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Abstract 
 

Caching is an important technique to support 
pervasive Internet access. Cache consistency measures 
the deviation between the cached data and the source 
data. In mobile computing environments, especially 
with ad hoc networks, users are in great need of the 
flexibility in tuning their consistency requirements, in 
order to make tradeoffs between the specified cache 
consistency and the cost incurred. Existing works have 
used Delta Consistency (DC) and Probabilistic 
Consistency (PC) which, to some extent, provide the 
users with such flexibility. In this paper, we propose a 
general consistency model called Probabilistic Delta 
Consistency (PDC). PDC covers all existing 
consistency models including DC and PC, and 
integrates the flexibility granted by both DC and PC. 
Thus, PDC enables the users to flexibly specify their 
consistency requirements in two orthogonal 
dimensions, namely the deviation in time/value and the 
ratio of queries gaining the specified consistency. We 
also propose a consistency maintenance algorithm, 
called Flexible Combination of Push and Pull (FCPP), 
which can meet users’ consistency requirements 
specified under the PDC model. An analytical model is 
derived to achieve the optimized combination of push 
and pull, so as to ensure the user-specified consistency 
requirements, while minimizing the consistency 
maintenance overhead. Extensive simulations are 
conducted to evaluate the performance of the FCPP 
algorithm. Evaluation results show that, compared 
with the widely used Dynamic TTR algorithm, FCPP 
can save up to 68% of the traffic overhead and reduce 
the query delay by up to 84%. 
 

1. Introduction 
Pervasive network is an important component of the 

underlying infrastructure of pervasive computing. In 
recent years, many research efforts have been made to 
facilitate pervasive access to the Internet through both 
wired and wireless networks. For example, Internet-
based Mobile Ad hoc Networks (IMANETs) [15, 5] 
have emerged as an approach to providing pervasive 
Internet access. In an IMANET formed by multiple 
mobile users, as shown in Fig. 1, the mobile users 
close to a base station or access point can directly 
access Internet resources, and hence can serve as 
gateways to the Internet for other nodes out of the 
coverage. Therefore, IMANET allows mobile users to 
access Internet resources either directly or through 
multi-hop wireless connections. IMANETs can be 
used in many application scenarios, including 
university campuses, airports, mobile stores and 
battlefields to provide Internet access [13]. 

The limited communication resources (e.g., 
bandwidth and battery power) and users’ mobility 
make Internet access a challenging task in mobile 
wireless networks such as IMANETs. One effective 
and widely-used method to improve system 
performance is to cache frequently accessed data 
objects at the data source (gateway node) and a group 
of caching nodes [1, 2, 3]. Thus, other mobile users 
can access the cached data objects nearby, with 
reduced query latency and traffic overhead. In order to 
ensure valid data access, the cache consistency [6], i.e., 
consistency among the source data owned by the data 
source and the cache copies held by a collection of 
caching nodes, must be maintained properly. 
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Fig 1. An IMANET for pervasive Internet access 

 

Different types of data objects often have different 
consistency requirements. For example, suppose a 
mobile user needs to know the newest stock prices 
using his smart phone. The accessed stock price should 
be very up-to-date, such as the price at most 2 minutes 
ago. The mobile user might also be interested in the 
weather forecast for the coming day. In this case, the 
weather information returned can be of several hours 
ago. Even if the cached data object was not updated in 
time, the previous version is still useful. On the other 
hand, in some applications, not all but a certain 
percentage of the queries are required to satisfy the 
consistency requirements. For example, a taxi driver 
may frequently check traffic information. Since the 
driver can check the traffic information well in 
advance, he may thus tolerate that certain portion of 
the accesses is slightly stale. As long as a bounded 
portion of the accessed information is up-to-date, the 
driver can efficiently choose the best route. 

Therefore, there is a need to develop a consistency 
model, which allows the users to flexibly tune their 
consistency requirements for different types of data 
objects. In doing so, the users can efficiently make 
tradeoffs between the specified cache consistency and 
the maintenance cost. In literature, Delta Consistency 
(DC) [6] and Probabilistic Consistency (PC) [7] have 
been proposed to provide some flexibility for users to 
tune their consistency requirements either in the 
maximum acceptable data deviation or in the 
guaranteed probability of providing valid data. 

