
3

Achieving Full-View Coverage in Camera Sensor Networks

YI WANG and GUOHONG CAO, Pennsylvania State University

Camera sensors are different from traditional scalar sensors, as cameras at different positions can form very
different views of the object. However, traditional coverage model does not consider this intrinsic property of
camera sensors. To address this issue, a novel model called full-view coverage is proposed. It uses the angle
between the object’s facing direction and the camera’s viewing direction to measure the quality of coverage.
An object is full-view covered if there is always a camera to cover it no matter which direction it faces and the
camera’s viewing direction is sufficiently close to the object’s facing direction. An efficient method is proposed
for full-view coverage detection in any given camera sensor networks, and a sufficient condition on the sensor
density needed for full-view coverage in a random uniform deployment is derived. In addition, the article
shows a necessary and sufficient condition on the sensor density for full-view coverage in a triangular lattice-
based deployment. Based on the full-view coverage model, the article further studies the barrier coverage
problem. Existing weak and strong barrier coverage models are extended by considering direction issues
in camera sensor networks. With these new models, weak/strong barrier coverage verification problems are
introduced, and new detection methods are proposed and evaluated.
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1. INTRODUCTION

Traditional sensor networks measure scalar phenomena in the physical world. Camera
sensor networks can retrieve much richer information in the form of images or videos,
and hence provide more detailed and interesting data of the environment. Such net-
works promise a wide range of applications in surveillance, traffic monitoring, habitat
monitoring, healthcare, and even online gaming [Akyildiz et al. 2007; Rinner and Wolf
2008; Soro and Heinzelman 2009]. Because of the huge potential in many applications,
camera sensor networks have received considerable attention in the past few years.

One fundamental research issue is how well the target field is monitored, which is
referred to as the coverage problem in wireless sensor networks. Existing works on

This article is based in part on work presented in Proceedings of the 30th IEEE International Conference on
Computer Communications (INFOCOM’11) [Wang and Cao 2011c], and part on work presented in Proceed-
ings of the 12th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’11)
[Wang and Cao 2011a].
This work was supported in part by the National Science Foundation under grant CNS-0916171.
Authors’ addresses: Y. Wang (corresponding author) and G. Cao, Department of Computer Science and En-
gineering, Pennsylvania State University, University Park; corresponding author’s email: yuw124@psu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1550-4859/2013/11-ART3 $15.00

DOI: http://dx.doi.org/10.1145/2529974

ACM Transactions on Sensor Networks, Vol. 10, No. 1, Article 3, Publication date: November 2013.



3:2 Y. Wang and G.Cao

Fig. 1. (a) U is an object; dotted line defines the sensing range of camera sensor Si and �U Si is its viewing

direction of the object; (b) although U and V ’s facing directions, �dU and �dV , are the same, S1 ’s viewing
direction is closer to U ’s facing direction.

this problem suggest a very simple model on characterizing the coverage: an object is
considered to be covered if it is within the sensor’s sensing range, which can be either
a disk [Wang et al. 2003; Cardei and Wu 2006; Liu and Cao 2011] or a sector [Cai et al.
2009; Wang and Cao 2011b]. With this model, studies have been devoted to the problem
of how to achieve k-coverage over a given area, where k is a predefined parameter
indicating the desired number of sensors (coverage degree) covering each object.

However, camera sensors are different from traditional scalar sensors. Camera sen-
sors may generate very different views of the same object if they are from different
viewpoints. For example, a camera sensor placed in front of a person can obtain the
face image, but it can only see his back if it is behind him. In fact, studies in computer
vision show that the object is more likely to be recognized by the recognition system if
the image is captured at or near the frontal viewpoint [Blanz et al. 2005], that is, when
the object is facing straight to the camera. As the angle between the object’s facing
direction and the camera’s viewing direction (denoted by the vector from the object to
the camera, as shown in Figure 1(a)) increases, the detection rate drops dramatically
[Sanderson et al. 2007; Phillips et al. 2007]. As a result, the viewing direction of the
sensor has significant impact on the quality of coverage in camera sensor networks.

As none of the existing coverage models can be used to address the issues of viewing
direction, we propose a novel model called full-view coverage. An object is said to be
full-view covered if no matter which direction the object faces, there is always a sensor
whose sensing range covers the object and the sensor’s viewing direction is sufficiently
close to the object’s facing direction (rigorous definition will be given in Section 2).
Informally, if an area is full-view covered, it is guaranteed that every aspect of an
object at any position is under the view of the camera sensor network.

With this model, we study coverage problems arising in camera sensor networks.
One important problem is that given a deployed camera sensor network, how to
determine if the monitored field is full-view covered? Compared to the traditional
model, there are two factors that increase the complexity of the problem in full-view
coverage. First, the sensing range of a camera sensor is a sector rather than a unit disk.
Second, and more importantly, the viewing direction of each camera sensor can vary
from one position to another, and hence even if the objects are covered (in traditional
sense) by the same set of camera sensors, they may receive different quality of coverage
due to the variance in position. For example, in Figure 1(b), both objects U, V are
covered by camera sensors S1 and S2, and they are facing the same direction. However,
the viewing direction of S1 is closer to U ’s facing direction than to V ’s, meaning that
U receives better coverage (more likely to be recognized) than V. On top of that, there
are infinite number of positions to be considered in the monitored field and the object
can face any direction at any point, which further increases the difficulty.

Another important problem is how to derive an estimate of the sensor density needed
in a real deployment for full-view coverage. In practice, sensors can be either deployed
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Fig. 2. (a) U is an object; dotted line is the sensing range of Si and �U Si is the viewing direction of Si ; (b) if
U faces the direction along the trajectory (forward), S1 and S2 are not able to view its face, although U is
within their coverage.

randomly, for example, being dropped from an aircraft to an inaccessible zone, or
deployed deterministically, for example, being placed manually in a controlled environ-
ment. In both cases, a reliable estimation can serve as a guideline for the deployment in
practice. Since most previous works mainly focus on disk sensing model, no result can be
applied directly on full-view coverage, where combined effects of the distance, camera’s
orientation, and viewing direction make the geometric relationship between the objects
and the sensors more complex, and hence make the problem much more challenging.

The problems discussed so far are on the coverage of a whole area. It is imaginable
that full-view coverage of the whole area requires significant number of camera sensors
to be deployed. Given the relatively high cost of the camera sensors, it is helpful to con-
sider the barrier coverage model [Kumar et al. 2005]. Barrier coverage is an important
concept proposed for various sensor network applications, for example, national border
control, critical resource protection, security surveillance, and intruder detection. In a
wireless sensor network, a barrier is formed by a set of sensors whose sensing ranges
are connected and span (usually a strip area) across the monitored field. Every object
traversing the field from one side to another will be detected by the sensors on the
barrier. Compared with full coverage (covering the whole area), the number of sensors
required for barrier coverage is much less. Hence barrier coverage is considered more
scalable and attractive for many practical applications.

While previous studies on barrier coverage mainly focused on traditional scalar
sensor networks, the barrier coverage in camera sensor networks is much different
and more complicated. Simply combining the sensing range of a series of cameras
across the monitored field does not provide effective barrier coverage. This is because
an intruder may cross the barrier without being identified, that is, its face image
could be missed (Figure 2). Therefore, the barrier coverage problem of camera sensor
networks deserve careful study.

In this article, we study the barrier coverage problem of camera sensor networks
based on the full-view coverage model. We consider two notations of barrier coverage
defined in literature: the weak barrier coverage and the strong barrier coverage [Kumar
et al. 2005]. In weak barrier coverage, the object is assumed to take a shortest path
to cross the field, but in strong barrier coverage, the object is assumed to take any
possible paths between the entrance and the exit. Weak barrier coverage demands
fewer number of sensors, while strong barrier coverage provides better coverage.

In our study of camera sensor networks, these two notations of barrier coverage
are extended by considering direction issues, and new barrier coverage models are
proposed. Besides choosing the traversing path as in the existing models, the object
may have some flexibility to choose where to face (or how it is observed). The stronger
the model is, the more choices the object is allowed to have on where to face and
how to cross the field (detailed definitions given later in Sections 6 and 7), and hence
demanding more sensor resources to achieve the desired coverage.
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Fig. 3. The full-view coverage model.

