network Size

Pushback
CSMA/EB
CSMA

(b) Energy Tax

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t

Network Size

Pushback
CSMA/EB

CSMA

(c) Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 D
el

ay

Network Size

Pushback
CSMA/EB

CSMA

(d) Normalized Delay

Fig. 7. Simulation results for various network sizes.

may be low, the cumulative data rates at nodes close to the
sink may still be high. Hence, we evaluate the pushback
algorithm for various network sizes in this section. We vary
the number of rows and columns in a grid network from 2 to
10 (i.e., the network size varies from 4 to 100 nodes) while
keeping other parameters fixed as in Table III. The results are
shown Fig. 7. One can observe that the pushback algorithm
can bring the most benefit in PSR when the network size is
smaller than 64. For larger networks, the pushback algorithm
can still provide overall improvement due to the relatively
lower data rates at nodes not in the hot-spots. Throughput
for large network sizes can also be improved even though
the delay is higher due to the queuing delay for delivering
more packets.

4) Cooperation with Rate Control and Back Pressure:
Many link layer protocols [12]–[15] use packet rate control
and back-pressure techniques to mitigate the congestion in
the network. These techniques can work in conjunction with
and benefit from the pushback algorithm. To show this,
we implement and test the rate limiting and back-pressure
mechanisms (denoted as RC/BP) proposed in [13] along with
the pushback algorithm. Fig. 8(a) and 8(b) show the PSR and
energy tax when CSMA/EB and RC/BP are used with and
without the pushback algorithm under different data rates.
It can be seen that the two metrics have similar variation

trends as in Fig. 5, which shows that the pushback algorithm
can still bring significant benefit when other congestion
control mechanisms are used in conjunction. The results for
throughput and delay (Fig. 8(c)-(d)) also show similar trends
as in Fig. 5.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper introduces a channel aware transmission push-
back mechanism to optimize energy efficiency. Using a
simple but effective packet loss model, this approach does
not incur high computational overhead on the sensor nodes.
Using simulations we show that the pushback algorithm
can significantly improve the packet success rate and the
energy tax without degrading the throughput. In addition,
this algorithm is easy to implement over existing MAC and
link layer protocols. Hence, we conclude that the pushback
algorithm is highly suitable for energy constrained wireless
sensor networks.

Future research directions based on the concepts intro-
duced in this paper are described below.

Push-Backs in Other Networks: This paper has focused
on the application of the novel concept of pushbacks in
the context of sensor networks. However, the concept of
pushbacks when applied to other networking scenarios such
as ad-hoc networks and mesh networks, can be used to opti-
mize other parameters such as the number of transmissions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.15 0.1 0.05

Pa
ck

et
 S

uc
ce

ss
 R

at
e

Data Rate (Packets/Second)

Pushback+RC/BP
RC/BP

(a) Packet Success Rate

 0

 5

 10

 15

 20

 0.2 0.15 0.1 0.05

E
ne

rg
y

T
ax

Data Rate (Packets/Second)

Pushback+RC/BP
RC/BP

(b) Energy Tax

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0.2 0.15 0.1 0.05

T
hr

ou
gh

pu
t

Data Rate (Packets/Second)

Pushback+RC/BP
RC/BP

(c) Throughput

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0.2 0.15 0.1 0.05

N
or

m
al

iz
ed

 D
el

ay

Data Rate (Packets/Second)

Pushback+RC/BP
RC/BP

(d) Normalized Delay

Fig. 8. Simulation results for the cooperation of the pushback algorithm and RC/BP.

In these networks, reduced interference due to reduction in
number of transmission is expected to result in increased
throughput.

Joint Optimization of Transmission Parameters: In
this work we have used channel quality prediction to ap-
propriately delay transmissions. However, channel quality
prediction can be used to adjust other parameters such as
physical layer data rate, transmission power, and carrier-sense
threshold, some of which are inter-related.

VII. ACKNOWLEDGMENTS

This material is based upon work partially supported
by the National Science Foundation under Grants CNS-
0546630 (CAREER Award), CNS-0721434, CNS-0721817
and CNS-0403342. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

APPENDIX I
DERIVATION OF THE CONDITIONAL PROBABILITIES

In this section we derive the conditional probabilities of a
wide-sense Markov process given in Eqns. (1)–(4). A wide-
sense Markov process has an exponential autocovariance
function. In our analysis, we assume that the autocovariance

function is of the form KA(m) = p(1− p)α|m| and the un-
conditioned probability of failure (P (An = F)) and success
(P (An = S)) are p and 1− p respectively.

