
Achieving Flexible Cache Consistency for Pervasive Internet Access

Yu Huang1,2, Jiannong Cao1, Zhijun Wang1, Beihong Jin2, Yulin Feng2
1Internet and Mobile Computing Lab, Dept. of Computing

Hong Kong Polytechnic Univ., Kowloon, Hong Kong
alberthuang@ustc.edu

{csjcao, cszjwang}@comp.polyu.edu.hk
2Technology Center of Software Engineering, Institute of Software

Chinese Academy of Sciences, Beijing, China
{jbh, feng}@otcaix.iscas.ac.cn

Abstract

Caching is an important technique to support
pervasive Internet access. Cache consistency measures
the deviation between the cached data and the source
data. In mobile computing environments, especially
with ad hoc networks, users are in great need of the
flexibility in tuning their consistency requirements, in
order to make tradeoffs between the specified cache
consistency and the cost incurred. Existing works have
used Delta Consistency (DC) and Probabilistic
Consistency (PC) which, to some extent, provide the
users with such flexibility. In this paper, we propose a
general consistency model called Probabilistic Delta
Consistency (PDC). PDC covers all existing
consistency models including DC and PC, and
integrates the flexibility granted by both DC and PC.
Thus, PDC enables the users to flexibly specify their
consistency requirements in two orthogonal
dimensions, namely the deviation in time/value and the
ratio of queries gaining the specified consistency. We
also propose a consistency maintenance algorithm,
called Flexible Combination of Push and Pull (FCPP),
which can meet users’ consistency requirements
specified under the PDC model. An analytical model is
derived to achieve the optimized combination of push
and pull, so as to ensure the user-specified consistency
requirements, while minimizing the consistency
maintenance overhead. Extensive simulations are
conducted to evaluate the performance of the FCPP
algorithm. Evaluation results show that, compared
with the widely used Dynamic TTR algorithm, FCPP
can save up to 68% of the traffic overhead and reduce
the query delay by up to 84%.

1. Introduction
Pervasive network is an important component of the

underlying infrastructure of pervasive computing. In
recent years, many research efforts have been made to
facilitate pervasive access to the Internet through both
wired and wireless networks. For example, Internet-
based Mobile Ad hoc Networks (IMANETs) [15, 5]
have emerged as an approach to providing pervasive
Internet access. In an IMANET formed by multiple
mobile users, as shown in Fig. 1, the mobile users
close to a base station or access point can directly
access Internet resources, and hence can serve as
gateways to the Internet for other nodes out of the
coverage. Therefore, IMANET allows mobile users to
access Internet resources either directly or through
multi-hop wireless connections. IMANETs can be
used in many application scenarios, including
university campuses, airports, mobile stores and
battlefields to provide Internet access [13].

The limited communication resources (e.g.,
bandwidth and battery power) and users’ mobility
make Internet access a challenging task in mobile
wireless networks such as IMANETs. One effective
and widely-used method to improve system
performance is to cache frequently accessed data
objects at the data source (gateway node) and a group
of caching nodes [1, 2, 3]. Thus, other mobile users
can access the cached data objects nearby, with
reduced query latency and traffic overhead. In order to
ensure valid data access, the cache consistency [6], i.e.,
consistency among the source data owned by the data
source and the cache copies held by a collection of
caching nodes, must be maintained properly.

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

Fig 1. An IMANET for pervasive Internet access

Different types of data objects often have different
consistency requirements. For example, suppose a
mobile user needs to know the newest stock prices
using his smart phone. The accessed stock price should
be very up-to-date, such as the price at most 2 minutes
ago. The mobile user might also be interested in the
weather forecast for the coming day. In this case, the
weather information returned can be of several hours
ago. Even if the cached data object was not updated in
time, the previous version is still useful. On the other
hand, in some applications, not all but a certain
percentage of the queries are required to satisfy the
consistency requirements. For example, a taxi driver
may frequently check traffic information. Since the
driver can check the traffic information well in
advance, he may thus tolerate that certain portion of
the accesses is slightly stale. As long as a bounded
portion of the accessed information is up-to-date, the
driver can efficiently choose the best route.

Therefore, there is a need to develop a consistency
model, which allows the users to flexibly tune their
consistency requirements for different types of data
objects. In doing so, the users can efficiently make
tradeoffs between the specified cache consistency and
the maintenance cost. In literature, Delta Consistency
(DC) [6] and Probabilistic Consistency (PC) [7] have
been proposed to provide some flexibility for users to
tune their consistency requirements either in the
maximum acceptable data deviation or in the
guaranteed probability of providing valid data.