In this paper, we propose a more general and 
flexible cache consistency model, called Probabilistic 
Delta Consistency (PDC). PDC covers all widely 
studied consistency models including DC and PC, and 
allows users to dynamically specify their consistency 
requirements. In PDC, a mobile user can specify their 
consistency requirements in two orthogonal 

dimensions, as shown in Fig 2. The dimension along 
the x-axis specifies the value δ, which denotes the 
maximum acceptable deviation in time or value 
between the source data and the cache copy. The 
dimension along the y-axis specifies the probability p 
which represents the ratio of queries served by cache 
copies that must satisfy the specified DC. Supporting 
PDC means that the mobile users’ queries are served 
by the cache copies satisfying user-specified DC with 
user-specified probability (formally defined in Section 
3). With the PDC model, users can flexibly specify 
their consistency requirements by continuously tuning 
δ and p. 

 
Fig 2. The probabilistic delta consistency model 

 
We also propose an algorithm called Flexible 

Combination of Push and Pull (FCPP) under the PDC 
model. In FCPP, each cache copy is associated with a 
timeout value which is calculated based on the 
consistency requirement δ and p. Upon each update, 
the data source sends an invalidation (INV) message to 
each cache copy that still possesses a valid timeout to 
invalidate the cache copy. The caching node 
acknowledges each INV message with an INV_ACK 
message. The data source can update the source data if 
it has collected the INV_ACK messages for all the 
INV messages sent. Otherwise, the data source will not 
update the data until either the timeout of all the 
unresponding cache copies expires, or the maximum 
tolerable delay of the application on the data source is 
reached. Note that, if the data source can always delay 
the update until the timeout values on all the 
unresponding caching nodes expire. FCPP provides 
Strong Consistency (SC) and covers the Lease protocol 
[9, 10] as its special case. By adjusting the timeout 
value associated with the cache copies, FCPP also 
covers many other cache consistency schemes, such as 
Pull each read [8] and Invalidation [4]. 

An analytical model is derived to calculate the 
optimized timeout value corresponding to a user-
specified consistency requirement, in order to 
minimize the consistency maintenance overhead. 
Extensive simulations are conducted to study the 
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performance of the proposed FCPP algorithm. The 
evaluation results show that FCPP can satisfy different 
consistency requirements with high efficiency, in terms 
of traffic overhead and query delay in a variety of 
network environments. FCPP can save up to 68% of 
the traffic overhead and reduce the query delay by up 
to 84% while satisfying the specified consistency 
requirement, compared with the widely used Dynamic 
TTR algorithm [11, 12]. 

The rest of this paper is organized as follows. 
Section 2 provides an overview of the existing works. 
Section 3 presents the formal definition of the PDC 
model. In Section 4, we present details in design of the 
FCPP algorithm. An analytical model is derived to 
calculate the optimized timeout duration in Section 5. 
Section 6 presents the experimental evaluation. Finally, 
Section 7 concludes the paper with a summary and our 
future works. 
 
2. Related Work 

There are various levels of cache consistency. Two 
extremes of the Consistency Spectrum are Strong 
Consistency (SC) and Weak Consistency (WC).  In SC, 
the accessed cache copies are always up-to-date, 
whereas in WC, the data source and the caching nodes 
maintain cache consistency, but do not provide any 
guarantee on the deviation between the source data and 
the cache copies [6]. To provide consistency 
requirements between SC and WC, Delta consistency 
(DC) [6] and Probabilistic Consistency (PC) [7] have 
been proposed. In DC, the users can specify the 
maximum acceptable deviation between the source 
data and the cached data, while in PC, the users can 
specify the probability of valid data access. Thus, DC 
and PC enable users to specify their consistency 
requirements in two separate but orthogonal 
dimensions. The PDC model proposed in this paper 
integrates these two models into a uniform model. 