First, we derive the probabilities conditioned on failure,
i.e., Eqns. (3) and (4). To facilitate the evaluation of the
expectation, we code the event of Failure (F) as ‘1’ and the
event of Success (S) as ‘0’. Covariance is defined as,

KA(m) = E[An+mAn]− E[An+m]E[An]

=
∑

x∈An+m

∑
y∈An

xyP (An+m = x|An = y) P (An = y)

−
∑

x∈An+m

xP (An+m = x)
∑

y∈An

yP (An = y)

=
∑

x∈{0,1}

∑
y∈{0,1}

xyP (An+m = x|An = y) P (An = y)

−
∑

x∈{0,1}
xP (An+m = x)

∑
y∈{0,1}

yP (An = y)

= P (An+m = 1|An = 1) p− p2. (10)

For m ≥ 0, we can compare Eqn. (10) to the autocovariance
function for a wide-sense Markov process,

KA(m) = p(1− p)αm = P (An+m = 1|An = 1) p− p2,

to get Eqn. (3) or P (An+m = 1|An = 1) =
p + (1 − p)αm. Using the fact, P (An+m = 0|An = 1) =

1 − P (An+m = 1|An = 1), we get Eqn. (4) or
P (An+m = 0|An = 1) = 1− p− (1− p)αm.

To derive the probabilities conditioned on success, i.e.,
Eqns. (1) and (2), we follow the same steps with minor
modifications. In this case, we code the event of Success (S)
as ‘1’ and the event of Failure (F) as ‘0’. From the definition
of Covariance, we get,

KA(m) = p(1− p)αm

= P (An+m = 1|An = 1) (1− p)− (1− p)2. (11)

On simplification of Eqn. (11), we get Eqn. (2) or
P (An+m = 1|An = 1) = 1 − p(1 − αm). Finally,
P (An+m = 0|An = 1) = 1 − P (An+m = 1|An = 1) gives
Eqn. (1) or P (An+m = 0|An = 1) = p(1− αm).

REFERENCES

[1] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of
reliable multihop routing in sensor networks,” in Proc. of ACM SenSys,
Oct. 2003, pp. 14–27.

[2] J. Zhao and R. Govindan, “Understanding Packet Delivery Perfor-
mance in Dense Wireless Sensor Networks,” in Proc. of ACM SenSys,
Oct. 2003, pp. 1–13.

[3] A. Willig, M. Kubisch, H. Christian, and A. Wolisz, “Measurements
of a Wireless Link in an Industrial Environment Using an 802.11-
Compilant Physical Layer,” IEEE Trans. Ind. Electron., vol. 49, no. 6,
pp. 1265–1282, Dec. 2002.

[4] A. Kamerman and L. Monteban, “WaveLAN II: A High-performance
Wireless LAN for the Unlicensed Band,” in Bell Labs Technical
Journal, vol. 2, no. 3, 1997, pp. 118–133.

[5] G. Holland, N. Vaidya, and P. Bahl, “A Rate-Adaptive MAC Protocol
for Multi-Hop Wireless Networks,” in Proc. of ACM MOBICOM, Jul.
2001, pp. 236–251.

[6] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knighlty, “Opportunistic
Media Access for Multirate Ad Hoc Networks,” in Proc. of ACM
MOBICOM, Jul. 2002, pp. 24–35.

[7] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust Rate
Adaptation for 802.11 Wireless Networks,” in Proc. of ACM MOBI-
COM, Sept. 2006, pp. 146–157.

[8] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A Short
Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks,”
in Proc. of ACM SenSys, Nov. 2006, pp. 307–320.

[9] S. Liu, K.-W. Fan, and P. Sinha, “CMAC: An Energy Efficient MAC
Layer Protocol Using Convergent Packet Forwarding for Wireless
Sensor Networks,” in Proc. of IEEE SECON, Jun. 2007.

[10] W. Ye, J. Heidemann, and D. Estrin, “Medium Access Control
with Coordinated Adaptive Sleeping for Wireless Sensor Networks,”
IEEE/ACM Trans. Networking, vol. 12, no. 3, pp. 493–506, Jun. 2004.

[11] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An Adaptive
Energy-Efficient and Low-Latency MAC for Data Gathering in Wire-
less Sensor Networks,” in Proc. of IPDPS, Apr. 2004, pp. 224–231.

[12] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell, “CODA: Congestion
Detection and Avoidance in Sensor Networks,” in Proc. of ACM
SenSys, Oct. 2003, pp. 266–279.