In this paper, we propose a more general and
flexible cache consistency model, called Probabilistic
Delta Consistency (PDC). PDC covers all widely
studied consistency models including DC and PC, and
allows users to dynamically specify their consistency
requirements. In PDC, a mobile user can specify their
consistency requirements in two orthogonal

dimensions, as shown in Fig 2. The dimension along
the x-axis specifies the value δ, which denotes the
maximum acceptable deviation in time or value
between the source data and the cache copy. The
dimension along the y-axis specifies the probability p
which represents the ratio of queries served by cache
copies that must satisfy the specified DC. Supporting
PDC means that the mobile users’ queries are served
by the cache copies satisfying user-specified DC with
user-specified probability (formally defined in Section
3). With the PDC model, users can flexibly specify
their consistency requirements by continuously tuning
δ and p.

Fig 2. The probabilistic delta consistency model

We also propose an algorithm called Flexible

Combination of Push and Pull (FCPP) under the PDC
model. In FCPP, each cache copy is associated with a
timeout value which is calculated based on the
consistency requirement δ and p. Upon each update,
the data source sends an invalidation (INV) message to
each cache copy that still possesses a valid timeout to
invalidate the cache copy. The caching node
acknowledges each INV message with an INV_ACK
message. The data source can update the source data if
it has collected the INV_ACK messages for all the
INV messages sent. Otherwise, the data source will not
update the data until either the timeout of all the
unresponding cache copies expires, or the maximum
tolerable delay of the application on the data source is
reached. Note that, if the data source can always delay
the update until the timeout values on all the
unresponding caching nodes expire. FCPP provides
Strong Consistency (SC) and covers the Lease protocol
[9, 10] as its special case. By adjusting the timeout
value associated with the cache copies, FCPP also
covers many other cache consistency schemes, such as
Pull each read [8] and Invalidation [4].

An analytical model is derived to calculate the
optimized timeout value corresponding to a user-
specified consistency requirement, in order to
minimize the consistency maintenance overhead.
Extensive simulations are conducted to study the

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

performance of the proposed FCPP algorithm. The
evaluation results show that FCPP can satisfy different
consistency requirements with high efficiency, in terms
of traffic overhead and query delay in a variety of
network environments. FCPP can save up to 68% of
the traffic overhead and reduce the query delay by up
to 84% while satisfying the specified consistency
requirement, compared with the widely used Dynamic
TTR algorithm [11, 12].

The rest of this paper is organized as follows.
Section 2 provides an overview of the existing works.
Section 3 presents the formal definition of the PDC
model. In Section 4, we present details in design of the
FCPP algorithm. An analytical model is derived to
calculate the optimized timeout duration in Section 5.
Section 6 presents the experimental evaluation. Finally,
Section 7 concludes the paper with a summary and our
future works.

2. Related Work

There are various levels of cache consistency. Two
extremes of the Consistency Spectrum are Strong
Consistency (SC) and Weak Consistency (WC). In SC,
the accessed cache copies are always up-to-date,
whereas in WC, the data source and the caching nodes
maintain cache consistency, but do not provide any
guarantee on the deviation between the source data and
the cache copies [6]. To provide consistency
requirements between SC and WC, Delta consistency
(DC) [6] and Probabilistic Consistency (PC) [7] have
been proposed. In DC, the users can specify the
maximum acceptable deviation between the source
data and the cached data, while in PC, the users can
specify the probability of valid data access. Thus, DC
and PC enable users to specify their consistency
requirements in two separate but orthogonal
dimensions. The PDC model proposed in this paper
integrates these two models into a uniform model.

To meet different consistency requirements, many
cache consistency maintenance schemes have been
proposed. For example, Pull each read [8],
Invalidation [4], Lease [9, 10] and UIR-based Cache
Invalidation [16] were proposed to provide SC. The
Predictive Caching Consistency algorithm [14]
provides WC. It is based on the online predictions of
data updates and queries. However, these schemes can
provide only SC or WC. Therefore, they are not
efficient or applicable in case that the users need to
specify various consistency requirements for different
types of data objects. A widely used technique to
support DC is to associate a Time to Refresh (TTR)
with each cache copy [1, 11, 12, 17]. In order to work
efficiently in dynamic environments, the TTR value is

dynamically adjusted based on a simple linear model
[11, 12]. In [17], the authors proposed the Push-and-
Pull and the Push-or-Pull schemes to provide DC. In
[13], a Relay Peer based scheme was proposed to
provide different consistency requirements, including
SC, DC and WC. However, none of the above-
mentioned schemes can support probabilistic
consistency requirements. In [7], the authors proposed
an adaptive pull algorithm to support PC, but the
proposed algorithm is designed only for maintaining
the consistency of numerical data values.