To meet different consistency requirements, many 
cache consistency maintenance schemes have been 
proposed. For example, Pull each read [8], 
Invalidation [4], Lease [9, 10] and UIR-based Cache 
Invalidation [16] were proposed to provide SC. The 
Predictive Caching Consistency algorithm [14] 
provides WC. It is based on the online predictions of 
data updates and queries. However, these schemes can 
provide only SC or WC. Therefore, they are not 
efficient or applicable in case that the users need to 
specify various consistency requirements for different 
types of data objects. A widely used technique to 
support DC is to associate a Time to Refresh (TTR) 
with each cache copy [1, 11, 12, 17]. In order to work 
efficiently in dynamic environments, the TTR value is 

dynamically adjusted based on a simple linear model 
[11, 12]. In [17], the authors proposed the Push-and-
Pull and the Push-or-Pull schemes to provide DC. In 
[13], a Relay Peer based scheme was proposed to 
provide different consistency requirements, including 
SC, DC and WC. However, none of the above-
mentioned schemes can support probabilistic 
consistency requirements. In [7], the authors proposed 
an adaptive pull algorithm to support PC, but the 
proposed algorithm is designed only for maintaining 
the consistency of numerical data values. 

So far, to the best of our knowledge, there is no 
single cache consistency maintenance scheme which 
can effectively support different user-specified cache 
consistency requirements, including SC, WC, DC, and 
PC, on various types of data objects. This paper aims 
to design such a cache consistency maintenance 
scheme. 
 
3. Probabilistic Delta Consistency 

In this section, we first present the formal definition 
of the Probabilistic Delta Consistency (PDC) model 
and then discuss its flexibility and generality. 

Let St denote the version number of the source data 
and Ct

j denote the version number of the cached copy 
on node j at time t. The version number of the source 
data is initially set to zero and then increased upon 
each subsequent update. The version number of the 
cache copy is set to that of the source data at the time 
when it is synchronized. Then, we can formally define 
PDC(δ, p) as follows: 

∀ t, ∀ j, P{∃ τ, 0 τ δ, s.t. S≦ ≦ t-τ = Ct
j }  p;≧  

The mobile users can specify their consistency 
requirements in two orthogonal dimensions under the 
PDC model. They can specify the data deviation δ and 
the probability of valid data access p. Satisfying the 
consistency requirement PDC(δ, p) means that the 
users’ queries are served by cache copies that cannot 
be stale longer than δ, with a probability no less than p. 

The users can continuously specify δ in range [0, ∞) 
and p in range [0, 100%], thus obtaining great 
flexibility in specifying the consistency requirements 
in the consistency spectrum between SC and WC. For 
example, in the scenario discussed in Section 1, a user 
accesses the stock prices with his smart phone. He can 
assure that the prices accessed will not be too stale by 
specifying a small δ (e.g., 20s). Since the user 
frequently checks the prices, he might be able to 
tolerate that a small portion of his queries does not 
satisfy the requirement on δ. He can specify a p value a 
little less than 100% (e.g., 95%), thus reducing query 
latency and traffic overhead. In another scenario 
mentioned in Section 1, a taxi driver frequently 
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accesses traffic information of the destination to decide 
which route to choose. If the driver requires that all his 
queries are served by up-to-date traffic information, 
the access latency might be intolerable, due to the 
bandwidth-constrained and unreliable wireless 
communication. Since the driver can frequently access 
the traffic information in advance and the traffic 
information cannot change dramatically, he can specify 
less stringent requirement on the ratio of valid access p 
(e.g., 70%). The driver can also relax his requirement 
on δ (e.g., 90s), in order to reduce the query latency 
and traffic overhead. 

The proposed PDC model covers the existing 
consistency models as special cases: PDC(0, 100%) is 
equivalent to the SC model. PDC(∞, *) and PDC(*, 0) 
yield the WC model. PDC(*, 100%) yields the DC 
model. Here, ‘*’ represents any possible values. 
Probabilistic Consistency (PC) means that the pre-
specified consistency requirement is satisfied with 
user-specified probability. Thus for specified δ, PDC(δ, 
*) will yield the PC model. 
 