With new weak and strong barrier coverage models, we need to address the barrier
coverage verification problem. Given a deployed camera sensor network, we need to de-
termine if the monitored field is under proper barrier coverage. This is straightforward
in a traditional disk sensing model, since it is sufficient to just check if the sensing
range of the sensors is connected and across the field. However, it can not be applied
for camera barrier due to the direction issues just discussed. Hence new techniques for
barrier coverage verification are needed.

The main contributions of this article are as follows. First, we introduce a novel
model that characterizes the intrinsic property of full-view coverage in camera sen-
sor networks. Second, we propose an efficient method to deterministically verify if a
monitored field can be full-view covered by any given set of camera sensors. Third, we
estimate the number of sensors needed for full-view coverage in a random deployment.
Fourth, we obtain a sufficient and necessary condition on the sensor density needed for
full-view coverage in a triangle lattice-based deployment. It is shown that the density
required in this deployment pattern is no more than a factor of that needed in any
other deployment. Fifth, we propose new models for weak and strong barrier coverage
in camera sensor networks. Finally, under the two proposed barrier coverage models,
novel solutions are presented to solve the coverage verification problems.

The rest of this article is organized as follows. Section 2 introduces the full-view
coverage model. Section 3 gives the detailed description of full-view coverage detection
for a given deployed camera sensor network. Section 4 shows the density estimation for
full-view coverage in a random deployment. Section 5 presents the density calculation
result for full-view coverage in a triangular lattice deployment pattern. Section 6 intro-
duces the new weak coverage model and presents techniques to solve the weak barrier
coverage verification problem. Section 7 proposes the new strong coverage model as
well as solutions to the strong barrier coverage verification problem. Section 8 shows
the evaluation results. The related work is reviewed in Section 9 and the article is
concluded in Section 10.

2. NOTATIONS AND FULL-VIEW COVERAGE MODEL

Camera sensors1 are deployed to monitor a bounded region A (target field). Each sensor
Si has a sensing range r, a field-of-view (FoV) angle ϕ, and an orientation vector �fi,
which together define the sensing sector (Figure 3(a)). We use Si to denote the ith
sensor. Without ambiguity, Si also denotes the sensor’s position. For any two points
U, V , let ‖U V ‖ denote the (Euclidean) distance between them. For any two vectors −→

v1

and −→
v2 , let α(−→v1 ,

−→
v2 ) denote the angle between them, which ranges from 0 to π . A point

1We may use cameras or sensors for short throughout the article.
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Fig. 4. (a) An example of a camera sensor network; how do we know if A is full-view covered? (b) A sub-region

R whose boundary consists of five segments:ıTP,ıPQ, Q̂M, M̃W , and WT .

P is covered by a sensor Si if P is in the sensing sector of Si, that is, ‖PSi‖ < r and2

α(
−→
fi ,

−−→
Sj P) < ϕ/2, where

−−→
Sj P is the vector from Sj to P.

Definition 2.1 (Full-View Coverage). A point P is full-view covered if for any vector �d
(the facing direction), there is a sensor Si, such that P is covered by Si and α( �d,

−→
PSi) ≤ θ

(Figure 3(b)). Here θ (∈ [0, π/2)) is a predefined parameter which is called the effective
angle. A region is full-view covered if every point in it is full-view covered.

In the preceding definition,
−→
PSi represents the viewing direction3 of camera Si on

object P. Also for notations, a vector �v can be represented by an angle in [0, 2π ) with
0 degree indicating the vector pointing to the straight right, and vice versa. The angle
is denoted by arg(�v) and always calculated by using arithmetic modulo 2π . For any
angle α ∈ [0, 2π ), the notation vec(α) represents the corresponding vector. For example,
vec(π

2 ) represents the vector pointing upwards. We may use the notations of angle and
vector interchangeably if no confusion is involved. And if we say a vector �v falls into an
interval [α1, α2], we mean α1 ≤ arg(�v) ≤ α2.

3. FULL-VIEW COVERAGE DETECTION

In this section, we propose an efficient method to verify if the monitored region is
full-view covered by a set of deployed camera sensors.

3.1. Method Overview

Given a set of deployed sensors, region A can be partitioned into subregions, where
each subregion is defined to be a set of points covered by the same set of sensors.
The boundary of each subregion consists of either segments of lines or arcs which are
either part of the perimeter of the sensing sectors covering the subregion or part of
A’s boundary. For example, in Figure 4(b), subregion R is covered by five sensors and

bounded by five segments: T̂P, P̃Q, Q̄M, M̄W , and WT .
We first show that the whole region is full-view covered if and only if the boundary

of each subregion is full-view covered (Lemma 3.1). Then the most tricky part is to
determine if every point on a boundary segment is full-view covered, as there are still
an infinite number of positions to consider, and the sensor’s viewing direction vary from

2For ease of analysis, we use < instead of ≤, although it is not a necessary assumption.
3Intuitively, the viewing direction is from the camera to the object. We use the reverse to simplify analysis.
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one position to another. To this end, we first show an equivalent condition on full-view
coverage (Lemma 3.2), and then propose a novel method based on geometrical prop-
erties of the circumscribed circle and the inscribed angle (Lemma 3.3). The intuition
is that if a point is full-view covered, there must be a set of sensors around it and the
angle between the viewing directions of any two adjacent sensors is no more than 2θ .
For any two sensors, we actually identify the area (called safe region) in which, for
any point, the angle between the two sensors’ viewing directions is no more than 2θ .
Then we solve the detection problem by checking if the segment is contained in the
safe region of every two adjacent sensors.

3.2. Detection Method

We need to verify if the condition in Definition 2.1 holds for every point in A. Actually
we only need to verify if it holds on the boundary of every sub-region in A.

LEMMA 3.1 (BOUNDARY CONDITION). The region Ais full-view covered if and only if the
boundary of every sub-region is full-view covered by the given set of sensors.

PROOF. The “only if ” part is obvious. We only need to show the “if ” part, that is,
for a given subregion R, if R’s boundary segments are all full-view covered, then R is
full-view covered.

Suppose there is an interior point V ∈ R and a vector �d, such that for any sensor

Si with ‖VSi‖ < r, α( �d, �VSi) > θ . Now consider the intersection point of �d and R’s
boundary, which is denoted by X (Figure 5). We claim that X is not full-view covered.
In fact, consider a vector �d′ which is parallel to �d and originates from X. If X is full-

view covered, then there must be a sensor Sj such that ‖XSj‖ < r, α( �d′, �XSj) ≤ θ .

Clearly, Sj also covers V . Furthermore, we have α( �d, �VSi) ≤ α( �d′, �XSj) ≤ θ , which is a
contradiction. Therefore any interior point of R is full-view covered if the boundary is
full-view covered. The claim is proved.

Given a segment PQ on the boundary of a subregion R, where P and Q are the
two end points of the segment, we show a way to determine if every point on the
segment is full-view covered. Note that every point on PQ is covered by the same set
of sensors. For any point V ∈ PQ, we can construct a circular list of these sensors
regarding their viewing direction on V as follows (Figure 6). Initially, the list is empty.

We begin with any vector
−−→
VSi and place it into the list first. Then we rotate

−−→
VSi around

V in the counterclockwise direction until it becomes parallel to the next vector
−−→
VS j .

Then we place
−−→
VS j into the list, right after

−−→
VSi. We continue rotating and placing

vectors sequentially into the list until we see the first vector again. Then the list is

completed. We denote the list by CLV = {−−−→
VSV1

, . . . ,
−−→
VSVk

}, where k is the number of

sensors covering PQ. Then the condition in Definition 2.1 is equivalent to the following.

LEMMA 3.2. A given point V is full-view covered if and only if for CLV constructed

as previously, the rotation angle from
−−→
VSVi

to
−−−−→
VSVi+1

is less than or equal to 2θ for any
1 ≤ i ≤ k, where Vk+1 = V1.

PROOF. Suppose the condition holds. Then for any �d, there are two sensor SVi
and

SVi+1
such that either the rotation angle from

−−→
VSi to �d or the angle from �d to

−−−−→
VSVi+1

is
less than or equal to θ . Thus V is full-view covered.
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Fig. 5. Boundary
condition.

Fig. 6. The circular list of V . Fig. 7. The safe and unsafe region of
Si and S j .

If V is full-view covered but the rotation angle from
−−→
VSVi

to
−−−−→
VSVi+1

is larger than 2θ

for some i, then consider vector �d along the bisector of the angle. The angle between

either
−−→
VSVi

or
−−−−→
VSVi+1

and d is larger than θ . Therefore the statement is true.