So far, to the best of our knowledge, there is no
single cache consistency maintenance scheme which
can effectively support different user-specified cache
consistency requirements, including SC, WC, DC, and
PC, on various types of data objects. This paper aims
to design such a cache consistency maintenance
scheme.

3. Probabilistic Delta Consistency

In this section, we first present the formal definition
of the Probabilistic Delta Consistency (PDC) model
and then discuss its flexibility and generality.

Let St denote the version number of the source data
and Ct

j denote the version number of the cached copy
on node j at time t. The version number of the source
data is initially set to zero and then increased upon
each subsequent update. The version number of the
cache copy is set to that of the source data at the time
when it is synchronized. Then, we can formally define
PDC(δ, p) as follows:

∀ t, ∀ j, P{∃ τ, 0 τ δ, s.t. S≦ ≦ t-τ = Ct
j } p;≧

The mobile users can specify their consistency
requirements in two orthogonal dimensions under the
PDC model. They can specify the data deviation δ and
the probability of valid data access p. Satisfying the
consistency requirement PDC(δ, p) means that the
users’ queries are served by cache copies that cannot
be stale longer than δ, with a probability no less than p.

The users can continuously specify δ in range [0, ∞)
and p in range [0, 100%], thus obtaining great
flexibility in specifying the consistency requirements
in the consistency spectrum between SC and WC. For
example, in the scenario discussed in Section 1, a user
accesses the stock prices with his smart phone. He can
assure that the prices accessed will not be too stale by
specifying a small δ (e.g., 20s). Since the user
frequently checks the prices, he might be able to
tolerate that a small portion of his queries does not
satisfy the requirement on δ. He can specify a p value a
little less than 100% (e.g., 95%), thus reducing query
latency and traffic overhead. In another scenario
mentioned in Section 1, a taxi driver frequently

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

accesses traffic information of the destination to decide
which route to choose. If the driver requires that all his
queries are served by up-to-date traffic information,
the access latency might be intolerable, due to the
bandwidth-constrained and unreliable wireless
communication. Since the driver can frequently access
the traffic information in advance and the traffic
information cannot change dramatically, he can specify
less stringent requirement on the ratio of valid access p
(e.g., 70%). The driver can also relax his requirement
on δ (e.g., 90s), in order to reduce the query latency
and traffic overhead.

The proposed PDC model covers the existing
consistency models as special cases: PDC(0, 100%) is
equivalent to the SC model. PDC(∞, *) and PDC(*, 0)
yield the WC model. PDC(*, 100%) yields the DC
model. Here, ‘*’ represents any possible values.
Probabilistic Consistency (PC) means that the pre-
specified consistency requirement is satisfied with
user-specified probability. Thus for specified δ, PDC(δ,
*) will yield the PC model.

4. The Flexible Combination of Push and
Pull Algorithm

Details of the proposed Flexible Combination of
Push and Pull (FCPP) algorithm are presented in this
section. In FCPP, we consider a commonly used
system model, where each data object is associated
with a single node which can update the source data.
This node is referred to as the data source. Each data
object can be cached by a group of nodes called
caching nodes. The data copies held by the caching
nodes are called cache copies. There are mainly two
basic mechanisms for achieving cache consistency:
push and pull. Using push, the data source informs
every caching node of the data update. Using pull, for
each data access, a caching node sends a request to the
data source to check if the cache copy is up-to-date.
4.1. Design of the FCPP Algorithm

In FCPP, each data object is associated with a
timeout duration l. All accesses to a cache copy can be
directly served during its valid timeout duration (i.e., l
> 0). When the timeout expires (l deceases to 0),
before serving a data access, the caching node needs to
renew its timeout from the data source and to update
its own cache copy if the source data has been updated.

