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Abstract. Three-dimensional unstructured tetrahedral and hexahedraf finite element mesh

optimization is studied from a theoretical perspective and by computer experiments to determine

what objective functions are most effective in attaining valid, high quality meshes. The approaclr

uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions.

Because certain matrix norm identities which hold for 2 x 2 matric~ do not hold for 3 x 3 matric~.

significant differences arise between surface and volume mesh optimization objective functions. It

is shown, for example, that the equivalence in two-dimensions of the Smoothness and Condition

Number of the Jacobian matrix objective functions do= not extend to three dimensions and further.

that the equivalence of the Oddy and Condition Number of the Metric Tensor objective functions

in two-dimensions afso fails to extend to threedimensions. Matrix norm identities are used to

systematically construct dimensionally homogeneous groups of objective functions. The concept of an

ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non-dimensionaf

objective functions having barriers are emphasized as the most logical choice for mesh optimization.

The performance of a number of objective functions in improving mesh quality was assessed on a

suite of realistic t=t problems, focusing particularly on all-hexahedral “whisker-weaved” m~hes.

Performance is investigated on both structured and unstructured meshes and on both hexahedraf

and tetrahedral meshes. Although several objective functions are competitive, the condition number

objective function is particularly attractive. The objective functions are cbsely related to mesh

quality measures. To illustrate, it is shown that the condkion number metric can be viewed as a

new tetrahexh-af element quality measure.
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1. Introduction

Optimization of three-dimensional unstructured meshes is studied from both a

theoretical perspective and via computer experiments to determine what objective

functions are most effective in achieving high quality finite element meshes. Unstruc-

tured mesh optimization is not a new subject, although much of the effort has been

restricted to two-dimensions. In three dimensions [6], [9], [20], [3], [24] and others,

have tackled the problem with varying degrees of depth. Some have concentrated

upon using “smart” Laplacian smoothers in which a set of heuristics is developed to

adjust the basic alogrithm to move towards better meshes, often using tetrahedral
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quality measures as a guide (a good summary of tetrahedral measures is given in [8]).

A more systematic approach is attempted in the present work.

Currently, production meshing relies heavily on Laplace smoothing for unstruc-

tured meshes. Although frequently adequate for tetrahedral meshes, Laplace smooth-

ing regularly fails to produce even a validl mesh when applied to the all-hexahedral

meshes arising from the “whisker weaver” [18]. Moreover, even when the mesh is

valid, the quality, as measured by aspect ratio, skew, and scaled-jacobian quality

metrics, is often very poor. This lack of quality serves as a major motivation for the

present work. In structured meshing, considerable reliance is placed upon solving the

partial differential equations that result from minimizing the harmonic map objective

function. Althougth this is sometimes effective, it is much more so in two dimensions

than in three, probably due to the lack of a theoretical guarantee of valid meshes in

three-dimensions. Thus, even in structured meshing there is room for improvement

in 3D smoothing techniques. ‘

Optimization of unstructured hexahedral meshes is largely unexplored territory

since such meshes have not been available until recently. The problem addressed

is thus both novel and difficult because it requires automatic smoothing of three-

dimensional structured or unstructured hexahedral, tetrahedral, and mixed element

meshes.

This paper extends work reported in [15] which introduced the idea of using matrix

norms to generate mesh quality objective functions and in Part I of this series of papers

on mesh optimization [14]. In Part I the matrix norm idea was applied to unstructured

surface triangular and quadrilateral finite element meshes. Surface objective functions

were implemented and compared on various test problems. The Smoothness objective

fimction was discovered to be equivalent to the condition number of the Jacobian

matrix while the Oddy objective function was equivalent to the condition number of

the metric tensor. The Oddy objective function gave the best over-all results.

Part I on surface mesh optimization is extended in this paper to volume mesh

optimization. A separate paper on volume optimization is needed because many

relationships which hold in 2D do not hold in 3D, and vise versa. This issue has

not been critically examined before. The subject also deserves attention because in

practice it is much harder to achieve good mesh quality in 3D than in 2D. This paper

thus has two somewhat conflicting goals, namely, to systematically explore the space

of possible 3D mesh objective functions derived from matrix norms, and to argue on

theoretical grounds that there is one particular objective function, namely Condition

hTumber (no longer equivalent to Smoothne&), that is best suited for optimizing

meshes. Although most readers will be interested primarily in the latter goal, the

former goal is important because it shows how objective functions are related to one

another.

Section 2 of this paper defines the 3D Jacobian and metric tensor matrices in

terms of element edges. Section 3 shows that many well-known volume objective

functions can be expressed in terms of matrix norms. Section 4 uses 3D matrix norm

identities to form dimensionally homogeneous groups of objective functions and de-

fines several new objective fimctions. Section 5 describes the ideal element types in

terms of matrices and introduces the idea of differentiation of a scalar function with

respect to a matrix in order to create objective functions which have the ideal elements

as stationary points. Because non-dimensional objective functions appear to be the

.,.

1 By valid it is meant that the elements are properly oriented with locally positive jacobian

determinant.
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most effective in improving mesh quality, Section 6 focuses on identify@ as many

non-dimensional objective functions as possible and discusses relationships between

them and gives reasons why, among all the non-dimensional objective functions, the

Jacobian condition number is one of the most attractive. Section 7 considers optimiza-

tion of tetrahedral meshes and studies the Jacobian condition number as a tetrahedral

quality measure. Section 8 presents the results of numerical optimization experiments

perfomed with the CUBIT code. Section 9 is the summary and conclusion.

