
May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

Achieving Fairness in Multiplayer Network Games through
Automated Latency Balancing

Sebastian Zander
Centre for Advanced Internet

Architectures

Swinburne University of Technology

Melbourne, Australia

+61 3 9214 4835

szander@swin.edu.au

Ian Leeder1
Centre for Advanced Internet

Architectures

Swinburne University of Technology

Melbourne, Australia

+61 3 9214 8089

i_leeder@hotmail.com

Grenville Armitage
Centre for Advanced Internet

Architectures

Swinburne University of Technology

Melbourne, Australia

+61 3 9214 8373

garmitage@swin.edu.au

ABSTRACT

Over the past few years, the prominence of multiplayer network

gaming has increased dramatically in the Internet. The effect of

network delay (lag) on multiplayer network gaming has been

studied before. Players with higher delays (whether due to

slower connections, congestion or a larger distance to the server)

are at a clear disadvantage relative to players with low delay. In

this paper we evaluate whether eliminating the delay differences

will provide a fairer solution whilst maintaining good gameplay.

We have designed and implemented an application that can be

used with existing network games to equalize the delay

differences. To evaluate the effectiveness of the approach we use

a novel method involving computer players (bots) instead of

human players. This method provides some advantages over

difficult and time-consuming human usability trials. We show

that bots experience similar unfairness problems as humans and

demonstrate that the application we have developed significantly

improves fairness.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

System – Distributed Applications; C.4 [Performance of

Systems]: Measurement Techniques

General Terms

Algorithms, Measurement, Human Factors.

Keywords

Multiplayer Network Games, Fairness, Delay

1. INTRODUCTION
Over the past few years, the prominence of multiplayer network

gaming has increased dramatically. There has been a substantial

growth in the popularity of network games, growth in the

prevalence of game traffic on the Internet [1], and the emergence

of network games as an important consideration from a business

viewpoint [2]. Computer gaming competitions have become

popular and comparable to high-level sporting competitions

including prize money, television coverage, and the chance of a

title [3].

Fairness is the “quality of treating people equally or in a way

that is right or reasonable” [4]. It is a difficult concept to define,

especially in terms of game playing. We focus on fairness

related to network quality differences between players in terms

of network delay, jitter and packet loss. Previous work has

shown that latency differences between players can lead to

unfairness in fast-paced First Person Shooter (FPS) games (e.g.

[5], [6]). The authors of [6] have also found a similar effect for

loss but of a much smaller magnitude. To our best knowledge

the effect of jitter on multiplayer network games has not yet

been sufficiently studied. Therefore in this paper we focus on

delay but our proposed approach could be applied in a similar

manner to jitter and loss. In this paper we use the term ‘fairness’

but in game design often the term ‘balance’ is used instead.

Imagine large-scale international competitions with players from

different countries (as illustrated in Figure 1). The players will

likely have very different delays to the server. This is just one

(admittedly high profile) situation where a fair game server is

required. Ideally, every game server should be fair, regardless of

each player’s location or connection. In fact unfairness caused

by delay differences is one of the reasons why most serious

competitions still take place in local networks (LANs).

The Internet

Game Server - UK

Clients - USA

Clients - Australia

Figure 1: Example of delay-affected games

1 Ian Leeder worked at CAIA during an R&D student project

117

May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

Delay is a consequence of many factors – geographical location

(propagation delay), access technology (e.g. ADSL, ISDN or dial-

up) and transient network conditions (such as congestion). Proper

traffic engineering or Quality of Service (QoS) mechanisms can

help avoid network congestion and access technologies can be

delay optimized (e.g. by enabling ‘fast path’ for ADSL).

However, the propagation delay would still depend on the

geographical distance between the communicating parties because

information cannot travel faster than the speed of light.

The motivation behind this work is a desire for fair network game

servers. Everyone seeks (and demands) a fair chance in any

competition, and playing a FPS is exactly that: a game competing

for score, respect and acknowledgement of skill. To mitigate the

fairness problem in the case of delay differences caused by the

network we have developed the Self-Adjusting Game Lagging

Utility (SAGLU). SAGLU is a game-independent application that

attempts to equalize the delay differences by constantly measuring

network delays and adjusting players’ total delays by adding

artificial lag.

To conclusively demonstrate the effectiveness of our approach it

would be necessary to conduct usability trials with human players.