On the other hand, the data source maintains the
timeout information of all caching nodes. When the
source data is ready to be updated, the data source
sends an invalidation (INV) message to all the cache
copies that possess valid timeout values. The caching
node acknowledges each INV message with an
INV_ACK message. The data source can immediately

update the source data only if it receives an INV_ACK
message for each INV message sent out. Otherwise,
the data source cannot update the source data until
either the timeout values of all the unresponding cache
copies expire, or the waiting time is over D seconds.
Here, D is a system parameter denoting the maximum
period the data source can wait before updating the
source data. The pseudo code of the FCPP algorithm is
presented below.

Algorithm 1 FCPP on a caching node

Upon receiving a query

(1) IF(l > 0) Serve the query with the cache copy;

(2) ELSE // l has decreased to zero

(2.1) Send a RENEW message to renew the
timeout from the data source and update the
cache copy;

(2.2) After l is renewed, serve the query with the
updated cache copy;

Algorithm 2 FCPP on the data source

When the source data is ready to be updated

(1) Send an INV message to each caching node
with positive l;

(2) IF(receive an INV_ACK message for each
INV message OR has waited for D seconds)

(2.1) Update the source data;

Upon receiving a RENEW message from a
caching node

(3) Grant timeout with duration l and the source
data to the caching node;

4.2 FCPP as a Generic Scheme

When the data source can always delay the update
until the timeout values on all the unresponding
caching nodes expire (D can be sufficiently large),
FCPP provides SC and covers the Lease protocol [9,
10] as its special case. When the timeout duration l is
set to 0, FCPP becomes the Pull each read scheme [8].
When the data source lets l be infinite, FCPP
transforms to Push with ACK. By adjusting the timeout
duration, FCPP flexibly integrates push and pull.

The timeout duration l is determined by the
consistency requirement PDC (δ, p). As we will see in
the next section, FCPP guarantees DC when l ≦ D+δ.
In particular, when l ≦ D, FCPP provides SC. When l

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

> D+δ, FCPP provides probabilistically guaranteed
DC. In the next section, we investigate how to decide
the timeout duration l to satisfy the user-specified
consistency requirement PDC (δ, p) while minimizing
the consistency maintenance overhead.

5. Analysis of the Optimized Timeout
Duration of FCPP

In this section, we derive an analytic model to study
the relationship between the timeout duration l and the
consistency requirement PDC (δ, p), as well as the
relationship between l and the traffic overhead. Then
we calculate the optimized timeout duration which
satisfies the user-specified PDC with minimum traffic
overhead. In the analysis, we assume that the data
update and the query follow Poisson Process. The
number of hops counted in data transmission is used to
measure the traffic overhead. The notations used in the
analytical model are listed in Table 1.

Table 1. Notations used in the analytical model
(δ, p) user-specified consistency requirement

D maximum time the data source can wait
before updating the source data

l timeout duration in FCPP

N number of caching nodes

Nk the kth caching node, k = 1, 2, …, N

h average path length between the data
source and the caching nodes

w average frequency of data update

r average query frequency of a cache copy

tu time instant of one source data update

5.1 Providing Probabilistic Delta Consistency

We first argue that when l ≦ D+δ, no stale cache
hit occurs in the sense of Delta Consistency (DC). In
DC, the users consider the cache copy access be valid
if the deviation between the source data and the cache
copy is less than δ. Suppose a source data update
comes at time tu, the data source first sends out an INV
message to each caching node, and then waits for at
most D seconds (Fig 3). In the worst case, every INV
message is lost and every caching node has the
maximum timeout duration l = D+δ. The data source
updates the source data after waiting for D seconds.
We find that:

- during period (tu, tu + D), there is no stale cache hit,
since the data source has not updated the source data
yet;

- during period (tu + D, tu + D+δ), no stale cache hit
occurs, since the deviation between the source data and
the cache copy is bounded by δ. Given the consistency
requirement (δ, p) specified under the PDC model, the
cache copies are still considered to be valid.

Thus, we prove that there is no stale cache hit if l ≦
D+δ.

In case that l > D+δ, in period (tu, tu+D+δ), there is
no stale cache hit, as discussed above. During period
(tu+D+δ, tu+l), for a caching node with valid timeout,
its original timeout duration x lies in range [D+δ, l]. If
this caching node misses the INV message and still
serves queries, the expected number of stale cache hits
is (x-D-δ)r. Since x is uniformly distributed in range
(D+δ, l), the expected number of stale cache hits in (tu,
tu+l) is:

2)(
2

)(1 Dl
l

rrdxDx
l

S
l

D
−−=−−= ∫ +

δδ
δ

.