2. Building Blocks for Nodally-Based Volume Objective Functions

For reasons discussed in Part I, attention is focused not on the mesh elements but

rather on the nodes of the mesh and the edges emanating from a given node. The

mesh optimization is a series of local optimization problems, one for each free node

of the mesh.

Let M be the number of elements attached to a given interior node of the

mesh whose spatial position is to be “optimized” and let M be the set of integers

m = (),1,2 ,..., M – 1.2 Assume for the rest of thk paper that m E M. Let the

given node be associated with the vector x c R3. It is assumed that each of the M

elements is attached to the interior node by 3 neighboring vertices3. Let the three

neighbor nodes associated with the mth element be xm,k c R3 with k = 1,2.3. To

achieve control over mesh quality, the local objective function ~(z) needs to be base+

not directly on Z, but rather on the important geometric entities associated with the

node. The critical quantities for the mth element are:

1. The 3 edge vectors, em,k, in the plane:

em,k = xm,k —X

2. The Jacobian matrix:

J. = [em,,, em,2,em,3] =

and the metric tensor:

Xm,l — x Xm,z —x xm,3 — x

Ym,l – Y Ym,2 – Y Ym,3 ‘Y

zm,J — 2 Zm,z — z i?m,3— z

Gm = J:Jm.

3. Finally, define for each of the m-elements:

9m = det Gm ,

and the Jacobian determinant

jm = det J~ = e~,l “ (e~,z x em,3)

Then j: = grn and j~ is six times the local volume of the m-th tetrahedron enclosed

by the corresponding triad of edges. For shorthand, let Ijm 1= ~. It is important

to distinguish between jm and G because the former can be negative or positive,

2 According to [4]. the total number of edges or vertices attached to the interior node is ~ (M +4).

M can be as large as 40 in the all-hexahedral whisker-weaved meshes.
3 This ~~umPtion eliminates unusual element types such as pyramids and kniv= for the present.
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with negative j~ signifying inverted (also called tangled, folded, or invalid) elements.

A mesh with all-positive& is generally the minimum quality criterion for a mesh. If

jm < I) for some element then the mesh is considered invalid.

Recent work in continuum variational methods of mesh generation has shown

that a powerful approach to the construction of objective fimctions involves the use

of matrices and matrix norms [15]. The Jacobian matrix is the fundamental quantity

that describes all the fist-order mesh qualities (length, areas, and angles) of inter-

est, therefore, it is appropriate to focus the building of objective functions on the

Jacobian matrix or the associated metric tensor. Many of the well-known objective

fimctions in structured mesh optimization can be cast in the form of norms of ma-

trices. One advantage of expressing objective functions in terms of matrix norms is

that it is relatively straightforward to generalize a surface mesh objective function

to a volume mesh objective function. hTewnon-geometric interpretions of previously

known objective functions become available using matrix norms. Another advantage

is that matrices permit easy introduction of weighted forms of objective functions for

anisotropic mesh quality measures. For these reasons, objective functions constructed

from matrices are emphasized.

The matrices of interest must be converted to scalars to create objective functions.

This can be done using the trace, determinant, or matrix norms. There are several

matrix norms but, for mesh generation, the Frobenius norm has proven the most useful

and most easily implemented. Let A be a 3 x 3 matrix, then the Frobenius norm of A

is I A IF= (tr(A~A)) ~. The norm-squared is the sum of the square of the elements in

the matrix, which is why the Frobenius norm lends itself so readily to the construction

of objective functions for meshing. For the rest of this paper the F subscript is omitted

since all the norms will be Frobenius norms. The following matrix properties prove

useful in analyzing the objective functions used in the present approach. Let A3 ~s

be a real matrix with determinant o non-zero and let adjA = CYA-l be the adjoint

matrix of A. Then

lA-’l=ladjAl/l al.

Note that, in contrast to the case for A2X2, I A 1# \adjA ] for A3X3. The condition

number of A is the dimensionless quantity

K(A) =1 A II A-l 1= K(A–l)

The following matrices are useful:

{

A ifi=j
DiagA = ~]

else

which is the matrix formed from the diagonal elements of A, and

Ojjdiag A = A – Diag A

which is the matrix consisting of the off-diagonal elements of A.

Let fm be a scalar quality metric for the m ‘h triad attached to the center node,

derived from the building blocks in this section. For example

fm(z, y, z) ==f(Am(z, y, z))
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where the Am are the Jacobian matrices constructed from the adjacent edges. Con-

‘f The p-norm of f issider the vector f = (fo, jI, . . . ,fM-1) c R .

m

with p ~ 1. Usually p = 1,2 will be used, but the & norm:

is also a useful norm because it enables optimization of worst-case mesh quality mea-

sures instead of average measures. The ./~ norm will be considered further in the

next paper in connection with mesh untangling.

The general form of the local mesh objecti}’e functions in this work ia I f lP. For

p = 2, the minimizations are unconstrained, three-variable, and have smooth objective

functions on some domain. The necessary condition for a minimum to exist are (i)

the gradient of the objective function is zero at the minimum, and (ii) the Hessian

is positive semi-definite at the minimum [1I]. Sufficient conditions require that the

Hessian be positive definite.