We need to determine if this condition holds for any V ∈ PQ. To this end, we introduce
the concept of safe region. For any two sensors Si and Sj , we define the safe region to

be the area in which for any point V , α(
−−→
VSi,

−−→
VS j) ≤ 2θ ; and define the unsafe region to

be the area in which for any point V , α(
−−→
VSi,

−−→
VS j) > 2θ (Figure 7). The following lemma

shows an efficient method to identify the two regions.

LEMMA 3.3. Given Si and Sj , there are two arcs S̄i Sj and S̄i Sj

′
which connect Si

and Sj and are symmetrical with respect to line Si Sj , such that the unsafe region is the
enclosed region bounded by the arcs and the safe region is the open region outside the
unsafe region.

PROOF. We prove the lemma by showing how to find the two arcs. First we can find
two different points Pθ and P ′

θ on the perpendicular bisector of segment Si Sj , such
that ∠Si Pθ Sj = ∠Si P ′

θ Sj = 2θ and they are on different sides of Si Sj . Without loss of
generality, let Pθ be on the left side and P ′

θ be on the right side (Figure 7).
We draw the circumscribed circles of triangle △Si Pθ Sj and △Si P ′

θ Sj . Denote the
centers of the circles by OSi Sj

and O′
Si Sj

, and the radius (which is the same for both) by

rsaf e. Then arc S̄i Sj is the portion of the perimeter of ⊙OSi Sj
on the left side and S̄i Sj

′

is the portion of ⊙O′
Si Sj

on the right.

In fact, for any circle and a fixed chord (defined here by Si Sj) of the circle, all inscribed
angles with two endpoints at the ends of the chord are either equal or supplementary
to each other. Specifically, they are equal if the third points of the angles are on the
same side of the chord. Furthermore, for a given point Pθ on the perimeter of the circle
and another point P on the same side of line Si Sj as Pθ , if P is outside the circle
(‖POSi Sj

‖ > rsaf e), then ∠SiPS j < ∠Si Pθ Sj ; if P is inside the circle (‖POSi Sj
‖ < rsaf e),

then ∠SiPS j > ∠Si Pθ Sj . The proof of this property can be found in any textbook on
Euclidean Geometry and hence omitted here.

Now we can give a necessary and sufficient condition for PQ to be full-view covered
under some constraint.

THEOREM 3.4. Suppose for every point V ∈ PQ, the circular list CLV =
{VSV1

, . . . , VSVk
} is the same (in a circular way/order). Then PQ is full-view covered

if and only if it is within the polygon bounded by {SVi
SVi+1

, 1 ≤ i ≤ k} and for any
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Fig. 8. (a) PQ is not full-view covered; (b) PQ is full-view covered.

Fig. 9. The circular lists for U , V are different: CLV = {S1, S2, . . . , Sk} but CLU = {S2, S1, . . . , Sk}.

1 ≤ i ≤ k, the unsafe region of SVi
and SVi+1

does not intersect with PQ, where Vk+1

denotes V1.

PROOF. This is a direct result from Lemmas 3.2 and 3.3.

We use an example to illustrate our idea (Figure 8). In Figure 8(a), the distribution
of the sensors is the same as that in Figure 6. We draw the boundaries of the unsafe
regions for the five pairs of neighboring sensors (indicated by dotted circles) as in
Lemma 3.3, and check if they intersect with PQ (in computation, this can be done by
comparing the distance between the circle’s center to PQ with the circle’s radius). As
can be seen, PQ intersects with the unsafe regions of S2S3, S3S4, and S5S1, and hence
it is not full-view covered. Figure 8(b) shows the case when there are four other sensors
S6, S7, S8, and S9 covering PQ. In this case, PQ can be full-view covered as no unsafe
region intersects with it.

However, the circular list CLV may not be the same for every point V ∈ PQ. For
example, in Figure 9, S1 is prior to S2 in V ’s list, but S2 is prior to S1 in U ’s list. To
resolve this issue, we partition PQ into subsegments. For 1 ≤ i ≤ k−1 and i+1 ≤ j ≤ k,
if the line Si Sj intersects with PQ, we mark the intersection point on PQ. Then PQ is
partitioned into subsegments defined by every two adjacent marked points (including
P and Q). Since there are at most k(k − 1) intersection points, the total number of
subsegments is O(k2). Moreover, for a specific subsegment XY , where X and Y are
two adjacent marked points, all points on it have the same circular list of the sensors.
Actually, if this is not true, there must be two points U, V ∈ XY , and two sensors
S1, S2 ∈ SR, such that S1 comes before S2 in V ’s list but S2 is before S1 in U ’s list
and there are no other sensors between them (Figure 9). Then line S1S2 must have an
intersection point with PQ, between X and Y , which is a contradiction to the fact that
X and Y are adjacent intersection points.

Now we have a complete procedure for full-view coverage detection on a given seg-
ment of a subregion’s boundary. We can further apply this on all segments in A. For an
estimation of the total running time, the whole region can be considered as a planar

ACM Transactions on Sensor Networks, Vol. 10, No. 1, Article 3, Publication date: November 2013.



Achieving Full-View Coverage in Camera Sensor Networks 3:9

graph, where the vertices are the intersection points of sensing sectors and edges are
the segments. As any two sensing sectors can have O(1) intersection points on the
perimeters, the number of vertices is O(N2), where N is the total number of sensors.
This further implies the total number of segments is O(N4). Our detection method
requires O(k2) time on each segment, where k (≤ N) is the number of sensors covering
this segment. Therefore the total running time must be a polynomial function of N.

4. SENSOR DENSITY ESTIMATION FOR FULL-VIEW COVERAGE

IN RANDOM DEPLOYMENT

In this section, we derive an estimation on the lower bound of the probability that a
region is full-view covered by a given number of randomly distributed sensors. With
this result, we can estimate the sensor density needed to achieve full-view coverage
with any given probability (e.g., 0.99).

4.1. Technique Overview

Consider a random uniform distribution of N sensors in a square region A. Without
loss of generality, we assume A is of unit area. Given r, ϕ, and θ , we estimate the
probability that A is full-view covered. Generally, if sensors are deployed in a bounded
region, the area very close to the boundary is likely to have fewer sensors than the
interior area, and hence less likely to be covered as required. A common method for
avoiding this boundary effect is to deploy the sensors in a slightly larger region A′, for
example, enlarging the side length of A from d to d + r. The difference is negligible if
A is sufficiently large. We can also make the analysis clean by assuming the sensor’s
coverage reflects at the boundary; that is, for each sensor S with distance less than r
to a boundary, we assume there is another sensor outside the boundary at the position
symmetrical to S with respect to the boundary. In the following analysis, we assume
the boundary effect is negligible.

First we approximate the continuous region by discrete grid points. We show that if
the grids are sufficiently dense and are all full-view covered by a set of sensors with
(r′, ϕ′, θ ′), where r′ = r − �r, ϕ′ = ϕ − �ϕ, and θ ′ = θ − �θ for any given (�r,�ϕ,�θ ),
then the whole region is full-view covered by the same set of sensors with (r, ϕ, θ ). Then
we give a lower bound of the probability that all grid points are full-view covered. Based
on this, we obtain a lower bound of the probability that A is full-view covered.

In the following analysis, we first assume ϕ = 2π . This will give the essence of our
method. Note that the major challenge of full-view coverage is due to the introduction
of θ , not ϕ. It should be clear that full-view coverage with ϕ = 2π is completely different
from the traditional disk coverage. In practice, ϕ = 2π can be considered as the case
that each node is a bundle of multiple cameras, facing to different directions to form a
panoramic view. A camera that rotates around with negligible rotation time can also
be considered as in this case. After that we extend the analysis to any 0 < ϕ < 2π .

4.2. Probability Estimation for ϕ = 2π

We use triangle lattices as the grids, although any other grid patterns may also suffice.
Grid points are the vertices of equilateral triangles with side length l. Each grid point
P has six neighbors with distance l from it (Figure 10). They are called P ’s one-hop
neighbors. Given A’s area fixed to be unit, the choice of l depends on (�r,�θ ).

LEMMA 4.1. Given (�r,�θ ), if l ≤ l0(�r,�θ ), for any point V ∈ A and any vector

�d from V , there is a grid point P such that ‖VP‖ ≤ �r and α( �d,
−→
VP) ≤ �θ . Here

l0(�r,�θ ) = 2�r√
3+cot �θ

.
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Fig. 10. (a) Black dots are edge points of V ; (b) if V is in the unsafe region of P1, P2, P3 is an edge point.