4. The Flexible Combination of Push and 
Pull Algorithm 

Details of the proposed Flexible Combination of 
Push and Pull (FCPP) algorithm are presented in this 
section. In FCPP, we consider a commonly used 
system model, where each data object is associated 
with a single node which can update the source data. 
This node is referred to as the data source. Each data 
object can be cached by a group of nodes called 
caching nodes. The data copies held by the caching 
nodes are called cache copies. There are mainly two 
basic mechanisms for achieving cache consistency: 
push and pull. Using push, the data source informs 
every caching node of the data update. Using pull, for 
each data access, a caching node sends a request to the 
data source to check if the cache copy is up-to-date. 
4.1. Design of the FCPP Algorithm 

In FCPP, each data object is associated with a 
timeout duration l. All accesses to a cache copy can be 
directly served during its valid timeout duration (i.e., l 
> 0). When the timeout expires (l deceases to 0), 
before serving a data access, the caching node needs to 
renew its timeout from the data source and to update 
its own cache copy if the source data has been updated. 

On the other hand, the data source maintains the 
timeout information of all caching nodes. When the 
source data is ready to be updated, the data source 
sends an invalidation (INV) message to all the cache 
copies that possess valid timeout values. The caching 
node acknowledges each INV message with an 
INV_ACK message. The data source can immediately 

update the source data only if it receives an INV_ACK 
message for each INV message sent out. Otherwise, 
the data source cannot update the source data until 
either the timeout values of all the unresponding cache 
copies expire, or the waiting time is over D seconds. 
Here, D is a system parameter denoting the maximum 
period the data source can wait before updating the 
source data. The pseudo code of the FCPP algorithm is 
presented below. 

Algorithm 1 FCPP on a caching node 

Upon receiving a query 

(1) IF(l > 0) Serve the query with the cache copy; 

(2) ELSE // l has decreased to zero 

(2.1) Send a RENEW message to renew the 
timeout from the data source and update the 
cache copy; 

(2.2) After l is renewed, serve the query with the 
updated cache copy; 

 

Algorithm 2 FCPP on the data source 

When the source data is ready to be updated 

(1) Send an INV message to each caching node 
with positive l; 

(2) IF(receive an INV_ACK message for each 
INV message OR has waited for D seconds) 

(2.1) Update the source data; 

Upon receiving a RENEW message from a 
caching node 

(3) Grant timeout with duration l and the source 
data to the caching node; 

 

4.2 FCPP as a Generic Scheme 

When the data source can always delay the update 
until the timeout values on all the unresponding 
caching nodes expire (D can be sufficiently large), 
FCPP provides SC and covers the Lease protocol [9, 
10] as its special case. When the timeout duration l is 
set to 0, FCPP becomes the Pull each read scheme [8]. 
When the data source lets l be infinite, FCPP 
transforms to Push with ACK. By adjusting the timeout 
duration, FCPP flexibly integrates push and pull. 

The timeout duration l is determined by the 
consistency requirement PDC (δ, p). As we will see in 
the next section, FCPP guarantees DC when l ≦ D+δ. 
In particular, when l ≦ D, FCPP provides SC. When l 
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> D+δ, FCPP provides probabilistically guaranteed 
DC. In the next section, we investigate how to decide 
the timeout duration l to satisfy the user-specified 
consistency requirement PDC (δ, p) while minimizing 
the consistency maintenance overhead. 
 
5. Analysis of the Optimized Timeout 
Duration of FCPP 

In this section, we derive an analytic model to study 
the relationship between the timeout duration l and the 
consistency requirement PDC (δ, p), as well as the 
relationship between l and the traffic overhead. Then 
we calculate the optimized timeout duration which 
satisfies the user-specified PDC with minimum traffic 
overhead. In the analysis, we assume that the data 
update and the query follow Poisson Process. The 
number of hops counted in data transmission is used to 
measure the traffic overhead. The notations used in the 
analytical model are listed in Table 1. 
 