However, as discussed in [6] usability trials with human players

are resource-intensive and difficult. Great care must be taken

when designing such experiments. In this paper we explore a

different and novel approach, which we consider as a preliminary

alternative to human usability trials. We use client-side computer

players (bots) that simulate human players. These bots have a

number of limitations and we should not extrapolate too much

from their behaviour. However, bots experience similar unfairness

effects as human players in case of delay differences and have

some advantages: bots are predictable in that they never change

their playing style, they have truly equal skills (assuming the same

configuration), they are easy to control and can easily perform a

large number of experiments (without getting tired). To test the

effectiveness of our proposed approach we have carried out

several experiments. We show that client-side bots are affected by

network delay (differences) similar to human players and

demonstrate that the use of SAGLU significantly increases the

fairness in games.

The remainder of the paper is structured as follows. Section 2

provides an overview about related work. Section 3 defines our

notion of fairness. Section 4 describes the application we have

designed and implemented. Section 5 provides the rationale

behind the idea of using bots and Section 6 presents the

experimental results. Section 7 concludes and outlines future

work.

2. RELATED WORK
In [5] the latency tolerance of Quake 3 players was empirically

established to be between 150ms and 180ms and it was shown

that the average number of kills decreases with increasing latency.

Similar studies of the user latency sensitivity for Half-Life show

players would not play when latencies are above 225-250ms and

that the number of kills significantly decrease with increasing

delay ([7], [8]). In [5], [7] and [8] the user sensitivity is inferred

by observing the behaviour (e.g. average time on the server,

average kill rate) of a large number of users playing FPSs on

public servers. While [5] and [7] passively analyse the user

behaviour in the face of uncontrolled (normal) network delay, [8]

also explores the effect of adding variable levels of artificial delay

at the server. In [9] the effects of latency on user performance

have been investigated for the Real Time Strategy (RTS) game

Warcraft III. The authors find that the performance is not

significantly affected by delays ranging from hundreds of

milliseconds to several seconds because the nature of RTS

emphasizes strategy more than highly interactive aspects.

The use of public game servers limits a researcher’s ability to

assess player perceived quality in the face of delay and packet loss

because the network conditions cannot be exactly controlled and

the players cannot be asked about their opinion. Therefore some

researchers have conducted usability trials. In [6] two of the

present authors investigate the effects of delay and loss on players

playing Quake 3 and Halo 1. They also show that different delays

can lead to unfairness. Similar work in [10] and [11] investigates

the effect of loss and delay on users playing Unreal Tournament

2003. The authors of [12] measured the influence of delay on

users playing a simple arcade-style game. The authors of [13]

have surveyed players to find out what they think about the

Internet.

To the best of our knowledge not many papers exist that deal with

fairness in multiplayer computer games. The authors of [14]

present a framework for message delivery in real-time multi-

player distributed client-server games that attempts to remove the

unfair advantage that players with smaller message delays have

over players with large message delays. In contrast to [14] we do

not define a new framework but rather aim to develop a solution

that can improve the fairness for existing FPS games such as

Quake or Half-Life.

The implementation of SAGLU is based on the experience

gathered with a similar tool we have developed earlier. The

Internet Game Lagging Utility (IGLU) [15] was written for the

purpose of deterring cheaters on a game server. The idea is that

arbitrary delays could be applied, simulating a bad network

connection and encouraging cheaters to leave of their own accord

instead of having to kick or ban them.

3. FAIRNESS
Fairness refers to all players having equal playing conditions. In

this paper we only focus on fairness related to network quality

differences between players. In previous work it has been shown

that different delays between clients and the server can lead to

unfairness (see [5], [6]) giving an edge to players with low delay.

Work in [6] also found a similar effect for loss but of a much

smaller magnitude. To our best knowledge nobody has yet

investigated the influence of jitter. The authors of [16] show that

it is difficult to separate between jitter and delay, and work in [17]

found that the emulation of jitter is problematic making usability

trials difficult. Therefore we focus on delay as the metric of

interest. This approach is consistent with other previous work that

has identified delay as the most important performance metric for

FPS games [18]. However, for a more comprehensive analysis of

fairness, other factors such as packet loss rate and jitter should be

taken into consideration.