PROOF. Consider the set of all the grid points P with ‖VP‖ ≤ �r, which is denoted
by GPV (�r). Define an edge point to be a grid point P ∈ GPV (�r) such that P has an
one-hop neighbor not in GPV (�r) and a one-hop neighbor in GPV (�r).

All the edge points and the line segments connecting them form a polygon just inside
the circle centered at V with radius �r (Figure 10(a)). Suppose the intersection point
of vector �d and the polygon’s boundary is between two neighboring edge points P1, P2.
We claim α(d, VP1) + α(d, VP2) ≤ 2θ , which will prove the lemma.

Suppose the claim is incorrect. Then from Lemma 3.3, V is in the unsafe region of
P1, P2, which means ‖VOP1 P2

‖ < rsaf e, where OP1 P2
is the center of the circle defining

the unsafe region (Figure 10(b)). From trigonometry knowledge, we get rsaf e = l
2 sin (2�θ) .

So

‖VOP1 P2
‖ <

l

2 sin (2�θ )
.

Consider the triangles with P1 P2 as one side and a third vertex P3. P3 is either on
the near side of P1 P2 and closer from V or on the far side of P1 P2 and further from V .
Consider the case when P1 is on the far side. Then ‖VP3‖ > �r (since if else, either P1

or P2 is not edge point).
On the other hand,

‖P3OP1 P2
‖ = rsaf e · cos 2θ +

√
3

2
l = l

2
(cot 2�θ +

√
3).

If l is as in the lemma, from triangle inequality,

‖VP3‖ ≤ ‖VOP1 P2
‖ + ‖P3OP1 P2

‖ < �r.

This is a contradiction. Thus the claim is proved.

Based on this result, we have the following condition regarding the whole region’s
coverage.

LEMMA 4.2. Suppose ϕ = 2π and all grid points are full-view covered by a set of
sensors with r′ = r − �r and θ ′ = θ − �θ for some given (�r,�θ ). If l ≤ l0(�r, �θ ) as
indicated in Lemma 4.1, then any point V ∈ A is full-view covered by the same set of
sensors with (r, θ ).

PROOF. We need to prove that for any point V ∈ A and any vector �d, there is a sensor

Si such that ‖SiV ‖ < r and α(
−−→
VSi, �d) ≤ θ .

Suppose P is the grid point found in Lemma 4.1. Since P is full-view covered, there

is a sensor Sj such that ‖PS j‖ < r′ and α(
−→
VP,

−−→
PS j) ≤ θ ′ (Figure 11(a)). From triangle
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Fig. 11. Grid point property: (a) there is no constraint on the distance between P and Si (Lemma 4.2);
(b) there is a lower bound rmin on the distance between P and Si (Lemma 4.5).

inequality,

‖VS j‖ ≤ ‖VP‖ + ‖PS j‖ < �r + r′ = r.

Thus V is covered by Sj , and furthermore,

α( �d,
−−→
VS j) ≤ α( �d,

−→
VP) + α(

−→
VP,

−−→
VS j) ≤ �θ + θ ′ = θ.

Thus V is full-view covered by the sensors with (r, θ ).

For any point V ∈ A, let CV denotes the event that V is full-view covered.

LEMMA 4.3. Suppose ϕ = 2π . Given N sensors with (r′, θ ′) uniformly distributed in
A, the probability that a given point V is full-view covered is

Pr(N, r′, θ ′) = Pr[CV ] =
N

∑

k= π

θ ′

(

N

k

)

pk(1 − p)N−k f (k, θ ′),

where π/θ ′ is the abbreviation for ⌊π/θ ′⌋, p = πr′2 and

f (k, θ ′) =
π

θ ′
∑

j=0

(

k

j

)

(−1) j

(

1 − j
θ ′

π

)k−1

.

PROOF. For a uniformly distributed sensor Si, the probability that it is within dis-
tance r′ from V is p = πr′2 and the probability that exactly k sensors are within r′ to V

is
∑N

k= π

θ ′

(

N
k

)

pk(1 − p)N−k.

Consider the distribution of the sensor within the disk, since the sensor is uniformly
distributed in A, its distribution is also uniform if restricted to the disk area within
distance r′ to V . Furthermore, for each sensor Si within the disk, consider its projection
Pi on the perimeter of the circle centered at V with radius r′. It is the intersection point

of vector
−−→
VSi and the circle. If we consider Pi ’s position on the circle, it is also uniformly

distributed. From Lemma 3.2, given k sensors within distance r′ from V (and hence
able to cover V ), V is full-view covered if and only if the angle between any two adjacent
vectors is no greater than 2θ . This is equivalent to the event that the perimeter of a
circle with unit length is covered by k uniformly distributed arc segments with length
θ ′/π (Figure 12). The latter probability is given by f (k, θ ′), which is shown in Solomon
[1978]. Therefore we have the probability shown in the lemma.

From Lemmas 4.2 and 4.3, we obtain a lower bound on the probability for region A
to be full-view covered.
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Fig. 12. Si ’s coverage range is projected as an arc on a unit circle.

THEOREM 4.4. Given r, θ and ϕ = 2π , the probability that region A is full-view

covered by N uniformly distributed sensors is lower bounded by Pr(N,
√

N−1√
N

r,
√

N−1√
N

θ )M,

where Pr(N, x, y) is given by Lemma 4.3, M = ⌈ 8√
3
l−2
0 ⌉ and l0 = l0( r√

N
, θ√

N
) is given by

Lemma 4.1.

PROOF. From Janson’s Inequality [Alon and Spencer 2000] and Lemma 4.3, the prob-

ability that all grid points are full-view covered by N sensors with r′ =
√

N−1√
N

r and

θ ′ =
√

N−1√
N

θ is no less than Pr(N, r′, θ ′)M, where M is the number of grid points in a

unit area. Then from Lemma 4.2, the whole area is full-view covered by sensors with
r = r′ + �r and θ = θ ′ + �θ , where �r = 1√

N
r and �θ = 1√

N
θ , if the grid points are

full-view covered by the same set of sensors with (r′, θ ′). Therefore we have the lower
bound shown.

4.3. Probability Estimation for ϕ < 2π

We use similar techniques as the preceding. Note that Lemmas 4.1 and 4.2 are the keys
to the establishment of the preceding result. The rationale behind it is that if the grid
points are sufficiently dense and all full-view covered, the whole region can be full-view
covered if we slightly enlarge the sensor’s radius and the effective angle. However, we
assumed ϕ = 2π there, which means any point V within �r to a grid point P is also
covered by the sensors that cover P, and hence makes the analysis clean. If ϕ < 2π ,
the sensor covering P may not cover V due to the sensor’s orientation, no matter how
close they might be to each other. A natural solution is to expand ϕ′ to ϕ. However, it is
difficult to guarantee a bound on how large it should increase to (α1 in Figure 11(b)),
and if we can not reasonably bound this value, the error of the estimation would be
large. To overcome this difficulty, we require the grid points to be full-view covered by
sensors which are at least certain distance (a tiny lower bound) away from it. Then we
can establish similar results as in Lemmas 4.1 and 4.2.

LEMMA 4.5. Suppose each grid point can be full-view covered by sensors that are
at least rmin distance away and with parameters r′ = r − �r, θ ′ = θ − �θ , and FoV
angle ϕ′ = ϕ − �ϕ, for some predefined (�r,�θ,�ϕ). If l ≤ l(�r,�θ,�ϕ), then any point
in A is full-view covered by the same set of sensors with (r, θ, ϕ). Here l(�r,�θ,�ϕ) =
min{2�r,�ϕ·rmin}√

3+cot �θ
.

PROOF. We need to show that for any V ∈ Aand any facing direction (vector �d), there

is a sensor Si such that ‖V Si‖ < r, α(
−−→
SiV ,

−→
fi ) ≤ ϕ/2 and α(

−−→
VSi, �d) ≤ θ , where

−→
fi is

the orientation vector of Si. We first observe that if l is as indicated as preceding, it
also satisfies the condition in Lemma 4.1. So there must be a grid point P such that

‖VP‖ ≤ min{�r,�ϕ ·rmin/2} and α( �d,
−→
VP) ≤ �θ . Moreover, among the sensors that cover
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P, there must be a sensor Si such that ‖V Si‖ < r and α(
−−→
VSi, �d) ≤ θ . We only need to

show that α(
−−→
SiV ,

−→
fi ) ≤ ϕ/2.