YWth this form of the objective function chosen, it remains only to determine the

choice of the function f which takes A3 X3 to a scalar. Objective functions will thus

be posed in the form ~ = f(A), where A is tacitly recognized as the Jacobian matrix.

3. Known Volume Objective Functions Expressed as Matrix Norms

A number of previously proposed 3D objective functions can be expressed in terms

of matrices and matrix norms. Some of these are summarized in this section.

p-Length, (length) 2p.

Let p be a positive integer.

fp-~ength(A) = \A 12P.

For p = 1, Length is the sum of the squares of the three edge lengths. Length is

important because it is the objective function for Laplacian smoothing. This objective

function is widely used due to its simplicity but it is recognized that it does not

consistently produce valid meshes. Length is also the sum of the eigenvalues (trace)

of the metric tensor.

For p = 2, this objective function is closely related to, but not identical with, the

“Length-weighted Laplacian” smoother [7].

Norm of the Metric Tensor, (/ength)4.

fNMT(A) = I ATA 12

NMT has no simple geometric interpretation (it is the sum of the three edge lengths to

the fourth power plus the sum of the squares of the pairwise projected edge lengths).

However, as shown in [15], because ATA is symmetric, the square of the norm of

the metric tensor is the sum of the squares of its eigenvalues. Minimization of this

functional should make the eigenvalues of the metric tensor equal (in a least-squares

sense). This, in turn, means that the metric tensor will be made proportional to a
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rotation matrix, giving near-equal aspect ratios and orthogonality. To our knowledge,

this objective function has never been tried in 3D, but it is an obvious extension of

the work in [16].

Off-Diagonal, (length)4.

The Off-Diagonal objective function:

fo~~m.,(~) = I Qffdiag ATA 12

attempts to equidistribute the face angles about a node. Although geometrically ap

pealing, Off-Diagonal suffers the great drawback that it is non-convex in general, i.e.,

the minimal mesh does not always exist. To make practical use of Off-diagonal re-

quires combining it with other objective functions to get convexity. For this paper

Off-diagonal is combined with 2-Length since they both have dimensions of (length)4.

This objective function has been proposed by some for structured 3D mesh generation

but has not been used extensively.

Volume, (/ength)6.

The Volume objective function makes locally equal element volumes:

fv(A) = a2

In the continuum the volume objective function is non-elliptic, so non-smooth grids

result. ThE property carries over to the d~crete optimization function for volume.

Volume has been proposed in [5], [6], and others.

Adjoint of the Jacobian Matrix (tength)4.

fa~~oint(A) =1 adjA 12= 02 I A-’ 12.

The geometric interpretation of this objective function can be found by noting that

I adj Jm 12 = I em,l x em,2 12+ [em,2 x em,3 12+ Iem,3 x em,l /2,

i.e., \adj .Jm 12 is twice the sum of the squares of the areas of the three triangular

faces lying between the three edges. The adjoint is also the second-invariant of the

characteristic polynomial of Gm. This objective function was used in a group of ob-

jective functions in [13].

Smoothness, (length)l.

The Smoothness objective function derives by analogy to variational structured mesh

generation [2]:

fs(A) = a I A-l 12.

When writing the Smoothness objective function for surface meshes in Part I in terms

of matrix norms, it was found that fs(A) = frs (A) = K(A) because the norm of the

adjoint -wasequal to the norm of the matrix. This does not hold in three dimensions.

and therefore, there are three objective functions to consider while in 2D there was

only one.
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Inverse Smoothness, (iength)-l.

This objective function is an ad-hoc generalization that appears in [1] and others:

Note that jlS(A) = f.s(A-l).

The Oddy Metric, (tength)”.

In Part I on surface meshes, the condition number of the metric tensor was shown to

be equivalent to an objective fimction based on the Oddy metric [19]. This equivalence

does not hold in three-dimensions, thus there is another objective function to consider:

fo~dv(A) = CY-’/’ { I ATA [2 -(1/3) I A 1’ } .

ThB objective function is infinite for invalid meshes and is zero for the identity or

rotation matrices.

These previously known objective functions are included in the numerical tests

given later in this paper, but first several new objective functions suggested by the

matrix norm approach are introduced.

4. Volume Objective Functions fi-om Dimensionally Homogeneous Groups

The objective functions of the previous section do not exhaust the myriad possi-

bilities that arise by approaching mesh optimization via matrix norms. This section

seeks to answer two questions (1) are there some other potentially useful objective

functions that have so far been over-looked, and (2) is there a way to group objecti~’e

functions in some rational way? Brackbill suggested combining continuum objective

functions into a group to control smoothness, area, or orthogonality [2] but found

that it was difficult to select the constants in these combinations due to dimensional

inhomogeneity of the objective functions. As shown in Part I, this limitation can be

partly overcome by combining objective functions having the same dimension~. This

idea is extended further here by giving a systematic way to construct dimensionally

homogeneous groups via certain identities which hold for arbitrary 3 x 3 matrices

(these identities do not hold for 2 x 2 matrices). There are two identities that appear

rather fundamental, and from which many others can be constructed. The first has

dimensions (lerzgth)2:

\A 12+2tr(adjA) s (trA)2 + (1/2) I A - AT 1’

and can be derived from a trivial matrix identitiy. The second has dimensions

(length)’:

(trA)3 -t-3a ~ tr(A3) + 3 (trA) tr(adjA)

and can be derived from the fact that every matrix satisfies its own characteristic

polynomial. These identities are not particularly useful in themselves because the

objective functions they suggest (e.g. trA) have geometrical interpretations that do

not correspond to a useful element quality measure. Replacing A with ATA in these

4 By dimension reference is made to the idea that if the matrix A has a particular set of units

(say length). then the units of other related matrices and norms are determined.
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identities, one can obtain two other identities having dimensions of (length)4 and

(length)G which contain norms upon which useful objective functions can be based:

IATA12+2CY21A-’12 = IA14,

31 A121ATA 12– IA16+6cz2 - 21 AATA 12.

The identities given in this section suggest dimensionally homogeneous groups of

objective functions. Let c1, C2, C3, and CAbe arbitrary real constants.