When the data source misses an INV_ACK
message from a caching node, two cases may happen.
One is that the caching node misses the INV message,
and the other is that the caching node has successfully
received the INV message, but the corresponding
INV_ACK message is lost. We discuss each case as
follows:
- in the first case, the data source cannot receive the
corresponding INV_ACK message. The expected
number of stale cache hits introduced by INV message
loss is counted in inequality (1) below;

- in the second case, the data source will falsely decide
that the caching node introduces stale cache hits. We
take these false stale hits as real stale hits in our
analytical model to get the upper bound of the
probability of stale hits, in order to ensure the user-
specified consistency requirement (δ, p). Our
estimation of the number of stale cache hits in this case
is conservative.

According to the discussion above, we have that
2)(

2
Dl

l
rS −−≤ δ in both cases.

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

Fig 3.Number of stale cache hits

Based on the estimated number of stale cache hits
on each caching node, we find that the total number of
stale cache hits is bounded by:

∑∑ ≤≤≤≤
−−≤≤

Nk kNk k Dl
l
rkIpSkIpES

1
2

1
)(

2
)()(δ

(1)

Here, for each caching node Nk, 1≤k≤N, I(k) has the
value one, if Nk has a timeout l greater than D+δ and
the INV_ACK message from Nk is missed. Otherwise,
I(k) is set to zero. I(k)=1 indicates that Nk may
introduce some stale hits. If Nk has a timeout l less than
D+δ, or the data source successfully receives the
INV_ACK message from Nk, no stale hits will be
induced by this node as discussed above. Hence, we
set I(k) to zero to eliminate the false stale hits from Nk.
When the data source is ready to update the data, it can
determine the value of I(k) for each caching node Nk
based on l and δ. In inequality (1), pk denotes the
probability that the INV_ACK message from Nk is
missed.

Upon each source data update, the data source sets
the timeout duration to l. The average interval between
the current and the forthcoming source data update is
1/w. The expected number of cache queries in this
period is wNr /⋅ and the expected number of stale
cache hits incurred is ES. Thus, we obtain that the
probability of DC provided to the users is:

)/()(1 NrESw ⋅⋅− . Since the probability of DC
should be no less than the user-specified probability p,
we have:)/()(1 NrESwp ⋅⋅−≤ . Based on
inequality (1), we can ensure the consistency
requirement (δ, p) if we let:

w
rNpDl

l
rkIp

Nk k
⋅−

≤−−∑ ≤≤

)1()(
2

)(
1

2δ .

To solve this inequality, we find that d(l-D-δ)2 / dl > 0
when l > D+δ. This shows that the maximum value of l
is the root of equation:

w
rNpDl

l
rkIp

Nk k
⋅−

=−−∑ ≤≤

)1()(
2

)(
1

2δ .

We solve this quadratic equation and then obtain that
the value of l is bounded by:

∑∑∑
≤≤≤≤≤≤

−+
+

−
+

−
++≤

Nk
k

Nk
k

Nk
k kIpw

NpD
kIpw

Np
kIpw

NpDl

1

2

1

22

1
)(
)1)((2

))((
)1(

)(
)1()(δδ

 (2)
5.2 Traffic Overhead

According to the FCPP algorithm, there are mainly
two types of traffic overhead: traffic for timeout
renewal and that for the INV & ACK process. As
shown in Fig 4, when a query comes after the timeout
expired, the caching node first renews the timeout
value to l and then directly serves the next ⎣ ⎦rl ⋅ (on

average) queries. Thus, for every ⎣ ⎦rl ⋅ +1 queries,
there will be one timeout renewal on average. So the
expected cost for timeout renewal per unit time
is: ⎣ ⎦)1/(2 +⋅⋅⋅⋅ rlrNh .

As for data updates, for every ⎣ ⎦ 1+⋅ rl queries on

a caching node, ⎣ ⎦rl ⋅ of them occur within valid
timeout. So the probability that a caching node has
valid timeout is: ⎣ ⎦ ⎣ ⎦)1/(+⋅⋅ rlrl . Thus the
expected traffic overhead per unit time associated with
the INV & ACK process is:

⎣ ⎦ ⎣ ⎦)1/(2 +⋅⋅⋅⋅⋅⋅ rlrlwNh . Thus, we obtain the
total traffic overhead per unit time:

⎣ ⎦
⎣ ⎦ 1

12
1

2
+⋅
⋅+

⋅⋅≈
+⋅
⋅+

⋅=
rl

lwhNr
rl

rlwrhNC .