Note that α(
−−→
SiV ,

−→
fi ) ≤ α1 + α2, where α1 = α(

−−→
SiV ,

−−→
Si P) and α2 = α(

−−→
Si P,

−→
fi )

(Figure 11(b)). As P is covered by Si, α2 ≤ ϕ′/2. From trigonometry knowledge, we know

α1 ≤ tan α1 = ‖VP‖ sin β

‖VP‖ cos β+‖PSi‖ , where β = α(
−→
PSi,

−→
VP). Notice that ‖VP‖ ≤ �ϕ · rmin/2,

‖PSi‖ ≥ rmin and sin β ≤ 1. Therefore, α1 ≤ �ϕ/2, and hence α(
−−→
SiV ,

−→
fi ) ≤ ϕ′/2 +

�ϕ/2 ≤ ϕ/2.

For any point V ∈ A, let C
rmin

V denote the event that V is full-view covered by sensors
which are at least rmin(< r) distance away.

LEMMA 4.6. Given N sensors with (r′, θ ′, ϕ′) uniformly distributed in region A, the
probability for a given point V to be full-view covered by sensors at least rmin(< r′) away
is

Pr(N, rmin, r′, θ ′, ϕ′) = Pr
[

C
rmin

V

]

=
N

∑

s= π

θ ′

(

N

s

)

ps(1 − p)N−s

s
∑

k= π

θ ′

(

s

k

)

qk(1 − q)s−k f (k, θ ′),

where π/θ ′ is the abbreviation for ⌊π/θ ′⌋, p = π (r′2 − r2
min), q = ϕ′/2π , and f (k, θ ′) is as

in Lemma 4.3.

PROOF. First note that given a sensor Si with rmin ≤ ‖VSi‖ ≤ r′, since its orientation
vector is uniformly distributed in [0, 2π ), the probability that V is covered by Si is
q. Also note that the probability that a sensor falls into the closed strip, with r′ as
outer radius and rmin as inner radius, is p. The meaning of f (k, θ ′) is the same as in
Lemma 4.3. By combining these together, we have Pr[Crmin

V ] as previously shown.

Now we can give a lower bound of the probability that A is full-view covered.

THEOREM 4.7. Given (r, θ, ϕ), the probability that region A is full-view covered by N

uniformly distributed sensors is lower bounded by Pr(N, r√
N

,
√

N−1√
N

r,
√

N−1√
N

θ,
√

N−1√
N

ϕ)M,

where Pr(N, w, x, y, z) is given by Lemma 4.6, M = ⌈ 8√
3
l−2⌉ and l = l( r√

N
, θ√

N
,

ϕ√
N

) is

given by Lemma 4.5.

PROOF. From Lemmas 4.5 and 4.6, this can be proved by following the same argument
as in Theorem 4.4.

5. DENSITY ESTIMATION FOR FULL-VIEW COVERAGE IN DETERMINISTIC DEPLOYMENT

Deterministic deployment is the best way to achieve full-view coverage in a controlled
environment, for example, in indoor surveillance where camera sensors can be placed at
any place as required. In the traditional disk model, triangle lattice-based deployment
is proved to be optimal in terms of sensor density [Kershner 1939]. In this section, we
construct a deployment pattern for full-view coverage based on the triangle lattice. We
show a necessary and sufficient condition on the grid length such that the whole area
can be full-view covered. Based on that, we derive an estimation on the sensor density
needed for full-view coverage in the triangle lattice based deployment and show that
it is at most a factor from the optimal deployment pattern.
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Fig. 13. Necessary condition for triangle lattice: (a) θ ≥ π/6; (b) θ < π/6.

5.1. Triangle Lattice

The triangle lattice is constructed as follows. First we place ⌈2π/ϕ⌉ sensors together on
a single point and let them face different directions to form a single node with ϕ = 2π .
Then we place the sensor nodes on the vertices of the equilateral triangles with grid
length l. Region A has unit area and it is assumed to be sufficiently large compared
with r and hence we ignore the boundary effect in deployment.

5.2. Density Estimation for Triangle Lattice Based Deployment

The grid length l of the triangle is critical. If it is too large, there will be points not
full-view covered. If it is too small, the deployment density and hence the cost may be
too high. Given the sensor radius r and the effective angle θ , we want to calculate the
best l such that every point in A is full-view covered.

Actually if we replace (�r,�θ ) by (r, θ ) in Lemma 4.1, we immediately have a suffi-
cient condition on l.

LEMMA 5.1. Suppose sensors are deployed on the vertices of the triangle lattices with

grid length l. Given (r, θ ), if l = l(r, θ ) = 2r√
3+cot θ

, then every point in A is full-view

covered.

PROOF. This is a direct result from Lemma 4.1.

In fact, this is also a necessary condition for full-view coverage in the triangle lattice
based deployment.

LEMMA 5.2. If region A is full-view covered, the grid length should be no smaller

than l = l(r, θ ) = 2r√
3+cot θ

.

PROOF. There are two cases: θ ≥ π/6 and θ < π/6. If θ ≥ π/6, consider the situation
in Figure 13(a). M is the intersection point of EG and the boundary of the unsafe
region of C, D, which is a portion of the circle centered at OC,D. Let V be a point on the
segment EM and with distance ǫ(> 0) to M. Let r′ = ‖EV ‖. Since V is in the unsafe
region of C, D, which means ∠CV D > 2θ , there must be a grid point P such that either
∠CVP < 2θ or ∠DVP < 2θ and P can cover V . This can only happen if r ≥ r′ (and hence
P is E), because if not, there would be no grid point between line V C and V D which
can cover V . Let ǫ → 0 and hence r → r′ = ‖EM‖, which implies the critical value of l.

If θ < π/6, consider the situation in Figure 13(b). In this case, the boundary of the
unsafe region of C, D intersects with line EC on H and intersects with line DG on
B. First we notice that H is also the intersection point of the boundary of the unsafe
region of E, D and line EC. In fact, if we denote this intersection point by H′, then
∠EH′D = 2θ according to Lemma 3.3. Similarly, ∠EHD also equals to 2θ . Since H
and H′ are on the same line, they are the same point. Then since HE is parallel to
BD, ‖HB‖ = ‖DE‖, which further equals to ‖CD‖ and ‖CG‖. Thus polygon HCGB is
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Fig. 14. Number of sensors needed in a triangular lattice-based deployment.

a parallelogram, which means ‖HC‖ = ‖BG‖. From this, we know △HCF and △BGE
are congruent triangles, which means ‖HF‖ = ‖BE‖. By a similar argument as in
the above case, we know that if r is smaller than ‖HF‖, there is a point sufficiently
close to H such that it is not full-view covered. Now consider the case when θ → 0.
This implies ‖HF‖ = ‖BE‖ → ‖BG‖ and ‖BG‖ → ‖EM‖(→ ∞), which further implies
‖HF‖ = ‖EM‖ and hence we have the critical value of l.

From the preceding critical value of l obtained, we calculate the required sensor
density for the triangle lattice-based deployment. We compare it with other possible
deployment patterns.

THEOREM 5.3. Given (r, θ, ϕ), the sensor density for the triangle lattice-based deploy-

ment is π
ϕ|Al| which is no more than θr2

2|Al| of the density required by any other deployment

patterns for full-view coverage of region A. Here |Al| =
√

3r2

3+2
√

3 cot θ+(cot θ)2
, which is the area

of a equilateral triangle with side length l given in Lemma 5.2.

PROOF. First, from Lemma 5.1 we know l and hence the area of each triangle with
side length l, which is exactly |Al| shown previously. Then note that each triangle has
three vertices, and each vertex is the intersection point of six triangles. Thus the total
number of grid points in a unit area region is |A|

|Al| · 3
6 = 1

2|Al| . Thus the total number of

sensors needed is 2π
ϕ

· 1
2|Al| = π

ϕ|Al| .
On the other hand, for any deployment patterns, each point in A should be covered

by at least π/θ sensors. Note that each sensor can only cover ϕr2/2 area of A, which
is the area of the sensing sector. Thus the total number of sensor needed is at least
π/θ

ϕr2/2
= 2π

θϕr2 .

Finally, the ratio of the above two values yields the bound on the scaling factor in
the theorem.