Table 1. Notations used in the analytical model 
(δ, p) user-specified consistency requirement 

D maximum time the data source can wait 
before updating the source data 

l timeout duration in FCPP 

N number of caching nodes 

Nk the kth caching node, k = 1, 2, …, N 

h  average path length between the data 
source and the caching nodes 

w average frequency of data update 

r average query frequency of a cache copy 

tu time instant of one source data update 

 

5.1 Providing Probabilistic Delta Consistency 

We first argue that when l ≦ D+δ, no stale cache 
hit occurs in the sense of Delta Consistency (DC). In 
DC, the users consider the cache copy access be valid 
if the deviation between the source data and the cache 
copy is less than δ. Suppose a source data update 
comes at time tu, the data source first sends out an INV 
message to each caching node, and then waits for at 
most D seconds (Fig 3). In the worst case, every INV 
message is lost and every caching node has the 
maximum timeout duration l = D+δ. The data source 
updates the source data after waiting for D seconds. 
We find that: 

- during period (tu, tu + D), there is no stale cache hit, 
since the data source has not updated the source data 
yet; 

- during period (tu + D, tu + D+δ), no stale cache hit 
occurs, since the deviation between the source data and 
the cache copy is bounded by δ. Given the consistency 
requirement (δ, p) specified under the PDC model, the 
cache copies are still considered to be valid. 

Thus, we prove that there is no stale cache hit if l ≦ 
D+δ. 

In case that l > D+δ, in period (tu, tu+D+δ), there is 
no stale cache hit, as discussed above. During period 
(tu+D+δ, tu+l), for a caching node with valid timeout, 
its original timeout duration x lies in range [D+δ, l]. If 
this caching node misses the INV message and still 
serves queries, the expected number of stale cache hits 
is (x-D-δ)r. Since x is uniformly distributed in range 
(D+δ, l), the expected number of stale cache hits in (tu, 
tu+l) is: 

2)(
2

)(1 Dl
l

rrdxDx
l

S
l

D
−−=−−= ∫ +

δδ
δ

. 

When the data source misses an INV_ACK 
message from a caching node, two cases may happen. 
One is that the caching node misses the INV message, 
and the other is that the caching node has successfully 
received the INV message, but the corresponding 
INV_ACK message is lost. We discuss each case as 
follows: 
- in the first case, the data source cannot receive the 
corresponding INV_ACK message. The expected 
number of stale cache hits introduced by INV message 
loss is counted in inequality (1) below; 

- in the second case, the data source will falsely decide 
that the caching node introduces stale cache hits. We 
take these false stale hits as real stale hits in our 
analytical model to get the upper bound of the 
probability of stale hits, in order to ensure the user-
specified consistency requirement (δ, p). Our 
estimation of the number of stale cache hits in this case 
is conservative. 

According to the discussion above, we have that 
2)(

2
Dl

l
rS −−≤ δ  in both cases. 
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Fig 3.Number of stale cache hits 

Based on the estimated number of stale cache hits 
on each caching node, we find that the total number of 
stale cache hits is bounded by: 

∑∑ ≤≤≤≤
−−≤≤

Nk kNk k Dl
l
rkIpSkIpES

1
2

1
)(

2
)()( δ   

(1) 

Here, for each caching node Nk, 1≤k≤N, I(k) has the 
value one, if Nk has a timeout l greater than D+δ and 
the INV_ACK message from Nk is missed. Otherwise, 
I(k) is set to zero. I(k)=1 indicates that Nk may 
introduce some stale hits. If Nk has a timeout l less than 
D+δ, or the data source successfully receives the 
INV_ACK message from Nk, no stale hits will be 
induced by this node as discussed above. Hence, we 
set I(k) to zero to eliminate the false stale hits from Nk. 
When the data source is ready to update the data, it can 
determine the value of I(k) for each caching node Nk 
based on l and δ. In inequality (1), pk denotes the 
probability that the INV_ACK message from Nk is 
missed. 

Upon each source data update, the data source sets 
the timeout duration to l. The average interval between 
the current and the forthcoming source data update is 
1/w. The expected number of cache queries in this 
period is wNr /⋅  and the expected number of stale 
cache hits incurred is ES. Thus, we obtain that the 
probability of DC provided to the users is: 

)/()(1 NrESw ⋅⋅− . Since the probability of DC 
should be no less than the user-specified probability p, 
we have: )/()(1 NrESwp ⋅⋅−≤ . Based on 
inequality (1), we can ensure the consistency 
requirement (δ, p) if we let: 

w
rNpDl

l
rkIp

Nk k
⋅−

≤−−∑ ≤≤

)1()(
2

)(
1

2δ . 