In order to study how the timeout duration l affects the
traffic overhead, we take the derivation:

2)1/()(2/ +⋅−⋅⋅⋅= rlrwhNrdldC .

We find that, in case w < r, in order to minimize the
traffic overhead, we should increase the timeout
duration l as much as possible1. Based on the upper
bounded of l in inequality (2), the optimal timeout
duration l is:

1 In case w > r, the timeout duration should be reduced
as much as possible. This result is reasonable since the
round-trip INV & ACK process imposes great traffic
overhead in case we have more frequent updates than
queries. When l is set to zero, FCPP transforms to the
traditional Pull scheme and we omit the detailed
discussion on this case in this paper.

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

wA
NpD

wA
Np

wA
NpDl)1)((2)1()1()(2

22 −+
+

−
+

−
++=

δδ

(3)

Fig 4. Number of queries within the timeout duration

When we apply our analytical model to cache
consistency maintenance, the system parameter D is
initialized upon deployment of the caching system and
the users specify their consistency requirement PDC(δ,
p) for the cached data objects. Then, based on equation
(3), the data source can decide the optimized timeout
duration l for each data object, in order to provide
user-specified PDC while minimizing the traffic
overhead.

6. Experimental Evaluations
In this section, we conduct simulations to evaluate

the performance of FCPP. We first present the
experimental methodology, and then discuss the
evaluation results.
6.1 Experiment Methodology

In the experimental evaluation, we first investigate
whether FCPP can effectively satisfy different
consistency requirements PDC(δ, p). We then study
the performance of FCPP by varying the data update
interval and the number of caching nodes. We choose
to vary the consistency requirement (δ, p), the update
interval and the number of caching nodes because
these parameters have the most significant impacts on
the performance of FCPP according to the analytical
result in equation (3). We study the cost-effectiveness
of FCPP based on extensive performance comparison
with the Pull Algorithm with Dynamic TTR (named as
DynTTR in short) [11, 12]. Note that, DynTTR cannot
locally guarantee user-specified PDC. We centrally
configure it to provide specified consistency
requirements to conduct the performance comparison
here. The following performance metrics are used in
the performance comparisons:
- (δ, p): with probability p, deviation between the
source data and the cache copy is bounded by δ;

- Traffic overhead: average number of hops counted of
consistency maintenance message propagation;

- Query delay: average delay imposed due to
propagating the consistency maintenance messages;

Detailed experimental configurations are listed in
Table 2.

Table 2. Experimental configurations

Network area 200×200 m2
Size of network 80
Transmission range 15
Mobility model Random way point [18]
Average speed 0.5 m/s
Patter of date updates
and queries

Poisson process

Maximum portion of
crashed nodes

10%

Probability of
message loss per hop

5%

Maximum delay
before data update

2 s

Average interval
between queries

5 s

The default values of consistency requirement, average
update interval and number of caching nodes are set as
follows:

- (δ, p) = (5s, 90%);

- average update interval: 20s;

- number of caching nodes: 10;

We will study the impacts of varying these parameters
in the following experiments.

6.2 Effects of Tuning the Consistency
Requirement (δ, p)

In this experiment, we relax the initial consistency
requirement in two orthogonal dimensions. We first
decrease p from 90% to 80%, 70% and 60%, and then
increase δ from 5 to 10, 15 and 20 seconds. Note that,
parameters δ and D are bound together, as shown in
equation (3). Thus, tuning δ has the same effect as
tuning D. Our first observation is that the FCPP
algorithm can locally provide various user-specified
consistency requirements, as shown in Figs. 5 and 8.
We also find that in most cases, the actual probability
of DC provided to the users is slightly more than the
user-specified probability. Specifically, as shown in
Fig 8, the actual probability is no more than 95%,
while the user-specified probability is 90%. But also
note that, when the user-specified probability p is

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

decreased to 70% and 60%, the discrepancy between
the actual probability provided to the users and the
specified probability goes up to 15% (Fig. 5), which
shows that FCPP is less accurate in estimating the
probability of DC if the specified probability p is low.
It is mainly because the caching nodes get longer
timeout duration l when the probability p is decreased.
Thus, there are more chances for the data source to
falsely calculate the expected number of stale cache
hits. This will make the estimation of stale cache hits
more conservative, as discussed in Section 5.1.