Figure 14 is an illustration on the number of sensors needed for full-view coverage
in an 100m × 100m field when triangular lattice-based deployment is used (θ is from
π
6 to π

3 , for r = 5, 10, 15 and ϕ = 2
3π, 2π , respectively).

6. WEAK BARRIER COVERAGE IN CAMERA SENSOR NETWORKS

In traditional wireless sensor networks, two kinds of notations of barrier coverage
have been identified: weak barrier coverage and strong barrier coverage [Kumar et al.
2005]. The situation is much more complicated in camera sensor networks. One factor
to consider, as in existing models, is the object’s path. The object can either take a
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Fig. 15. Although there is no single point on the path where the vehicle is full-view covered, multiple views
of the car body will be accumulated along the way.

shortest (i.e., along a straight line) or non-shortest path to cross the field. Another
factor, which is unique to the camera sensor network, is where the object could face, or
which aspect of the object we want to see.

In the following sections, we study the barrier coverage problem in camera sensor
networks. We first consider the scenario when the object always takes the shortest
path, that is, a straight line to cross the field. A new weak barrier coverage model is
proposed. Then the weak barrier coverage verification problem is studied. The problem
asks if the monitored field is under weak barrier coverage given a deployed camera
sensor network. A series of procedures to verify the coverage will be introduced. Then
in the next section, the assumption will be relaxed such that the object can take any
possible path between the entrance and the exit and has more flexibility on choosing
the facing direction. It is not difficult to see that the stronger the coverage is (or the
more choices the object has), the more camera sensors are needed.

6.1. Weak Barrier Coverage of Camera Sensors

Consider the case when the object takes a shortest path to cross the field. In practice,
we may want to observe the object from multiple aspects. One example can be found
in an application to monitor vehicles crossing the field. One may require the frontal
image of the vehicle that contains the plate information and the driver’s face image to
be observed. It is also likely for the application to ask for a side view so that the specific
model of the vehicle can be identified. In these cases, a proper coverage should provide
views all around the vehicle as it passes over the monitored field. Note that the purpose
is not to provide a full-view coverage at one spot, but to accumulate multiple views along
the way (Figure 15). Based on this, we develop a new weak barrier coverage model for
camera sensor networks.

Consider a two-dimensional rectangular area A with one side being the entrance
and another side being the exit. A camera sensor network S = {S1, . . . , Sn} has been
deployed to monitor A. The weak barrier coverage of the camera sensor network is
defined as follows.

Definition 6.1. The monitored field A is said to be under weak barrier coverage by
the deployed camera sensor network if for any object traveling from the entrance to the
exit along any straight path, and for any predefined facing direction, there is a point P
on the path such that P is coved by a camera sensor Si, and the angle between �v and−→
PSi is smaller than the effective angle θ .
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Fig. 16. The object’s face can only be detected if it is within Q1 Q2 and faces to certain direction: (a) as it
travels from Q2 to Q1, the range in which it will be detected will gradually shifts (the grey sectors); (b) the
union of the range is the sum (integrated range) of facing direction where the object’s face will be detected

within Q1 Q2.

Note that in this definition and the rest of the article, we use the term “face” or “facing
direction” to denote any aspect of the object that we are interested in. As before, it can
be represented by an angle from 0 to 2π . With this definition, the problem considered
here is defined as follows.

Definition 6.2 (Weak Barrier Coverage Verification). Given a rectangular field A to
be monitored, and a network of camera sensors S = {S1, . . . , Sn} with fixed sensing
radius r and FoV angle ϕ but arbitrary locations and orientations, also given the
effective angle θ ∈ [0, π

2 ), the problem asks whether A is under weak barrier coverage
by S.

The challenge to the problem comes from the requirement that an object needs to be
covered from multiple views during the trip crossing the field. Unlike in classic coverage
model where the coverage only depends on the distance between the traversing path
and the sensor, the impact of each individual camera also depends on its viewing
direction to the object, which changes continuously when the object moves.

6.2. Conversion into 2D Coverage Verification

The key is to map the preceding problem into a classic two-dimensional coverage
problem, in which a predefined area is to be covered by a set of subareas and no
direction issue is involved.

Given the rectangular area A to be monitored, consider a crossing path L and a
camera Si covering a portion of L. When an object P travels within the covered portion
of L, its face (or any given aspect) will be detected by Si, if its facing direction falls

into the range [arg( �PSi) − θ, arg( �PSi) + θ ] (recall that arg(�v) is the angle representing
the vector �v). Obviously, as P moves, this range will shift accordingly. There are two
critical positions of P, which are the two intersection points of L and the boundary of
Si ’s sensing range (Figure 16). One of the points is closer to the exit, denoted by Q1,
and the other is closer to the entrance, denoted by Q2.4 Consider the case when L is to
the right of Si, as shown in Figure 16. Then as P travels from Q2 to Q1, its face will be
detected if its facing direction is within

(arg( �Q2Si) − θ, arg( �Q1Si) + θ ), if arg( �Q2Si) − θ < arg( �Q1Si) + θ ;

(arg( �Q2Si) − θ, 2π ) ∪ [0, arg( �Q1Si) + θ ), otherwise.
(1)

Here the angle is calculated by using modulo 2π , which means if arg( �Q2Si) − θ ≥
arg( �Q1Si) + θ ≥ 2π , the actual interval will be from 2π + arg( �Q2Si) − θ to 2π and then

4Note that if the distance between L and Si is equal to r, then Q1 and Q2 are the same point.
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Fig. 17. In the monitored space, field A is to be covered by the camera sensors. A facing direction �vi with
angle yi at a particular point of a crossing path Li , represented by x = xi , is projected onto a point (xi, yi) in
the projection space. If vi is covered at some spot Pi on the path Li , (xi, yi) is covered.

from 0 to arg( �Q1Si) + θ . Similar expression can be obtained for the case when L is to
the left of Si.

To characterize the preceding relationship between L’s position and the coverage, a
2D Cartesian coordinate system is used with the x axis parallel to A’s width (horizontal)
and the y axis perpendicular to the x axis (Figure 17). Any shortest path L across the
field is mapped onto a point on the x axis. Let the leftmost path (i.e., the left boundary)
be mapped onto x = xleft and the rightmost path be mapped onto x = xright.

In this coordinate system, the y axis indicates the facing direction, which means only
the range [0, 2π ) will be considered. In this system, a point (x0, y0) is said to be covered
(or marked covered) if the following is true: when the object travels along the path
x = x0 and faces to the direction y0, its face is detected. In general, consider a path
L corresponding to x = xL. If the object’s face is detected when its facing direction is
within [α1, α2], then all points with x coordinate equal to xL and y coordinate within
[α1, α2] in the new coordinate system are marked covered.

To avoid confusion, the new coordinate system is referred to as the projection space,
and the original space where the field A is defined is referred to as the monitored space.
From the preceding description, it should be clear that a point (x, y) marked covered
in the projection space has nothing to do with the coverage of the point (x, y) in the
monitored space.

From Definition 6.2 and the preceding discussion, it is clear that the following lemma
is true.

LEMMA 6.3. The monitored field A is under weak barrier coverage if and only if in
the projection space the following area

Aproj = {(x, y) : x ∈ (xleft, xright), y ∈ [0, 2π )} (2)

is covered.5

6.3. Coverage of Individual Camera Sensor

For a given L and Si, it is not difficult to find the set of points to be marked covered in
the projection space. However, the number of paths to be considered in the monitored
space is countless. An efficient way is needed to characterize the set of marked points in
the projection space. In the following discussion, for each Si, a mathematical expression

5We use open set for ease of presentation and to make the analysis clean, although it is not necessary.
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Fig. 18. There are six cases to consider in the computation of an individual camera’s coverage impact.

Fig. 19. The computation of an individual camera sensor’s coverage: (a) vertex B is the rightmost point of

Si ’s sensing range; (b) another point B′ that is on theıAB is the rightmost point of Si ’s sensing range.

is obtained to describe the shape of the set of all points that are marked covered in the
projection space.

To characterize the shape of a point set, the key is to find its boundary. Con-
sider the sensing sector of Si which is defined by three vertices Si, A, B with A be-
ing the next vertex of Si in the counter-clockwise order. Let xSi

, xA, and xB denote
the corresponding x coordinate of them in the projection space. There are six cases
to consider depending on the permutation of the three points (from left to right):
(xSi

, xA, xB), (xSi
, xB, xA), (xA, xSi

, xB), (xA, xB, xSi
), (xB, xSi

, xA), (xB, xA, xSi
) (Figure 18).