Group Six, (length)G.

f6(A) = 3C1 IA121ATA12–C’ IA16+6C3CY’.

Note that if c1 = C2 = C3 = 1/2 then one obtains the other objective function,

I AATA l’, in the (length)G identity, which is why it is left out of this group.

Group Four, (length)4.

Group Two, (length)’.

f2(-4) = CI IA 1’ +2 c’ tr(adjA) – C3(trA)2 + C4a2j3.

A method for choosing the constants in these groups is given in the next section.

5. The Ideal Element - A Geometric View

Every matrix A with column vectors cu, i = 1,2,3 has the following factorization:

A=DQT

where

A = [al,a’, az],
D = diag(dl, d2, d3) ,

Q = [addl, a2/&, adds],

and di = I az 1. The normalized column vectors of A are contained in Q and the lengths

in D. Thus I Q l’= 3 because the column vectors comprising Q are of unit length.

The quantity det (Q) is referred to in the CUBIT code as the scaled jacobian quality

measure. It varies from minus one to plus one. Positive scaled jacobian is considered

the minimal quality permitted for a mesh, while negative values of the scaled jacobian

signify that invalid elements exist.

The matrix A determines the geometric quality of the corresponding element. In

the absence of anisotropy, each edge of the element should have equal length. This

requirement corresponds to making the diagonal matrix D have equal positive entries,

i.e., D = A I for some A >0 and I the 3 x 3 identity matrix. The proper choice for

Q depends on the element type. For a hexahedral element, the edges of the element
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should be orthonormal, hence we require Q~ = R for some rotation matrix R where

RTR = I and det (R) = +1 to maintain proper orientation.

Thus, for an isotropic hexahedral element the ideal matrix has the form

A=AR

where R is an orthogonal matrix with det(R) = 1 and A >0. If A has this form then

. the column vectors of A are orthogonal,

● the lengths of the columns vectors are equal, and

● the volume of the region spamed by the 3 vectors is positive, and

● the corner of the element defined by A matches the corner of a cube.

Although the form of the ideal A has been determined, the scalar A and the matrix

R have not been specified. These control the element size and orientation, respectively.

With isotropic meshes, it is not desirable to specify the size and orientation of each

element of the mesh, rather, the optimization procedure should do this. To eliminate

these two quantities, note that the following relationship holds for the ideal element:

ATA = A21.

The determinant of the left-hand-side of this expression is a= and therefore,

A2 = Q213.

The ideal matrix is then

Because the Frobenius matrix norm is invariant to rotations, i.e.,

for any matrix M, the rotation matrk in the ideal w-illnot need to be specified.

The ideal matrix for tetrahedral elements will be discussed in section 7.

Not all of the objective functions described so far are minimized by the ideal A.

Although it is neither necessary nor sufficient to require that an objective function

be minimized by the ideal, doing so is a rational approach to designing objective

functions. Consider the function f(A) taking 3 x 3 matrices to a scalar. Differentiation

of f with respect to A can be defined to be the following 3 x 3 matrLw5

Derivatives for relevant functions f(A) are given in Appendix I. The matrix function

has a stationary point when 8f/L?A = O, with O the 3 x 3 zero matrix

Applying the differentiation formula to the Length objective function we find

that A = O is the minimizer. Of course, A = O is not attained in practice because the

admissible set of A’s are required to satisfy the boundary data. It is reasonable to

ask if the Length objective function can be modified in some way to give the ideal as

the minimizer. Length is part of the Group Two objective function of the previous

5 Of course, Sufficient smoothness must be assumed.
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section, so let us ask if one can choose the constants Q to give the desired minimizer.

This is indeed possible, and can also be done for the other Group objective functions:

~L(A) = I A 12 –3CY2/3.

~2L(A) = I ATA 12 –3cr4i3 ,

f3L(-4) = IAA*A 12–3 (I2 ,

The Smoothness and Inverse Smoothness objective functions must also be modified

slightly to have the ideal as the minimizer:

fs(A) = cr2/3 IA-l 12,

fIs(A) = CY-2/3 I A 12.

Empirical results confirm that, in general, mesh quality is improved with these mod-

ified objective functions, when compared to their original forms.

6. Non-Dimensioned Objective Functions

The non-dimensional objective functions are interesting because they are scale

independent and are the lowest-order objective functions having barriers6. Further-

more, they can be symmetrized so that /(A) = f(A-l ). This means that both the

local map from the logical to the physical region and the local inverse map from the

physical to the logical region are well-conditioned. Begin by defining the following

three non-dimensional objective functions:

fl(A) = Q-2/3 I A 12,

f2(A) = a-4/3 1ATA 12,

f3(A) = CZ-2 I AATA 12,

and their three counterparts:

fl(4 = A(A-l) = CY2/31A-l 12,

;2(4 = f2(A-1) = c14/3I (ATA)-’ /2,

i3(A) = f3(A-1) = C12I (AATA)-l 12.