Fig 5. Probability of DC vs. p

Fig 6. Traffic overhead per update vs. p

Fig 7. Query delay vs. p

We also find that, when the consistency
requirement is relaxed in two different dimensions, the
performance of FCPP changes differently. FCPP
becomes more cost-effective in terms of both traffic
overhead and query delay (Figs. 6 and 7) when the
probability p is decreased. The traffic overhead saved
increases from 11% (p = 90%) to 31% (p = 70%). The
query delay saved increases from 32.83% (p = 90%) to
83.65% (p = 60%). Here, the percentage of traffic
overhead or query delay saved refers to the ratio of the
saved cost to the cost imposed by FCPP. FCPP
becomes less effective when δ is increased (Figs. 9 and
10). The traffic overhead saved decreases from 24% (δ
= 10) to 4% (δ = 20) and the query delay saved

decreases from 64% (δ = 10) to 57% (δ = 20). This is
mainly because, when the users have less stringent
consistency requirements on p, the caching nodes can
get longer timeout duration from the data source,
according to equation (3). Thus, more cache queries
can be directly served in FCPP. Meanwhile, when
users have less stringent consistency requirements on δ,
the simple linear model used in DynTTR has higher
probability to gradually tune the TTR and meet users’
consistency requirements with less cost. Thus, FCPP
becomes comparatively less cost-effective. Overall, the
evaluation results show that the FCPP algorithm is
more effective in dealing with more strict requirements
on δ and looser requirements on p, compared with the
DynTTR algorithm.

Fig 8. Probability of DC vs. δ

Fig 9. Traffic overhead per update vs. δ

Fig 10. Query delay vs. δ

6.3 Effects of Tuning the Update Frequency
In this experiment, we increase the average interval

between data updates from 20 to 80 seconds. We first
find that the total traffic overhead decreases as the
number of updates decreases (Fig 12). We also find
that FCPP becomes much more effective in terms of
both traffic overhead per update and query delay, as
shown in Figs 13 and 14. The traffic overhead saved
increases from 12% (interval = 20) to 64% (interval =
80), and the query delay saved increases from 33%

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

(interval = 20) to 70% (interval = 80). For lower
update frequencies, the data source is expected to set
longer timeout duration for the caching nodes and
more queries can be directly served, which reduces
both traffic overhead and query delay, whereas
DynTTR cannot effectively adapt to the changes in
data updates. Note that when the update frequency is
lower while the query frequency holds, more queries
are associated with one update. Hence, the number of
hops per update increases, as show in Fig. 13. In
addition, the total cost for consistency maintenance
decreases, as shown in Fig. 12.

Fig 11. Probability of DC vs. update interval

Fig 12. Total traffic overhead vs. update interval

Fig 13. Traffic overhead per update vs. update interval

Fig 14. Query delay vs. update interval

6.4 Effects of Tuning the Number of Caching
Nodes

 In this experiment, we increase the number of
caching nodes from 10 to 30, 50 and 70. We find that

FCPP becomes less effective in terms of both traffic
overhead and query delay when the source data is
more widely cached, as shown in Figs 16 and 17. The
traffic overhead saved decreases from 67.58% (# of
caching nodes = 10) to 5% (# of caching nodes = 70),
while the query delay saved decreases from 70% (# of
caching nodes = 30) to 42% (# of caching nodes = 70).
This is caused by the round-trip traffic overhead and
query latency in the INV&ACK process of FCPP.

Fig 15. Probability of DC vs. number of caching nodes

Fig 16. Traffic overhead per update vs. number of

caching nodes

Fig 17. Query delay vs. number of caching nodes
Based on the evaluation results, we conclude that

FCPP effectively provides user-specified PDC in a
variety of network environments. In particular, FCPP
is significantly more effective than DynTTR when 1)
the users have looser consistency requirements on
probability p, or more strict requirements on δ, or 2)
there are less frequent data updates and more frequent
queries, or 3) the source data is not quite widely
cached.

7. Conclusion and Future Work
In this paper, we have addressed the problem of

how to provide the users with flexibility in specifying
their consistency requirements, and how to satisfy the
flexible user-specified consistency requirements with

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

minimum overhead. Toward this objective, our
contributions can be described as follows: (1) we have
proposed a general consistency model PDC, allowing
users to flexibly specify their consistency requirements
in two orthogonal dimensions; (2) we have developed
the FCPP algorithm to maintain cache consistency
under the PDC consistency model. FCPP flexibly and
efficiently combines push and pull based on timeouts;
(3) we have derived an analytical model for FCPP to
calculate the optimized timeout duration, so as to
provide user-specified PDC with minimum traffic
overhead in IMANETs; (4) we have conducted
comprehensive experimental simulations to evaluate
the performance of FCPP, by comparing it with the
DynTTR algorithm.