We consider the first case (Figure 18(a)). It can be further divided into two scenarios
depending on if B is the rightmost point of Si ’s sensing range. Suppose it is the rightmost
point and consider the process that L moves from x = xB to x = xSi

(Figure 19(a)). There
are two parts: the first part from x = xSi

to x = xA and the second part from x = xA to
x = xB. Recall the two critical positions Q1 and Q2 that are the two intersection points

of L and Si ’s boundary. Here Q1 is on Si A and Q2 is on Si B for the first part and B̂A

for the second part. We find the function describing arg( �Q1Si) and arg( �Q2Si) in terms
of L’s position x = xL.
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Without loss of generality, the coordinate system can be shifted such that xSi
= 0.

In both the first and the second part, arg( �Q1Si) = arg( �BSi), which is a constant only

depending on the position of Si and B. In the first part xL ∈ (xSi
, xA), arg( �Q2Si) =

arg( �ASi), which is a constant only depending on the position of Si and A. In the second

part xL ∈ [xA, xB), arg( �Q2Si) = π − arccos xL

r
(recall r is the sensing radius). Then from

the expressions of arg( �Q1Si) and arg( �Q2Si) and Equation (1), we can define in the
projection space the set of points to be marked covered, which is denoted by Ci.

Ci = {(x, y) : 0 < x < xB and y2(x) < y < y1(x), if y2(x) < y1(x);

y2(x) < y < 2π or 0 ≤ y < y1(x), otherwise}, (3)

where

y1(x) = arg( �BSi) + θ (mod 2π ), x ∈ (xSi
, xB),

y2(x) = arg( �ASi) − θ (mod 2π ), x ∈ (xSi
, xA),

y2(x) = π − arccos
x

r
− θ (mod 2π ), x ∈ [xA, xb).

(4)

Now suppose B is not the rightmost point of Si ’s sensing range. In this case, the

rightmost point, denoted by B′, is on ÂB (Figure 19(b)). Let xB′ be the x coordinate of
B′ and consider the process when L moves from x = xSi

= 0 to x = xB′ . There are three
parts. The first and the second are the same as the preceding; the additional third part

is from x = xB to x = xB′ . In the third part when Q1 is on B̄B′ and Q2 is on ÃB′.
As a result, the set of points to be marked covered in the projection space can be

defined similarly as in Equations (3), (4), and the only modification is the additional
definition of y1(x) and y2(x) in Equation (4), for the additional third part, that is,

y1(x) = π + arccos
x

r
+ θ (mod 2π ), x ∈ (xB, x′

B),

y2(x) = π − arccos
x

r
− θ (mod 2π ), x ∈ (xB, x′

B).
(5)

We can run similar procedures to find the point sets for the other five cases. Note
that although the images of the point sets are not regular shapes like rectangles or
triangles, their boundaries are either straight line segments or part of the curve defined
by the function arccos(·) that is used in Equations (3), (4), and (5).

6.4. Coverage Verification

As we mentioned, the coverage verification problem becomes the problem asking that
in the projection space, whether the subarea Aproj defined in Equation (2) is covered by
the family of point sets {Ci, 1 ≤ i ≤ n}.

In the projection space, Aproj is partitioned into subarea by {Ci, 1 ≤ i ≤ n}. A straight-
forward method to verify coverage is to go through every subarea and verify the cov-
erage one by one. An alternative considered here is to study the boundary of each
Ci.

THEOREM 6.4. Suppose in the projection space there is at least one Ci whose intersec-
tion with ∈ Aproj is nonempty. Then Aproj is covered if and only if for each Ci and any
point PB on its boundary and PB ∈ Aproj, PB is covered by at least one C j other than Ci.

PROOF. We will show the “if ” part since the “only if ” part is obvious.
Suppose the conditions are met but there is one point P ∈ Aproj that is not covered.

Note that in our case, Aproj is equivalent to {(x, y) : x ∈ (xleft, xright), y ∈ R(mod 2π )},
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which is an open set. A pictorial way to look at Aproj is to consider it as the surface
of a cylinder, and the boundary, which is composed of the circumference of the bottom
and upper disk, does not belong to it. Also, every Ci is essentially an open set in
{(x, y) : x ∈ R, y ∈ R(mod 2π )}.

As P is an interior point of Aproj and it is not covered by any Ci, a connected region
RP (an open set) that contains P and is included in Aproj can be found not covered by
any Ci. Without loss of generality, suppose RP is maximal, which means for any point
on the boundary of RP and any neighborhood of the point, there is always a point that
is either covered or not in Aproj.

Now consider RP ’s boundary. There must be a Ci such that the intersection of Ci ’s
boundary and RP ’s is nonempty (otherwise RP is surrounded all by Aproj’s boundary
which can only happen when Ci ∩ Aproj = ∅,∀i). As a result, for any point on that
part of the boundary, it is not covered by any other C j, j �= i, which is a contradictory.
Therefore, Aproj is covered.

7. STRONG BARRIER COVERAGE IN CAMERA SENSOR NETWORKS

In this section, we study the strong barrier coverage problem in camera sensor net-
works. We will first define what is strong barrier coverage in a camera sensor network.
Then a coverage verification algorithm is proposed to determine if the monitored field
is under strong barrier coverage. Finally, a heuristic to select cameras to form a camera
barrier is given.

7.1. Strong Barrier Coverage of Camera Sensors

Consider a two-dimensional rectangular area A, as in the previous section. A camera
sensor network has been deployed to monitor A. The strong barrier coverage of the
camera sensor network can be defined as follows.

Definition 7.1. Given a rectangular field Awith one side being the entrance and the
opposite side being the exit side, A is said to be under strong barrier coverage by the
deployed camera sensor network if there is a connected region B inside A such that B
is full-view covered and any path from one point on the entrance side to another point
on the destination side intersects with B.

With this definition, the barrier coverage verification problem considered here is
defined as follows.

Definition 7.2 (Strong Barrier Coverage Verification). Given a rectangular field A
to be monitored, and a network of camera sensors S = {S1, . . . , Sn} with predefined
sensing radius r and FoV angle ϕ but arbitrarily chosen locations and orientations,
also given the effective angle θ ∈ [0, π

2 ), the problem asks whether A is under strong
barrier coverage by S.

As mentioned in the introduction, simply selecting cameras across the field with
connected sensing range does not necessarily form a camera barrier. Besides, compared
with the weak barrier coverage considered in the last section, the object’s path can be
arbitrary and the object’s facing direction may also change dynamically during the trip.
All of these factors will be taken into consideration in designing an efficient coverage
verification algorithm.

7.2. Verification Method Overview

We need to guarantee that each point of the barrier is full-view covered. This is the key
challenge here. We approach this problem by first converting the monitored field into a
graph (discretization) in which each node represents a small subregion and two nodes
are connected if they are adjacent in the original field. By doing this, we can verify the
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Fig. 20. (a) The monitored area is partitioned into subregions; each subregion is identified by a number;
(b) a graph is constructed based on the relationship among the subregions; the number on the node indicates
the corresponding subregion in (a).

coverage quality of each subregion and determine a subset of nodes (subregions) that
are full-view covered. Then the preceding verification problem is equivalent to asking
if there is any path from the left boundary to the right boundary consisting of nodes
that are full-view covered. This path represents a set of contiguous subregions across
the field, which is essentially the camera barrier we are looking for.

7.3. Discretization

Given a set of deployed sensors, field A can be partitioned into subregions, where each
subregion is defined to be a set of points covered by the same set of sensors. Two
subregions are adjacent if they share at least one common boundary, which can be a
line or arc segment from the boundary of the sensing range of some sensors. We model
all the subregions and their relationship to each other by a graph G = (V, E). Each
node in V represents a subregion. There is an edge (i, j) between node i and j if and
only if they are adjacent subregions. An example of this graph is shown in Figure 20.

Two virtual nodes s and t are then added into this graph. They represent the left
and right boundaries of field A, respectively. There is an edge (s, i) between node s and
i if subregion i intersects with the left boundary of A. Similarly there is an edge ( j, t)
if subregion j intersects with the right boundary of A.