The functions jl and ~1 are recognized as the dimensionless versions of inverse

Smoothness and Smoothness, respectively.

These objective functions serve as building blocks for some of the other known

non-dimensional objective functions, suggest new non-dimensional functions, and help

create some interesting non-dimensional identities involving mesh objective functions.

For example, one can build symmetric objective functions by combining fi with ~i.

Three condition numbers are immediate:

K2(A) = fl fl ,

K2(ATA) = f2 f2 ,

K2(AATA) = f3 f3 .

6 By a barrier it is meant a set of matrices in the domain for which the objective function bwomes

infinite.
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The building blocks are related to one another through the following identities:

The condition number objective fimctions are related through the following identities:

K2(A) = S+ fIf2–f3=q+fIf2–f3,

K2(ATA) = K4(A) + 4K2(A) – 2 f; - 2?;.

K2(AATA) can be similarly expressed in terms of lower-order objective functions.

Let ~. be the Oddy objective function, then

fo(A) = (2/3) f: -2 fl ,

jo(A) = fo(A-l) = (2/3) f; – 2fl ,

(1/4) fo fo = (1/9) ~4(A) + ~2(A) - (1/3) (ft + ff) ,

The last objective function will be referred to as the symmetric Oddy objective func-

tion. Let w. = (n – 3)/3 with n an integer and define the following symmetric

objective functions:

s. = (Wn ff -2j)(wnf: - 2f,).

Then for n = 0,1,2,3 one obtains the .K2(ATA), Symmetric Oddy, S2 - a new symmetr-

ic objective function, and tc2(A), respectively, showing that these objective functions

are all part of the same family. Another interesting family can be obtained from the

three objective functions f L, f2L, fsL, and their respective counterparts to give three

more symmetric dimensionless objective functions:

fLfL = (fl-3)(fl –3)=~2(A)- 3( fl+f1)+9>

f2L f2L = (fz -3) (f* -3),

f3L f3L = (f3 -3) (f3 - 3).

Proposition

The ideal matrfx is a stationary point of K(A), K(ATA), and the other non-dimensional

objective functions given in this section.

Proof

All o! the dimensionless objective functions can be expressed as combinations of fl

and f 1 and the ideal is a stationary point of the latter two functions. ~

Observation

Let A3.3 with 0>0. Let f(A) >0 be a non-dimensional objective function such

that lima–. f(A) is unbounded but f(A) is bounded for A in some set of matrices

having positive determinant. Then the volume a associated with A is bounded below

by a positive constant. ~

The non-dimensional objective functions described in this section appear quite

attractive, having a number of favorable theoretical properties. The objective function

11



.

K(A) in particular enjoys all of these nice properties, including symmetry. A geometric

interpretation of this objective function can be found by noting that

K(A) = lAllau’’Al/lcYl,

i.e., the condition number is the square root of the product of the sum of the squares

of the edgelengths and the sum of the squares of the adjacent face areas, divided

by six times the volume of the tetrahedron defined by the edges. This is similar to,

but not identical with, the objective function given in [10], page 11, for a tetrahedral

quality measure.

Minimizing the condition number of A would seem to be a good idea because this

maximizes the distance to the set of singdar matrices ([12], page 26). In view of this,

K(A) is the first objective function we know of that directly states that invalid meshes

are to be avoided7.

Because condition number is the simplest symmetric non-dimensional objective

function, close attention was paid to its performance in the emprical tests given in

section 8.

7. Optimization of Tetrahedral Meshes.

The ideal isotropic tetrahedral element is the the unit equilateral tetrahedron.

For isotropic tetrahedral elements the ideal matrix A again has D = Al. However,

the columns of Q should not be orthonormal. Instead let us require Q= = RIV where

R is a rotation matrk and

(
1 1/2 1/2

(1) w= O fi/2 fi/6

00 fi]fi )

This matrix is derived from examining the edge vectors of the ideal tetrahedron. Since

det (W) = ti/2, the ideal must have the form

A = (tio)1i3RW,

ATA = (fia)213 WTW .

The objective functions given in the previous sections should be weighted for the

tetrahedral case in order that the tetrahedral ideal is a stationary point. If j(A) is

minimized by A = A1~eQl then f(AW–l) is minimized by A = A~dec~W. Thus, for

example, the modified length objective function for tetrahedral reads

fL(A) = I AW-l 12 –3(v5cr)213 .

The matrk A W-l forms the linear transformation between the ideal tetrahedral

element and the element defined by the matrix A.

In this section, hen-ever, attention is mainly focused on the Jacobian condition

number objective function as it applies to tetrahedral elements. The weighted condi-

tion number objective function for tetrahedral is

K(AW-l) =[ AW-l I I WA-l [

7 We speculate that all of the non-dimensional objective functions having barriers measure die-

tance from the set of singular matrices.
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Proposition.

Let Al, i = 0,1,2,3 be the matr~ associated with node i of a tetrahedral element.

Then f(AaW-l ) = C, where C is a constant independent of i and ~ is any of the

objective functions discussed in this paper.

Proof.