How can fairness be evaluated? In its simplest form, it requires to

observe how well two players compete against each other under

equal playing conditions, and then compare their performance

under different circumstances. Conveniently enough game servers

already keep track of a player’s performance. The number of kills

118

May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

(also called frags) per minute can be used as a metric measuring a

player’s performance. By comparing the performance across

different test conditions, fairness can be evaluated.

We define a game as fair if the performance of each player does

not depend on network delay differences. We define kp as the kill

rate of player p, which has a delay dp to the server. Then the mean

kill rate of a group of P players with delays dp approximately

equal to d is:

()
()

p pk d
d

P
µ =

∑
 where p pd d∀ − < ε for small ε (1)

In our experiments we control dp making sure that we have

distinctive groups of player that have similar delays and the delay

of different groups differs significantly. A game is fair if there is

no statistical significant difference between the mean kill rates of

different player groups. We can test this using hypothesis testing.

Assuming two player groups with different kill rate means µ1 and

µ2 the null hypothesis H0 and the alternative hypothesis HA are:

0 1 2 1 2: 0, : 0AH Hµ − µ = µ − µ > (2)

If we cannot reject the null hypothesis we can conclude that a

game was fair. In the case of more than two player groups pair-

wise tests would be required. This fairness definition assumes we

can exclude other influencing factors. Our approach of using bots

instead of human players helps us to achieve this goal because

under equal network conditions all bots should perform equally

well when comparing the means of the kill distributions.

4. SAGLU IMPLEMENTATION
The Self-Adjusting Game Lagging Utility (SAGLU) [19] was

designed to sit between the game server and the clients, as

illustrated in Figure 2. SAGLU has been written in C++ for

FreeBSD and is a multithreaded program that uses the pthreads

library. It should be noted that an independent machine is not

required for SAGLU; it is perfectly capable of running on the

same machine as the game server. SAGLU can connect to

multiple game servers, polling them periodically to obtain

information about current game players and their associated IP

address, port and latency (ping).

Game Client

The Internet

SAGLU Game Server

Figure 2: Network configuration of SAGLU

Most multiplayer game servers provide an interface for gathering

real-time statistics about the currently running game. Everybody

knowing the IP address and port of a running server can access

this interface. Depending on the query the information returned

may relate to the server state (current map, administrator name,

etc.), or to the players on the server (player name, kills, ping).

Third-party software such as qstat [20] or gamespy [21] uses this

interface. However, this interface does not provide the IP

addresses and ports of game clients because that would introduce

a massive security problem e.g. players could easily launch Denial

of Service (DoS) attacks at rival players. But in order to create the

artificial delays SAGLU needs that information for each client.

Most game servers also provide a remote console (rcon) allowing

more information to be retrieved, or even commands to be

executed on the server. Once a password has been set on the game

server, an administrator can send rcon commands to the server

either via the game client (connected to the server), or via third-

party rcon programs. The rcon interface enables SAGLU to

retrieve the IP address and port of each player. This means that

SAGLU only be run by the administrator(s) of the game server

who have access to the rcon password.

Figure 3 shows the structure of SAGLU. We briefly describe each

functional component of SAGLU:

�

GameServer: Represents an actual multiplayer game server.

It keeps track of the players on that server, and any

information, which is specific to the current game being

played (GameType).

�

GameType: Every specific game that SAGLU knows how to

handle is represented as a GameType. Servers are polled in a

game-specific manner and the results stored in generic form

within SAGLU. This information includes the server name,

player names, IP addresses and ping times. Currently

SAGLU can query Quake 2, Quake 3, Enemy Territory and

Half-Life servers. Other servers can easily be added.

�

Player: The information for a player on the particular game

server, including the IP address and source port of the client,

the current latency between the client and the server etc.

�

TrafficShaper: An abstract interface to any software capable

of creating artificial delays, specifically the capability to add,

edit or delete rules affecting nominated IP packet flows.

�

DummyNet: Under FreeBSD SAGLU currently utilises

FreeBSD’s kernel-resident dummynet traffic shaper [22] to

create player specific artificial delay. (Under Linux SAGLU

could implement similar functionality e.g. with nistnet [23].)

�

Comms: The basic rcon functionality.