To solve this inequality, we find that d(l-D-δ)2 / dl > 0 
when l > D+δ. This shows that the maximum value of l 
is the root of equation: 

w
rNpDl

l
rkIp

Nk k
⋅−

=−−∑ ≤≤

)1()(
2

)(
1

2δ . 

We solve this quadratic equation and then obtain that 
the value of l is bounded by: 

∑∑∑
≤≤≤≤≤≤

−+
+

−
+

−
++≤

Nk
k

Nk
k

Nk
k kIpw

NpD
kIpw

Np
kIpw

NpDl

1

2

1

22

1
)(
)1)((2

))((
)1(

)(
)1()( δδ

 

   (2) 
5.2 Traffic Overhead 

According to the FCPP algorithm, there are mainly 
two types of traffic overhead: traffic for timeout 
renewal and that for the INV & ACK process. As 
shown in Fig 4, when a query comes after the timeout 
expired, the caching node first renews the timeout 
value to l and then directly serves the next ⎣ ⎦rl ⋅  (on 

average) queries. Thus, for every ⎣ ⎦rl ⋅ +1 queries, 
there will be one timeout renewal on average. So the 
expected cost for timeout renewal per unit time 
is: ⎣ ⎦ )1/(2 +⋅⋅⋅⋅ rlrNh . 

As for data updates, for every ⎣ ⎦ 1+⋅ rl  queries on 

a caching node, ⎣ ⎦rl ⋅  of them occur within valid 
timeout. So the probability that a caching node has 
valid timeout is: ⎣ ⎦ ⎣ ⎦ )1/( +⋅⋅ rlrl . Thus the 
expected traffic overhead per unit time associated with 
the INV & ACK process is: 

⎣ ⎦ ⎣ ⎦ )1/(2 +⋅⋅⋅⋅⋅⋅ rlrlwNh . Thus, we obtain the 
total traffic overhead per unit time: 

⎣ ⎦
⎣ ⎦ 1

12
1

2
+⋅
⋅+

⋅⋅≈
+⋅
⋅+

⋅=
rl

lwhNr
rl

rlwrhNC . 

In order to study how the timeout duration l affects the 
traffic overhead, we take the derivation: 

2)1/()(2/ +⋅−⋅⋅⋅= rlrwhNrdldC . 

We find that, in case w < r, in order to minimize the 
traffic overhead, we should increase the timeout 
duration l as much as possible1. Based on the upper 
bounded of l in inequality (2), the optimal timeout 
duration l is: 

                                                           
1 In case w > r, the timeout duration should be reduced 
as much as possible. This result is reasonable since the 
round-trip INV & ACK process imposes great traffic 
overhead in case we have more frequent updates than 
queries. When l is set to zero, FCPP transforms to the 
traditional Pull scheme and we omit the detailed 
discussion on this case in this paper. 
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Np
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NpDl )1)((2)1()1()( 2
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+

−
+

−
++=

δδ  

(3) 

 
Fig 4. Number of queries within the timeout duration 

When we apply our analytical model to cache 
consistency maintenance, the system parameter D is 
initialized upon deployment of the caching system and 
the users specify their consistency requirement PDC(δ, 
p) for the cached data objects. Then, based on equation 
(3), the data source can decide the optimized timeout 
duration l for each data object, in order to provide 
user-specified PDC while minimizing the traffic 
overhead. 
 