A sketch of a proof goes like this: one can first show that there exist matrices A4i

such that Al = A. Ma. One can also show that there exist rotation matrices such that

MiW-l = }V-l&. Then

I AaW-’ 1=1 AoJJiW-l 1=1 AOW-l& 1=1 AOW-’ I .

A similar result holds for I (AiW-l)-l I and for det(AiW-l). $

Thus, for each objective function a single number can be associated with any given

tetrahedron. Adopting the definition of a tetrahedral shape measure given in [8], any

of the dimensionless objective functions are valid shape measures provided (i) l/~

is used, and (ii) there is a unique, global maximum. The latter requirement is not

proven here but is likely to hold for most of the dimensionless objective functions.

If the weight W were not included in the argument of the objective function, the

function would no longer be invariant under a change of node.

K(A) is somehwat similar to the Q~ tetrahedral measure reported in [10], page

11. But K.(AW- 1, is neither identical to Q~ nor can it be expressed in terms of

any combination of the quality metrics given in [21]. Thus K(A W– 1) is a new tetra-

hedral element quality measure. To emphasize this point, tests A-D from [21] were

performed, to show how the condition number quality measure varies with distortions

of a tetrahedron (see Table 1).

The key feature to note in the table is that the condition number quality measure

behaves similarly to other tetrahedral quality measures.9 We suspect, but have not

proved, that K.(AW-l) can be shown to be an equivalent tetrahedral quality measure

to QK in the sense defined in [17]. At the very least, then, the situation for using

condition number as a tetrahedral quality measure is paraphrased from [8]: “since it

is impossible to fill an arbitrary volume with equilateral tetrahedral, equivalent quality

measures will perform similarly, but m’ithsomewhat different results”. The “somewhat

different” results will be seen in section 10 where numerical experiments are performed

to determine which objective function gives the best overall mesh quality.

As a final observation, note that most of the tetrahedral quality measures given

in [21] and [8] cannot be expresed in terms of matrk norms. Three exceptions are the

hlean Ratio q, which is roughly (Q-2f3 I A 12)-1, -y, approximately I A 13/2/cr, and

the ~ measure, which is roughly (a2t3 I A-1 12)‘3.

8. Empirical Tests.

The theory presented has identified a number of promising objective functions, but

is unable to determjne, for example, whether K(A) or K(ATA) will produce superior

mesh quality. To explore this question, computer experiments on realistic problems are

needed. Many of the objective functions considered in this paper were implemented

within the CUBIT code. All of the objective functions can be evaluated in terms of

just three matrix functions, the determinant, the norm, and the norm of the adjoint.

Evaluating the gradient of an objective function entails an indirect approach because

if one attempts to write out the complete expression an unwieldy’ number of terms

w

.

.

8 A normalization factor of 1/3 was included in the defintion so that the ideal element gave ~ = 1.

9 Note that K(AIV-l) is symmetric about the apex distance and has values close to -y.

13



TABLE 1

Sensitivity of Condition Number Quality Jleasures to Tests A, B, C, and D

Apex Dist (A) K Angle (B) K LM (C) K Angle (D) K

0.25 2.03 0 1.00 1.00 1.00 90 1.00

0.50 1.22 15 1.02 0.75 1.04 75 1.02

1.00 1.00 30 1.11 0.50 1.22 60 1.11

2.00 1.22 45 1,29 0.30 1.74 45 1.29

3.00 1.61 60 1.73 0.20 2.47 30 1.73
4.00 2.03 75 3.21 0.10 4.7’7 15 3.21

results. For example, I A 12 contains 9 terms which must be differentiated, I adjA 12

has 27, while CYhas 6. When differentiated, these objects contain 9, 54, and 18 terms,

repsectively. ~2(A) contains upwards of 324 non-dlilerentiated terms in the numerator

alone, if everything is expanded fully. The difficulty may be avoided by making use

of the idea of differentiating a scalar function of a matrix introduced in the previous

section. Let

be a mesh objective function. Then the chain rule shows that

and, because t3Jn/i3x is readily computed,

where u= = [1, 1, 1]. A sufficient condition for a stationary point is thus t2f/i3Jm = O

for all m. Thki is one reason why objective functions should be zero at the ideal

element. Of course, the gradient method is only applicable for 1 < p < cc. For the

non-differentiable cases, a non-gradient method is employed.

Several sets of optimization tests were performed focusing on different geome

tries, element types, and mesh connectivities. These tests included (1) all-hexahedral

unstructured, whisker-weaved meshes (three geometries, including those shown in fig-

ures 1 and 2), (2) all-hexahedral semi-structured swept meshes (three geometries.

including that in figure 3), (3) all-tetrahedral meshes (three geometries, including

those in figures 1 and 2), and (4) a tetrahedral mesh using an l-infinity norm (the

same geometry as in figure 1). The investigation began with about twenty objective

functions which were tested on the “knee” geometry. The results are shown in Table

2. The list was then reduced to include only those objective functions having barriers

since this is a critical requirement of any robust optimizer (see Table 3). Among

those having barriers there were several which performed particularly well, so the list

was further reduced. To compare results between objective functions several quality

measures were used. For hexahedral elements these were: aspect ratio [22], skew [22].

Odd~’s metric [19], condtion number, and minimum scaIed Jacobian. For tetrahedral

elements, these were: gamma [21], condition number, and minimum scaled Jacobian.