 SAGLU

GameServer

GameType

Player

Comms

Half-Life

Quake2

Quake3Arena

EnemyTerritory

n

TrafficShaper

DummyNet

n

Figure 3: Class diagram of SAGLU

119

May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

The algorithm for deciding how much delay to add, and how to

add it, is the core of SAGLU. This algorithm needs to make a

number of decisions:

1. How to determine the additional artificial delay. The

additional delay could be based on the highest player delay, a

percentage of the highest delay, the average of the highest

three delays, etc.

2. How that delay should be added. It could be added

immediately or ramped up linearly, exponentially, etc.

3. How often a player's network delay should be measured and

the additional delay should be adapted. This is a trade-off

between fairness and computational resources available.

It is not a good idea to add large delays to all players simply

because one player has a large delay or has dropped from the

game and the server is reporting a 999ms delay. As mentioned in

Section 2 experimental values have been discovered for the

maximum acceptable player delay, which (at the least) can be used

as an upper limit for the total delay.

The current implementation of SAGLU uses a rather simple

algorithm. In each adaptation cycle SAGLU obtains the network

delays of all players from the server and uses the highest delay

below the maximum tolerable delay as the target delay. Then it

utilizes the traffic shaper to add artificial delay (equal to the

difference between the target delay and each player’s delay) to all

players with less than the target delay. This part of the code is a

separate function, so it is a simple task to change the algorithm

with little knowledge of the rest of the code.

The adaptation frequency and maximum tolerable latency is

configurable separately for each server and game type (because

some games are more sensitive to network delay than others).

SAGLU also allows the administrator to configure both on a per

server basis (over-ruling the game specific settings). Some

existing game servers support excluding players from the server

that have a higher delay than a configured threshold. This could

be used to prevent players from joining a server when their delay

is larger than the maximum tolerable delay.

5. USING BOTS
Ideally, a human player’s response to SAGLU would be used to

determine if an increase in fairness can been achieved. Human

players would play under different emulated network conditions

and we would collect subjective measures (players’ opinion) and

objective measures of the players’ performance (kills, deaths).

Experiments would be done with SAGLU and without SAGLU

and we would compare if SAGLU significantly improves the

fairness. However, human responses are highly unpredictable and

can be influenced by a multitude of unforeseeable factors. Human

trials require a careful design and large amounts of tests to ensure

statistical reliability.

We use an alternative approach – computer-controlled players

(bots) rather than human players. There are two classes of bots:

server-side and client-side. The server-side bots are provided

standard with most current games, providing adversaries when not

enough human players are available. They are built straight into

the server, or can be added as patches/mods. These bots do not

run over the network and are therefore not influenced by network

delay. The second variant of bots, client-side bots, behaves like a

real game client. They are usually third-party programs designed

to emulate game clients. As such, the game server treats them as

real players, and like real players they send real network traffic.

The rationale is that client-side bots should be affected by

network delay similar to humans.

A problem with bots, especially client-side bots, is that they are

far less intelligent than human players. We compensate for this by

putting them a simple environment (map) where they can focus on

shooting other bots (deathmatch). We avoid large maps that

require complex navigation (e.g. lava pits, elevators). The

advantage of using bots is that we can eliminate a number of

human factors that could easily introduce bias in our studies. Such

bias could be avoided at the cost of precise design and large

sample size but the effort would be much higher. However, using

computer players to evaluate what is in essence a human aspect

introduces the questions of how bots react to delay and is their

reaction similar to that of human players?

Not only do we need to take into account how delay affects a bot,

but also how the bot reacts and/or adjusts its actions. For example,

bots are designed to compensate for delay, and predict where the

target will be in the future based on the current trajectory and

delay estimation. Obviously a human will also do this, but a bot

will have much higher precision predicting the future positions of

targets than most human players. Additionally a bot may see more

than human players. Research has shown that the bots (and this

means the game clients too) receive a 360˚ view of their current

position. A normal game client only displays what is ‘in front’ of

the player, but a bot could easily make use of this extra

information.

6. EVALUATION
First we describe our experimental setup and then we describe the

different experiments and present the results.

6.1 Experimental Setup
In our experiments we use Quake 2 version 3.13 for Linux [24].

Although Quake 2 is an older game and not played anymore we

have chosen it because a number of client-side bots exist for

Quake 2 [25]. For newer games no client-side bots exist because

game designers do not release the protocol specifications (to make

cheating more difficult). The release of the protocol specs for

Quake 2 has facilitated client-side bot development including

research in the area of Artificial Intelligence (AI) (e.g. [26]).