6. Experimental Evaluations 
In this section, we conduct simulations to evaluate 

the performance of FCPP. We first present the 
experimental methodology, and then discuss the 
evaluation results. 
6.1 Experiment Methodology 

In the experimental evaluation, we first investigate 
whether FCPP can effectively satisfy different 
consistency requirements PDC(δ, p). We then study 
the performance of FCPP by varying the data update 
interval and the number of caching nodes. We choose 
to vary the consistency requirement (δ, p), the update 
interval and the number of caching nodes because 
these parameters have the most significant impacts on 
the performance of FCPP according to the analytical 
result in equation (3). We study the cost-effectiveness 
of FCPP based on extensive performance comparison 
with the Pull Algorithm with Dynamic TTR (named as 
DynTTR in short) [11, 12]. Note that, DynTTR cannot 
locally guarantee user-specified PDC. We centrally 
configure it to provide specified consistency 
requirements to conduct the performance comparison 
here. The following performance metrics are used in 
the performance comparisons: 
- (δ, p): with probability p, deviation between the 
source data and the cache copy is bounded by δ; 

- Traffic overhead: average number of hops counted of 
consistency maintenance message propagation; 

- Query delay: average delay imposed due to 
propagating the consistency maintenance messages; 

Detailed experimental configurations are listed in 
Table 2. 

Table 2. Experimental configurations 

Network area 200×200 m2 
Size of network 80 
Transmission range 15 
Mobility model Random way point [18]
Average speed 0.5 m/s 
Patter of date updates 
and queries 

Poisson process 

Maximum portion of 
crashed nodes 

10% 

Probability of 
message loss per hop

5% 

Maximum delay 
before data update 

2 s 

Average interval 
between queries 

5 s 

 

The default values of consistency requirement, average 
update interval and number of caching nodes are set as 
follows:  

- (δ, p) = (5s, 90%); 

- average update interval: 20s; 

- number of caching nodes: 10; 

We will study the impacts of varying these parameters 
in the following experiments. 

6.2 Effects of Tuning the Consistency 
Requirement (δ, p) 

In this experiment, we relax the initial consistency 
requirement in two orthogonal dimensions. We first 
decrease p from 90% to 80%, 70% and 60%, and then 
increase δ from 5 to 10, 15 and 20 seconds. Note that, 
parameters δ and D are bound together, as shown in 
equation (3). Thus, tuning δ has the same effect as 
tuning D. Our first observation is that the FCPP 
algorithm can locally provide various user-specified 
consistency requirements, as shown in Figs. 5 and 8. 
We also find that in most cases, the actual probability 
of DC provided to the users is slightly more than the 
user-specified probability. Specifically, as shown in 
Fig 8, the actual probability is no more than 95%, 
while the user-specified probability is 90%. But also 
note that, when the user-specified probability p is 
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decreased to 70% and 60%, the discrepancy between 
the actual probability provided to the users and the 
specified probability goes up to 15% (Fig. 5), which 
shows that FCPP is less accurate in estimating the 
probability of DC if the specified probability p is low. 
It is mainly because the caching nodes get longer 
timeout duration l when the probability p is decreased. 
Thus, there are more chances for the data source to 
falsely calculate the expected number of stale cache 
hits. This will make the estimation of stale cache hits 
more conservative, as discussed in Section 5.1. 

 
Fig 5. Probability of DC vs. p 

 
Fig 6. Traffic overhead per update vs. p 

 
Fig 7. Query delay vs. p 

We also find that, when the consistency 
requirement is relaxed in two different dimensions, the 
performance of FCPP changes differently. FCPP 
becomes more cost-effective in terms of both traffic 
overhead and query delay (Figs. 6 and 7) when the 
probability p is decreased. The traffic overhead saved 
increases from 11% (p = 90%) to 31% (p = 70%). The 
query delay saved increases from 32.83% (p = 90%) to 
83.65% (p = 60%). Here, the percentage of traffic 
overhead or query delay saved refers to the ratio of the 
saved cost to the cost imposed by FCPP. FCPP 
becomes less effective when δ is increased (Figs. 9 and 
10). The traffic overhead saved decreases from 24% (δ 
= 10) to 4% (δ = 20) and the query delay saved 

decreases from 64% (δ = 10) to 57% (δ = 20). This is 
mainly because, when the users have less stringent 
consistency requirements on p, the caching nodes can 
get longer timeout duration from the data source, 
according to equation (3). Thus, more cache queries 
can be directly served in FCPP. Meanwhile, when 
users have less stringent consistency requirements on δ, 
the simple linear model used in DynTTR has higher 
probability to gradually tune the TTR and meet users’ 
consistency requirements with less cost. Thus, FCPP 
becomes comparatively less cost-effective. Overall, the 
evaluation results show that the FCPP algorithm is 
more effective in dealing with more strict requirements 
on δ and looser requirements on p, compared with the 
DynTTR algorithm. 