In our future work, we will study how to enable
efficient cooperation among the caching nodes, in
order to further reduce the cache maintenance cost. We
also plan to study how to satisfy heterogeneous
consistency requirements of the users.

Acknowledgements

This work is supported by the UGC of Hong Kong
under the CERG grant PolyU 5105/05E and the
National Natural Science Foundation of China under
Grant No. 60673123.

References
[1] G. Cao, L. Yin, and C. Das, Cooperative Cache-Based
Data Access in Ad Hoc Networks, IEEE Computer, pp. 32-
39, Feb. 2004.
[2] W. Lau, M. Kumar and S. Venkatesh, A Cooperative
Cache Architecture in Supporting Caching Multimedia
Objects in MANETs, Proc. Fifth Intl Workshop Wireless
Mobile Multimedia, 2002.
[3] F. Sailhan and V. Issarny, Cooperative Caching in Ad
hoc Networks, IEEE International Conference on Mobile
Data Management (MDM), 2003.
[4] P. Cao, C. Liu, Maintaining Strong Cache Consistency in
the World Wide Web, IEEE. Trans. on Computers, Vol. 47,
No. 4, 1998.
[5] S. Lim, W. Lee, G. Cao and C. Das, A Novel Caching
Scheme for Internet based Mobile Ad Hoc Networks, in proc.
12th Intl. Conf. on Computer Communications and Networks
(ICCCN), 2003.
[6] J. Cao, Y. Zhang, L. Xie and G. Cao, Data Consistency
for Cooperative Caching in Mobile Environments, to appear
in IEEE Computer.
[7] S. Zhu and C. Ravishankar, Stochastic Consistency and
Scalable Pull-Based Caching for Erratic Data Stream Sources,
in Proc. Of the 30th VLDB Conf., 2004.
[8] J. Howard, M. Kazar, et al, Scale and Performance in a
Distributed file System, ACM Trans. on Computer Systems,
Vol. 6, No. 1, 1988.

[9] C. Gray and D. Cheriton, Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consistency,
ACM Symposium on Operating System Principles, 1989.
[10] V. Duvvuri, P. Shenoy and R. Tewari, Adaptive Leases:
A Strong Consistency Mechanism for the World Wide Web,
IEEE Trans. on Knowledge and Data Engineering, Vol. 15,
No. 4, 2003.
[11] B. Urgaonkar, A. Ninan, M. Raunak, P. Shenoy and K.
Ramamritham, Maintaining Mutual Consistency for Cached
Web Objects, In Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS),
Phoenix, AZ, April 2001.
[12] J. Lan, X. Liu, P. Shenoy and K. Ramamritham,
Consistency Maintenance in Peer-to-Peer File Sharing
Networks, the 3rd IEEE Workshop on Internet Applications,
2003.
[13] J. Cao, Y. Zhang, L. Xie, and G. Cao, Consistency of
Cooperative Caching in Mobile Peer-to-Peer Systems Over
MANET, Intl. J. of Parallel, Emergent, and Distributed
Systems, Vol. 21, No. 3, June 2006.
[14] Y. Huang, J. Cao and B. Jin, A Predictive Approach to
Achieving Consistency in Cooperative Caching in MANET,
in Proc. of the 1st Intl. Conf. on Scalable Information
Systems, P2PIM workshop session, ACM Press, New York,
USA, 2006.
[15] M. Corson, J. Macker and G. Cirincione, Internet-based
Mobile Ad Hoc Networking, in IEEE Internet Computing,
pp.63-70, July-August, 1999.
[16] G. Cao, Proactive Power-aware Cache Management for
Mobile Computing Systems, IEEE Trans. on Computers,
Vol51, No. 6, 2002.
[17] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K.
Ramamritham and Prashant Shenoy, Adaptive Push-Pull:
Disseminating Dynamic Web Data, IEEE. Trans. on
Computers, Vol. 51, No. 6, June 2002.
[18] T. Camp, J. Boleng, and V. Davies, A Survey of
Mobility Models for Ad Hoc Network Research, Wireless
Communications & Mobile Computing (WCMC), Vol. 2, No.
5, 2002.

Proceedings of the Fifth Annual IEEE International
Conference on Pervasive Computing and Communications (PerCom'07)
0-7695-2787-6/07 $20.00 © 2007