Although a number of client-side bots had been developed many

have disappeared from the Web and of the bots we were able to

download most did not work with our server (the bots either did

not connect or crashed shortly after they had connected).

In our experiments we use GoodBot 0.1 [27]. GoodBot only

supports line of sight movement, meaning it only moves when

opponents are in its line of sight. It does not provide any kind of

waypoint navigation, as most current server-side bots do. This

means the map must be small and simple. Although it is not

required that all bots can see each other all the time, there must be

sufficient line of sight between the bots to keep them moving.

GoodBot uses prediction including lag compensation when

aiming on its targets. When we observed the bot in the game it

became apparent that it moves faster than a real game client would

enable a player to move. From the source code we found that the

bot uses a fixed priority list for the weapons available in the game.

Similar to a human player it prefers more powerful weapons.

120

May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

Unfortunately some very powerful weapons such as the rocket or

grenade launcher have a devastating area effect. This is

undesirable for our experiments because explosive weapons

require much less accuracy, meaning a relatively high kill rate is

possible even with large delays.

With the abilities of the bot in mind we choose a suitable map that

is simple and does not contain powerful explosive weapons [28].

But the map contains one explosive weapon not on top of the bots

priority list (grenades). We use that to test our hypothesis that

with increasing delay weapons that require a more precise aim

will cause fewer kills.

For the experiments we use a single FreeBSD 2.4GHz PC with

1.25GB of RAM running the Quake 2 server, the client-side bots

and SAGLU. A problem we discovered when testing dummynet is

that rules using the loopback interface cause twice the configured

delay. The reason is that any packets going both to and from the

local machine will match the rule twice (see [22]). Therefore in

our tests we simply configured dummynet with half the desired

delay and adjusted SAGLU accordingly. To achieve a high

accuracy for the delay emulation we recompiled the FreeBSD

kernel with a tick-timer of 1000Hz (rather than the usual 100Hz).

All our experiments are 15-minute games with 4 bot players. In

the beginning of each game the bots join the server with a 1

second delay between each of them. (Initially we tried to join the

bots as quick as possible but discovered that this crashes the

server.) This does give the first bot an extra three seconds in the

game over the last bot, but over a 15-minute trial we assume that

to be negligible. There is no difference between the bots except

for the order in which they are added and their name. Once the

15-minute game trials were finished, we used kkrcon [29] to

retrieve the final scores from the server.

In all experiments we monitored the CPU utilization to make sure

there is no delay caused because of insufficient processing time.

In all our tests the total CPU utilization was below 70%.

6.2 Experimental Results

6.2.1 How do bots react to delay?
First we tested how the bots react to delay and how their

performance decreases with increasing delay. In this experiment

we use static symmetric (halve of the total delay in each direction)

delays of 100ms, 200ms and 400ms equal for all of the bots. We

recorded the kills for all bots playing 15 games.

0 100 200 300 400

0
2

4
6

8
1

0

Delay [ms]

M
e

a
n
 K

il
l
R

a
te

 [
1

/m
in

u
te

]

Fred
Tom
Harry
George

Figure 4: Mean kill rates of the different bots with static

delays

Figure 4 shows the mean kill rates of the different bots for

increasing delay. Although there are small differences in the kill

rate we find them not statistically significant at 99% confidence

level. Figure 5 shows the same experiment with dynamic

symmetric delays. We use the same mean values of 100ms, 200ms

and 400ms but the delay is randomly changed every second using

an exponential distribution.

0 100 200 300 400

0
2

4
6

8
1

0

Delay [ms]

M
e

a
n
 K

il
l
R

a
te

 [
1

/m
in

u
te

]

Fred
Tom
Harry
George

Figure 5: Mean kill rates of the bots with dynamic delays

With exponentially distributed dynamic delays the decrease in kill

rate is less severe than for the static delays. Similar to the last

figure there are small differences between the different bots but

they are not significant at 99% confidence level.