 
Fig 8. Probability of DC vs. δ 

 
Fig 9. Traffic overhead per update vs. δ 

 
Fig 10. Query delay vs. δ 

6.3 Effects of Tuning the Update Frequency 
In this experiment, we increase the average interval 

between data updates from 20 to 80 seconds. We first 
find that the total traffic overhead decreases as the 
number of updates decreases (Fig 12). We also find 
that FCPP becomes much more effective in terms of 
both traffic overhead per update and query delay, as 
shown in Figs 13 and 14. The traffic overhead saved 
increases from 12% (interval = 20) to 64% (interval = 
80), and the query delay saved increases from 33% 
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(interval = 20) to 70% (interval = 80). For lower 
update frequencies, the data source is expected to set 
longer timeout duration for the caching nodes and 
more queries can be directly served, which reduces 
both traffic overhead and query delay, whereas 
DynTTR cannot effectively adapt to the changes in 
data updates. Note that when the update frequency is 
lower while the query frequency holds, more queries 
are associated with one update. Hence, the number of 
hops per update increases, as show in Fig. 13. In 
addition, the total cost for consistency maintenance 
decreases, as shown in Fig. 12. 

 
Fig 11. Probability of DC vs. update interval 

 
Fig 12. Total traffic overhead vs. update interval 

 
Fig 13. Traffic overhead per update vs. update interval 

 
Fig 14. Query delay vs. update interval 

6.4 Effects of Tuning the Number of Caching 
Nodes 

 In this experiment, we increase the number of 
caching nodes from 10 to 30, 50 and 70. We find that 

FCPP becomes less effective in terms of both traffic 
overhead and query delay when the source data is 
more widely cached, as shown in Figs 16 and 17. The 
traffic overhead saved decreases from 67.58% (# of 
caching nodes = 10) to 5% (# of caching nodes = 70), 
while the query delay saved decreases from 70% (# of 
caching nodes = 30) to 42% (# of caching nodes = 70). 
This is caused by the round-trip traffic overhead and 
query latency in the INV&ACK process of FCPP. 

 
Fig 15. Probability of DC vs. number of caching nodes 

 
Fig 16. Traffic overhead per update vs. number of 

caching nodes 

 
Fig 17. Query delay vs. number of caching nodes 
Based on the evaluation results, we conclude that 

FCPP effectively provides user-specified PDC in a 
variety of network environments. In particular, FCPP 
is significantly more effective than DynTTR when 1) 
the users have looser consistency requirements on 
probability p, or more strict requirements on δ, or 2) 
there are less frequent data updates and more frequent 
queries, or 3) the source data is not quite widely 
cached. 
 

7. Conclusion and Future Work 
In this paper, we have addressed the problem of 

how to provide the users with flexibility in specifying 
their consistency requirements, and how to satisfy the 
flexible user-specified consistency requirements with 
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minimum overhead. Toward this objective, our 
contributions can be described as follows: (1) we have 
proposed a general consistency model PDC, allowing 
users to flexibly specify their consistency requirements 
in two orthogonal dimensions; (2) we have developed 
the FCPP algorithm to maintain cache consistency 
under the PDC consistency model. FCPP flexibly and 
efficiently combines push and pull based on timeouts; 
(3) we have derived an analytical model for FCPP to 
calculate the optimized timeout duration, so as to 
provide user-specified PDC with minimum traffic 
overhead in IMANETs; (4) we have conducted 
comprehensive experimental simulations to evaluate 
the performance of FCPP, by comparing it with the 
DynTTR algorithm. 

In our future work, we will study how to enable 
efficient cooperation among the caching nodes, in 
order to further reduce the cache maintenance cost. We 
also plan to study how to satisfy heterogeneous 
consistency requirements of the users. 
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