[13] B. Hull, K. Jamieson, and H. Balakrishnan, “Mitigating Congestion in
Wireless Sensor Networks,” in Proc. of ACM SenSys, Nov. 2004, pp.
134–147.

[14] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis,
“Interference-aware Fair Rate Control in Wireless Sensor Networks,”
in Proc. of ACM SIGCOMM, Sept. 2006, pp. 63–74.

[15] C. Lim, H. Luo, and C.-H. Choi, “RAIN: A Reliable Wireless Network
Architecture,” in Proc. of IEEE ICNP, Nov. 2006, pp. 228–237.

[16] M. Heusse, F. Rousseau, R. Guillier, and A. Duda, “Idle Sense: An
Optimal Access Method for High Throughput and Fairness in Rate
Diverse Wireless LANs,” in ACM SIGCOMM, Nov. 2005, pp. 134–
147.

[17] B. Prabhakar, E. U. Biyikoglu, and A. E. Gamal, “Energy-Efficient
Transmission over a Wireless Link via Lazy Packet Scheduling,” in
Proc. of IEEE INFOCOM, Apr. 2001, pp. 386–394.

[18] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC
Procotol for Wireless Sensor Networks,” in Proc. of ACM SenSys, Nov.
2003, pp. 171–180.

[19] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access
for Wireless Sensor Networks,” in Proc. of ACM SenSys, Nov. 2004,
pp. 95–107.

[20] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica,
“A Unifying Link Abstraction for Wireless Sensor Networks,” in Proc.
of ACM SenSys, Nov. 2005, pp. 76–89.

[21] M. Zorzi and R. R. Rao, “Geographic Random Forwarding (GeRaF) for
Ad Hoc and Sensor Networks: Multihop Performance,” IEEE Trans.
Mobile Comput., vol. 2, no. 4, pp. 337–348, Oct. 2003.

[22] ——, “Geographic Random Forwarding (GeRaF) for Ad Hoc and
Sensor Networks: Energy and Latency Performance,” IEEE Trans.
Mobile Comput., vol. 2, no. 4, pp. 349–365, Oct. 2003.

[23] S. Jain and S. R. Das, “Exploiting Path Diversity in the Link Layer
in Wireless Ad Hoc Networks,” in Proc. of WoWMoM, Jun. 2005, pp.
22–30.

[24] R. R. Choudhury and N. H. Vaidya, “MAC-Layer Anycasting in
Ad Hoc Networks,” SIGCOMM Computer Communication Review,
vol. 34, no. 1, pp. 75–80, Jan. 2004.

[25] J.-G. Choi and S. Bahk, “Channel aware MAC scheme based on
CSMA/CA,” in Proc. of IEEE VTC’04-Spring, May 2004, pp. 1559–
1563.

[26] P. Papadimitratos, A. Mishra, and D. Rosenburgh, “A cross-layer
design approach to enhance 802.15.4,” in Proc. of IEEE MILCOM,
Oct. 2005, pp. 1719–1726.

[27] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J.,
vol. 39, pp. 1253–1266, Sept. 1960.

[28] B. D. Fritchman, “A Binary Characterization Using Partitioned Markov
Chains,” IEEE Trans. Inform. Theory, vol. 13, no. 2, pp. 221–227, Apr.
1967.

[29] W. Turin and M. M. Sondhi, “Modeling Error Sources in Digital
Channels,” IEEE J. Select. Areas Commun., vol. 11, no. 3, pp. 340–
347, Apr. 1993.

[30] A. Arora, E. Ertin, R. Ramnath, W. Leal, and M. Nesterenko, “Kansei:
A High-Fidelity Sensing Testbed,” IEEE Internet Computing, vol. 10,
no. 2, pp. 35–47, Mar. 2006.

[31] S. Liu, R. Srivastava, C. E. Koksal, and P. Sinha, “Optimizing
Energy Consumption with Transmission Pushbacks in Sensor
Networks,” Technical Report, Department of Computer Science and
Engineering, Ohio State University, Feb. 2008. [Online]. Available:
http://www.cse.ohio-state.edu/∼prasun/publications/tr/pushback.pdf

[32] “The Network Simulator – ns-2,” http://www.isi.edu/nsnam/ns/.
[33] M. Zuniga and B. Krishnamachari, “Analyzing the Transitional Region

in Low Power Wireless Links,” in Proc. of IEEE SECON, Oct. 2004,
pp. 517–526.

[34] T. S. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Prentice Hall, 2001.

[35] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design of
a Wireless Sensor Network Platform for Detecting Rare, Random, and
Ephemeral Events,” in Proc. of IPSN, Apr. 2005, pp. 497–502.