Except for the minimum scaled the Jacob~an, smaller numbers in the tables indicate

superior mesh quality. Results were also compared against two volume smoothers

14
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already in CUBIT namely, Laplacian smoothing ‘and Equipotential [23].

Although only a very limited set of tests could be performed, the following obser-

vations are made:

●

●

●

●

●

●

●

●

●

As expected, objective functions having barriers maintain valid meshes whereas

those n~thout barriers did not consistently do so,

All of the objective functions having barriers gave meshes notably superior

to those smoothed with CUBIT’s original Laplacian and Equipotential alg~

rithms. This was especially true on the whisker-weaved meshes,

The objective functions that were modified to make the ideal a stationa~’

point (like ~.s and ~IS) generally performed better than the original objective

functions, but not always,

The weighted objective functions, f(AW- 1), consistency improved tetrahe-

dral mesh quality over the unweighed objective functions, j(A), though not

dramatically,

It is currently rare to achieve excellent quality by optimizing the whisker-

weaved meshes, although the quality is much improved with the non-dimensional

objective functions compared to the unoptimized mesh. For example, the

minimum scaled Jacobian was typically +0.003 in the unoptimized mesh and

+0. 300 in the optimized mesh. Hexahedral element swapping techniques to

change mesh connectivity may be considered in the future to further improve

quality,

In terms of relative efficiency, it was found that objective functions which use

the metric tensor were noticeably slower than those which use the Jacobian

rnatrk (see Table 3). The fastest objective function based on the metric

tensor was Oddy(A),

On Swept meshes, Oddy performed very well, whereas on whisker-weaved

meshes it lagged quite a few others (see table 4),

Somewhat surprisingly, quality achieved with the Smoothness objective func-

tion was noticeably less than a half dozen other objective functions also having

barriers. Smoothness was also the slowest of the objective functions based on

the Jacobian matrix,

Condition number of the Jacobian matrix, condition number of the metric

tensor, inverse smoothness, and Oddy (all in their weighted forms) appeared

to give the best quality of all the objective functions tried on tetrahedral

meshes. An 2= norm was used in this test. These objective functions also

performed well on hexahedral meshes.

9. Summary and Conclusions.

This paper applied the matrix norm idea to design objective functions for finite

element volume mesh optimization. Traditional volume objective functions such as

length, volume, and smoothness can be expressed in terms of matrix norms. In two

dimensions, smoothness, inverse smoothness, and condition number of the jacobian

matrix are identical objective functions, while in three dimensions they become three

disctinct objective functions because the norm of the adjoint matrix is no longer

equal to the norm of the matrix. Similarly, in two dimensions eddy and the condition

number of the metric tensor give the same objective function while in three dimensions

they are distinct.

Two fundamental matrix norm identities were presented having dimensions of

length4 and length6. These show the relationship between a number of objective
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functions and how dimensionally homogeneous groups of objective functions can be

formed. The arbitrary constants in these groups can be determined by introducing the

matrix corresponding to the ideal mesh element. The constants were chosen so that

the ideaI matrix is a stationary point of any given objective function. For example,

the power of a in the smoothness and inverse smoothness objective functions was

adjusted to make the ideal a stationary point.

Non-dimensional objective functions with barriers seem to be the most logical

choice for mesh objective functions because they are scale invariant and avoid inverted

elements. Several non-dimensional matrix norm identities were derived in terms of

smoothness and inverse smoothness to show how other non-dimensional objective

functions were related to one another. For example, the condition number of the met-

ric tensor can be expressed in terms of the condition number of the jacobian matrix,

smoothness, and inverse smoothness. Given the wealth of potential non-dimensional

objective functions the condition number of the jacobian matrix was preferred because

it is the simplest of the symmetric non-dimensional objective functions and because

it is a measure of the distance of a given matrix to the set of singular matrices.

The ideal matrk corresponding to tetrahedral elements was related to a matrix W

derived from considering the equilateral tetrahedral element. Objective funtions for

tetrahedral elements expressed in terms of the matrix AW – 1 have the ideal matri..

as a stationary point. For each such objective function it was shown that a single

number, independent of the node at which it is computed, could be assigned to a

given tetrahedral element. To illustrate, the condition number of the jacobian for

tetrahedral elements was subjected to the distortions given in [21], the numerical

results being very similar to the other tetrahedral quality measures given in that

reference.

Finally, many of the objective functions were implemented in the CUBIT code and

empirically tested using unstructured all-hmahedral whisker-weaved meshes, semi-

structured swept meshes, and an all-tetrahedral mesh. Ultimately, the list of objective

functions could not be reduced to just one objective function as several were com-

petitive. In terms of dimension, the non-dimensional objective functions performed

best. Of these, Oddy, condition number of the metric tensor, and others based on

the metric tensor gave good mesh quality but., due to their relative slowness, are less

attractive. Probably the two best overall objective functions were Condition N-umber

of the Jacobian Matrix and Inverse Smoothness (with a2f3).

Although this study has clarified a number of issues, there remain several others

that must be addressed before the matrix norm approach can realize its full potential.