Figure 6 shows the normalized mean number of kills for all bots

over increasing static and dynamic delays. The lower and upper

ends of the error bars are one standard deviation away from the

mean. Because the kill rate not only depends on the players ability

but also on the map (size, available weapons) we have normalized

the kill rate and compare it with normalized results obtained from

[5] (figure 9, average rate of the three best players) and [6] (figure

8, average over both servers). The normalized kill rate is the kill

rate fraction players can achieve at certain delays based on their

maximum kill rate at zero delay.

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Delay [ms]

N
o

rm
a

li
z
e

d
 M

e
a

n
 K

il
l
R

a
te

Quake 2 Bots static
Quake 2 Bots dynamic
Quake 3 [5]
Quake 3 [6]

Figure 6: Normalized mean kill rate comparison of bots

playing Quake 2 and human players playing Quake 3

The figure shows that in case of dynamic delays the bots perform

very similar to human Quake 3 players whereas in case of static

delays they perform worse. However, in any case the trend is the

same for bots and humans: a constantly decreasing kill rate with

increasing delay.

We also recorded what weapons were effectively used to kill the

other bot players. Figure 7 shows the percentage of kills caused by

each weapon. As delay increases the percentage of kills due to

grenades (that have an area affect) is significantly increased as we

expected. The shotgun (which also requires less accurate aim

because of the spray effect) becomes somewhat more effective

than the machinegun at high delays.

121

May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

0 100 200 300 400

0
2

0
4

0
6

0
8
0

1
0

0

Delay [ms]

K
il
ls

 [
%

]

Shotgun
Blaster
Machinegun
Grenade

Figure 7: Percentage of kills caused by different weapons

Based on the results we conclude that the different bots on

average perform equally well and their performance decreases

with increasing latency. As expected, with large delays weapons

that have area effects and require less precise aiming caused more

kills.

6.2.2 How do bots react to delay differences?
Next we tested what happens when different bots experience

different delays. Since the bots were all running on the same

machine, the UDP traffic had to be separated by port. The port

number for each of the bots was obtained directly from the server

and used to create the dummynet rules. First we used static

symmetric delays where only two randomly chosen bots are

delayed while the other two experience no delay and recorded the

kills for all bots playing 15 games. Figure 8 shows the mean kill

rate of the bots without delay (non-lagged) and bots with delay

(lagged) and the standard deviation (error bars).

0 100 200 300 400

0
2

4
6

8
1

0

Delay [ms]

M
e

a
n
 K

il
l
R

a
te

 [
1

/m
in

u
te

]

Non-lagged
Lagged

Figure 8: Fairness with static delays

The graph clearly shows that there is a distinct difference in kill

rate between the non-lagged bots and the lagged bots. The bots

that experience no delay have a clear advantage over the delayed

bots. We use t-tests to check if the differences are statistically

significant. We find that for 100ms, 200ms and 400ms the

differences in the kill rate are statistically significant at 99%

confidence level (p-values: 0.002, 5.0e-10, 2.2e-16).

Figure 9 shows the same experiment with dynamic delays

(changing once per second) but the same mean values (see

previous section). The difference between non-lagged and lagged

bots is smaller as for the static delays but the t-tests show it is still

significant for 100ms, 200ms and 400ms at 99% confidence level

(p-values: 0.01, 0.002, 3.6e-10).

0 100 200 300 400

0
2

4
6

8
1

0

Delay [ms]

M
e

a
n
 K

il
l
R

a
te

 [
1

/m
in

u
te

]

Non-lagged
Lagged

Figure 9: Fairness with dynamic delays

Our results show that the bots experience delay differences similar

to human players in that the bots with lower delay have a clear

advantage over bots with larger delay. However, the difference

seems to be smaller than what was previously observed for human

players. We believe this is because the bot’s prediction algorithm

and lag compensation is better than that of most humans.

6.2.3 Can SAGLU achieve fairness?
We repeated both tests described in the previous section with

SAGLU enabled. We configured SAGLU with an adaptation

interval of 5 seconds and a maximum tolerable delay of 600ms.

Figure 10 shows the mean kill rates and standard deviations for

both players groups and static delays.

0 100 200 300 400

0
2

4
6

8
1

0

Delay [ms]

M
e

a
n
 K

il
l
R

a
te

 [
1

/m
in

u
te

]

Non-lagged
Lagged

Figure 10: Fairness with SAGLU and static delays

The t-tests indicate that there is no significant difference in the kill

rates for 100ms, 200ms and 400ms. Figure 11 shows the mean kill

rates and standard deviations for both player groups and dynamic

delays (the maximum network delay was always lower than

SAGLU’s maximum delay tolerance).