Efficiency issues related to the optimization algorithm need further consideration. In

addition, barrier-based objective functions require that one optimize begining with

a valid mesh. If this is not done, the resulting mesh will likely contain inverted ele-

ments. Part 111will consider ways to create valid meshes from invalid meshes so that

barrier-based objective functions can firther improve mesh quality. Because the ob-

jective functions in this paper are based only on interior nodes, the current approach

does not guarantee good mesh quality on the boundary of the domain. This also will

be addressed in Part HI.
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Appendix I: Derivatives of Objective Functions

a
~142 = 2A,

& trace(A) = 1,

$ t~ace(An) = n (A”-l)T,

a cl”

aA
= nd’A–T,

a A14 = 4] A12A,~1

a IATA[2 = 4AATA,
z

$ } OffDiagA’A I2 = 4 A Of fDiag(ATA),

~ladjA12 = 2A{/ A121- ATA},

~ IA-l 12 = 2cr-2A{[A12 I- ATA-Q2 IA-l 12 (ATA)-l}.

~trace(adjA) = (traceA) I – AT,

a AATA 12 = 6A ATAATA ,ml

& IAWT12 = 2AWTW,

a
ml WA 12 = 2WTWA.
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FIG.1.

FIG.2.

Initial WW HexahedraI Mesh on Sphere Geometry

Initial WW HexahedraI Mesh on Knee Geometry
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FIG. 3. Initial Swept Hexahsdral ?vlesh on Curved Geometry

TABLE 2

Average Quality Metrics for Hedwdml Mesh (Knee Gwmetry)

Method Aspect Skew Oddy I Scaled J Valid?

Whisker Weave 1.496 0.4594 7119 0,6225 No

Laplacian 1.493 0.4W7 7T1G 1 nc-xm NT,.

I -. ’,.

Volume. crz I 1.608 I 0..5019 I 4271 I 0.5983 I No 1

~-4/3 I ATA 12
1.551 0.41.53 13.41 0.6592 Yes

Oddy(A) 1.448 0.4109 1426 0.6761 Yes

Oddv(A-l) 1.669 0.4371 23.2 0.6328 Yes. . .
K(A) I 1.453 I 0.3929 I 8.760 I 0.6889 I Yes\ –, , r

R(A1 A) 1.46.5 0.4096 8.115 0.6778 I Yes
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TABLE 3

Average Quality Metrics for WW Hezahedml Mesh (Sphere Geomety) - Barriers Only

Method Aspect Skew Oddy K(A) Scaled J Valid? Rel CPU

Whisker Weave 1.533 0.3452 1867 622 0.6877 No -

Laplacian 1.528 0.3438 1867 622 0.6888 Xo

Equipotential 2.113 0.5007 5600 1865 0.5482

lA 12/a

lNO

1.434 0.295.5 3.5.59 1.424 0.7441 Yes 0.86
L

K&i) 1.467 0.2782 4.133 1.447 0.7.529 Yes 1.00

~2/3 [ A–1 12 1.480 0.2744 4.733 1.469 0.7549 Yes 1.51

tc(A1 A) 1.470 0.2829 4.178 1.451 0.7522 Yes 3.18

‘4/3 \ A~A 12 1.514 0.2822 5.374 1.501 0.7513 Yes 7.47

Smo~thn=. a I A-1 12 1.523 0.2735 5.003 1.492 0.7533 Ye3 2.26

Oddy(A-” ) 1.548 0.2877 6.084 1.532 0.7476 Y= 12.8

Oddy(A) 1.466 0.3072 3.579 1.457 0.7319 Yes 3.02

a –2[3 1A 12 1.467 0.2854 3.770 1.441 0.7471 Yes 0.60
, ,4-; ,z’

I 1.438 I 0.3068 I 3.801 I 1.429 I 0.7418 i Yes I 2.27

TABLE 4

Avemge Quality Metrics for Swept Hezahedml Mesh (Curwxi Geometry)

Met hod Asps@ Skew Oddy K(A) Scaled J Valid?

sweep 7.68 0.130 524 4.25 0.930 Yes

Laplacian 3.89 0.600 3e+05 9e+04 0.228 so

Equipotential 6.21 0.314 1023 288 0.823 No

lAlz/a 6.00 0.246 168 3.22 0.880 Yes,,,
K(A) 6.38 0.167 230 3.42 0.919 Yes

~2/3 \ A-1 12 6.75 0.148 791 3.88 0.896 Yes
., .1 ., L.0, n no” .-1”0 3.50 0.891 Yes

— ,. ..., t I . . . , !3 4.14 0.918 YS5

Smoothness, a I A-’ 1’ 7.68 0.140 508 4.21 0.931 Yes

Oddv(A- 1) I 7.56 I 0.168 I 491 4.19 I 0.916 Yes

I waaw A J i .3. [1 I U.JOJ I 1* O I d.LO I U.0U4 I Ies I

K(. a- “1) I 0.01 I U.zz’+ I z+!

~-4/3 I ATA 12 7.51 I i-. 167 I 4R

[

~–2/3”1’A’12 5.93 0.264 162 3.21 0.870 Yes

[ A-l /2 6.36 0.177 231 3.43 0.913 Yes

TABLE 5

Worst-Case Quality Metrics for Tetmhedml Mesh (Sphere Geometry) - & norm

J

K(,iJ A) ‘
,

4.262 5.146 2.989 0.1013

Smoothness, a \A-1 12 4.405 4.777 3.044 0.1136

Oddy(A - ‘ ) 6.124 6.406 3.156 0.0779

Oddy(A) 3.864 4.153 3.607 0.1740
~–2f3 I A 12 3.866 3.986 3.300 0.1574
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