0 100 200 300 400

0
2

4
6

8
1

0

Delay [ms]

M
e

a
n
 K

il
l
R

a
te

 [
1

/m
in

u
te

]

Non-lagged
Lagged

Figure 11: Fairness with SAGLU and dynamic delays

With SAGLU enabled we cannot find a statistical significant

difference between the two groups for 100ms, 200ms and 400ms.

122

May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

The results obtained from these experiments show that SAGLU

has evened the playing field considerably even when adapting at a

lower rate (every five seconds) than our synthetic network delay

changes (once per second). SAGLU ensures players with a low

delay lose their advantage over players with high delay. Evening

the delays causes a decrease in kill rate. While one would expect

the mean kill rate of the players with zero network delay (only

artificial delay applied by SAGLU) to drop, in our experiments

both mean kill rates decreased to a value below the mean kill rate

players with large network delay had in the unfair games. This

behaviour seems to be specific to our experimental setup because

it cannot be confirmed by previous work. However, a similar

effect occurs in professional sport competitions e.g. in the

Formula-1 there are many regulations that cause all the cars to be

slower than they could be to increase fairness and make the

competition more interesting.

The maximum delay of 400ms we used in our experiments is

obviously larger than what most human players would usually

tolerate. We chose such a high maximum delay to make sure we

observed a clear reaction from the bots. As existing work shows

the maximum delay tolerance of humans is somewhere between

150ms and 250ms depending on the specific game. Therefore our

results for 100ms and 200ms are clearly relevant. We did not use

small delay values in our tests because related work in [5] and [6]

as well as preliminary tests with GoodBot found no significant

performance decrease for delays around 50ms. However, some

very good (professional) players claim that such small delays

already affect their performance. They could benefit from the use

of SAGLU at such low delays. Even if small delay differences

have no measurable impact on fairness, running SAGLU could

achieve a psychological effect in the players’ minds making them

believe that with SAGLU the game is fair.

7. CONCLUSIONS AND FUTURE WORK
Previous work has shown that unfairness caused by network delay

differences between players is a problem for past-paced

multiplayer network games. We have designed and implemented

the Self-Adjusting Game Lagging Utility (SAGLU), an

application that can be used with existing games to equalize the

delay differences and make the games fair. To evaluate the

effectiveness of our approach we have used a novel method

utilizing computer players (bots). We have shown that the bots

react similar to delay and experience similar unfairness problems

as humans. We also demonstrated that SAGLU significantly

improves the fairness of games.

We plan to do more tests with different maps and bot

configurations to further verify the effectiveness of SAGLU,

refine the algorithm and fine-tune the parameters. Ultimately we

plan to run usability trials with human players because only the

reaction of human players would allow us to properly dimension

all the parameters such as the maximum tolerable delay and

adaptation frequency. Measuring the player latencies by polling

the information from the game server introduces additional CPU

and network load on the game server. We plan to characterize this

additional load and optimize the adaptation interval so that

fairness is achieved while the effects on the game server

performance are minimized. In case SAGLU is used for multiple

game servers it should be ensured that the polling of different

servers is not synchronous, as this would create traffic bursts in

the network that could cause short-term congestion. If one

SAGLU box is used for a very large number of game servers the

performance of dummynet with hundreds or thousands of rules

should to be evaluated.

8. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their useful comments that

helped improving the final version of this paper.

9. REFERENCES
[1] S. McCreary and k. claffy. Trends in wide area IP traffic

patterns - A view from Ames Internet Exchange. in ITC

Specialist Seminar, Monterey, CA, 18-20 Sep 2000.

[2] ISP planet news, http://www.isp-planet.com/news/2002/

gamez_021202.html, December 2002 (as of April 2005).

[3] Marcus Graham. The Rise of Pro Gaming. Game Daily,

http://biz.gamedaily.com/features.asp?article_id=8858§i

on=myturn, February 2005 (as of April 2005).

[4] Cambridge dictionary: http://dictionary.cambridge.org/ (as of

April 2005).

[5] G.Armitage. An Experimental Estimation of Latency

Sensitivity in Multiplayer Quake3. Proceedings 11th IEEE

International Conference on Networks (ICON) 2003,

Sydney, Australia, September 2003.

[6] S. Zander, G. Armitage. Empirically Measuring the QoS

Sensitivity of Interactive Online Game Players. ATNAC

2004, Sydney, Australia, December 2004.

[7] T. Henderson. Latency and user behaviour on a multiplayer

game server. Proceedings of the 3rd International Workshop

on Networked Group Communications (NGC), London, UK,

November 2001.

[8] T. Henderson, S. Bhati. Networked games — a QoS-sensitive

application for QoS-insensitive users?. SIGCOMM RIPQoS

Workshop 2003, Karlsruhe, Germany, August 2003.

[9] N. Sheldon, E. Girard, S. Borg, M. Claypool, E. Agu. The

Effect of Latency on User Performance in Warcraft III. In

Proceedings of ACM Network and System Support for

Games (NetGames), Redwood City, California, USA, May

2003.

[10] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu,

M. Claypool. The Effects of Loss and Latency on User

Performance in Unreal Tournament 2003. NetGames2004

Workshop, SIGCOMM2004, Portland, Oregon, USA,

August 2004.

[11] P. Quax, P. Monsieurs, W. Lamotte, D. De Vleeschauwer, N.

Degrande. Objective and Subjective Evaluation of the

Influence of Small Amounts of Delay and Jitter on a Recent

First Person Shooter Game. NetGames2004 Workshop,

SIGCOMM2004, Portland, Oregon, USA, August 2004.

[12] C. Schaefer, T. Enderes, H. Ritter, M. Zitterbart, “Subjective

Quality Assessment for Multiplayer Real-Time Games”,

Proceedings of the first ACM workshop on Network and

system support for games (NetGames2002), April 2002.

[13] Manuel Oliveira, Tristan Henderson. What Do Online

Gamers Really Think of the Internet?. Proceedings of the

2nd workshop on Network and system support for games

NetGames NetGames 2003, Redwood City, CA, May 2003.

123

May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

[14] Katherine Guo and Sarit Mukherjee and Sampath Rangarajan

and Sanjoy Paul. A fair message exchange framework for

distributed multi-player games. Proceedings of the 2nd

workshop on Network and system support for games

NetGames 2003, Redwood City, California, USA, 2003.

[15] IGLU, http://caia.swin.edu.au/genius/genius-tools.html (as of

April 2005)

[16] G.Armitage, L.Stewart. Limitations of using Real-World,

Public Servers to Estimate Jitter Tolerance Of First Person

Shooter Games. ACM SIGCHI ACE2004 conference,

Singapore, June 2004.

[17] G.Armitage, L.Stewart. Some Thoughts on Emulating Jitter

for User Experience Trials. Proceedings of the NetGames

2004 Workshop, ACM SIGCOMM2004, Portland, Oregon,

USA, August 2004.

[18] J. Faerber. Network game traffic modelling. Proceedings of

the 1st ACM workshop on Network and System Support for

games, April 2002.

[19] SAGLU, http://caia.swin.edu.au/genius/tools/saglu-0.1.tar.gz

(as of April 2005)

[20] qstat, http://www.qstat.org/ (as of April 2005)

[21] gamespy, http://www.gamespy.com/ (as of April 2005)

[22] Luigi Rizzo, dummynet, http://info.iet.unipi.it/~luigi/

ip_dummynet/ (as of April 2005)

[23] nistnet: http://www-x.antd.nist.gov/nistnet/ (as of April

2005)

[24] Quake2, http://www.idsoftware.com/games/quake/quake2/

(as of April 2004)

[25] Quake2 client-side bots,

http://www.planetquake.com/mikeBot/remote-resources.html

(as of April 2005)

[26] John Laird's Artificial Intelligence & Computer Games

Research, http://ai.eecs.umich.edu/people/laird/

gamesresearch.html (as of April 2005)

[27] GoodBot 0.1, Jens Vaasjo, jvaasjo@iname.com,

http://www.gamers.org/pub/idgames2/quake2/dlls/bots/ (as

of April 2005)

[28] jarduel3b.bsp, http://www.jaruzel.com/quake2.shtml (as of

AprilOctober 20054)

[29] kkrcon, http://kkrcon.sourceforge.net/ (as of AprilFebruary

2005)

124