The number of subregions in G is O(n4), where n is the total number of cameras. The
reason is as follows. We can consider the field A as a planar graph, where the vertices
are the intersection points of sensing sectors and edges are the line or arc segments
between any two intersection points. Since any two sensing sectors can have O(1)
intersection points on their perimeters, the number of vertices is O(n2). This further
implies the total number of edges is O(n4). From Euler’s formula [Alexandroff 1998],
the number of faces, that is, subregions, is thus equal to 2 − O(n2) + O(n4), which is
O(n4).

7.4. Strong Barrier Coverage Verification

For a given subregion R, we need to verify if every point in it is full-view covered. Note
that all points in R are covered by the same set of camera sensors. In this section,
we focus on this particular set of sensors. Since R is always within their FoV, we can
ignore their orientation vectors (i.e., �fi). What really matters here is the position of
each camera and the geometrical relationship between it and the object’s position.

The idea is similar to what we used in Section 3. The difference is that here we
apply the verification procedures on each individual subregion rather than on the
boundary segments. Similarly as in Theorem 3.4, we have the following result of full-
view coverage verification for a subregion R.
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Fig. 21. R is not full-view covered. Fig. 22. The circular lists of U and V
are different.

THEOREM 7.3. Suppose R is covered by camera sensors {SV1
, . . . , SVk

}, and for ev-
ery point V ∈ R, the circular list CLV = {SV1

, . . . , SVk
} is the same (in a circular

way/order). Then R is full-view covered if and only if it is within the polygon bounded

by {SVi
SVi+1

, 1 ≤ i ≤ k} and for any 1 ≤ i ≤ k, the unsafe region of SVi
and SVi+1

does not
intersect with R, where Vk+1 denotes V1.

PROOF. This is a direct result by applying Lemma 3.2 and Lemma 3.3 on the subre-
gion R.

The example in Figure 21 is an illustration of our idea. In this example, there are
seven cameras covering subregion R. We draw the boundaries of the unsafe regions for
the seven pairs of neighboring sensors (indicated by dotted arcs), as in Lemma 3.3, and
check if they intersect with R. Note that in computation this can be done by comparing
the distance from the circle’s center to each boundary segment of R with the circle’s
radius. As can be seen in the figure, the unsafe regions of S4, S5 and S5, S6 intersect
with R, and hence the intersection area (shaded area of R) is not full-view covered. All
other areas in R are full-view covered.

We still need to consider the issue when the circular list CLV may not be the same
for every point V ∈ R. For example in Figure 22, S1 is prior to S2 in V ’s list, but S2 is
prior to S1 in U ’s list, i.e., CLV = {S1, S2, S3, . . . , Sk}, CLU = {S2, S1, S3, . . . , Sk}. This
happens if two cameras covering R are on a line which intersects with R (e.g., the line
S1S2 intersects with R at X, Y ). To solve this problem, we need the following concept.

Definition 7.4 (Partition). A partition is a maximal subset of points in a subregion
R such that the circular list of every point of the subset is the same.

We need to find all the partitions of R. In fact, R can be partitioned by the lines
connecting any two cameras covering R. For example, in the preceding example, R can
be divided into two partitions by S1S2 XY , where X, Y are the intersection points on R’s
boundary (note that there will be no new partitions if X, Y are in the middle between
S1 and S2). If there were another pairs of cameras like this, then R would be further
partitioned. For each partition, we can use Theorem 7.3 to verify the coverage.

Once the coverage verification of all subregions have been completed, the graph G
will be modified by removing all edges that are adjacent to notes (subregions) not full-
view covered. The result graph is called the coverage graph. And the verification result
is summarized by the following theorem.
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THEOREM 7.5. If there is an s − t path in the coverage graph, that is, a series of nodes
from s to t with each one connected by an edge to the next, in the coverage graph, the
monitored field is under strong barrier coverage by the deployed camera sensors.

PROOF. Obviously, an s − t path in the coverage graph is corresponding to a series of
subregions that are all full-view covered and connected together. Also, s (t) represents
the left (right) boundary, the node adjacent to s (t) must intersect with the left (right)
boundary. Thus, any path from the bottom to the top must intersect with at least one
of the preceding subregions. From Definition 7.1, the monitored field is under strong
barrier coverage.

7.5. Discussions

There are several interesting questions that need to be further investigated. We will
briefly discuss them as follows.

7.5.1. Minimum Camera Selection. If the monitored field is under strong barrier coverage
by the deployed camera sensors, one interesting question is how to find the minimum
set of cameras to form the barrier. If we consider this in the coverage graph, there are
possibly multiple valid s− t paths in the coverage graph. And we want to select the one
(the camera barrier) which requires the minimum number of active cameras.

One way is to count for each s−t path how many cameras needed to full-view cover the
selected subregions. However, the number of s− t paths can be an exponential function
of the number of nodes, which makes the solution inefficient. In fact, even if we were
able to find the path with the minimum cameras used, the path is still not guaranteed
to be optimal as some redundancy may exist on the path (see later discussion). This
question needs to be further investigated, but here we can use a heuristic based on the
shortest-path selection algorithm.

A shortest path between s and t can be found by using Dijkstra’s algorithm [Cormen
et al. 2001]. There is one implementation issue that is worthy to mention. We observe
that two nodes are adjacent if the two subregions share a common boundary. That
means the two sets of cameras covering these two subregions differ by only one element,
which further implies that one of the two sets includes the other. Thus, if the subregion
covered by the larger set is chosen, the other subregion can be covered at no additional
cost. During the execution of Dijkstra’s algorithm, we take advantage of this property
by setting the cost of the edge from the node with a larger camera covering set to the
node with a smaller subset to be 0, and all other edges to be 1. This encourages the
algorithm to select the node which is covered by cameras that are already selected.

After the shortest path is found, the camera sensors that cover the corresponding
sub-regions are activated and all other cameras can be put into sleep.

7.5.2. Redundant Camera Sensors. Another issue is the redundancy in the preceding
camera selection algorithm. In general, given a set of selected subregions that are
full-view covered by a given set of deployed camera sensors, a camera is considered
redundant if the subregions are full-view covered without that camera being used. A
subset of cameras are redundant if the subregions are full-view covered after those
cameras being removed (turned off). As an illustration, Figure 23 shows the cause of
redundancy on an individual subregion. Here, cameras S1, S2, S3 all cover the subregion
R, as the unsafe region of the two neighbors of S3 does not intersect with R, S3 can
be turned off if S1 and S2 are both on. Due to this, selecting all the cameras covering
the subregion without eliminating possible redundant cameras in the above algorithm
might be a waste.

However, the difficulty of removing redundancy is that a camera which is redun-
dant for one subregion may be necessary for another subregion. To resolve the issue,
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Fig. 23. The cause of redundancy. Fig. 24. A barrier across partially covered
sub-regions.

redundant cameras for each subregion are first identified. If a subregion has multiple
partitions, then each partition is treated separately. A redundant cameras found in
one specific subregion (partition) can only be removed if for any other subregions, it is
either not used (i.e., it does not cover that subregion) or being a redundant camera in
that subregion.

7.5.3. Consideration of Non-Full-View Covered Subregions. Another issue in current cover-
age verification algorithm is due to the lack of consideration of the subregions that are
not full-view covered. It is likely that those subregions may also be used as building
blocks for a valid camera barrier. An illustration is shown in Figure 24. In this example,
none of the three subregions R, R1, and R2 are considered full-view covered. However,
since the full-view covered portion of the three is connected, it is still possible to con-
struct a valid barrier across them. Fortunately, the preceding coverage verification
procedure proposed can be readily adapted to solve this issue.

The key is to precisely identify for each subregion which part is full-view covered.
Without loss of generality, we assume there is only one partition in the subregion.
Consider the set of cameras covering a subregion R. Recall that for each pair of adjacent
cameras, an arc defining the safe (unsafe) region can be identified (Lemma 3.3). Then
consider the intersection of the safe region of all pairs of adjacent cameras covering R,
which is denoted by IR. If IR is empty, then no point of R is full-view covered. Otherwise,
the intersection of IR and R is the set of points that are full-view covered.

Now for each subregion, there are three possibilities: full-view covered, partially
full-view covered with the covered subset identified, and not full-view covered at all.
If a subregion is not full-view covered at all, then in the coverage graph, all edges
adjacent to the corresponding nodes are removed. If for two adjacent subregions, their
fullview covered subsets are connected to each other, the edges between those two
subregions are kept. Otherwise, the edge between those two are removed. Finally,
after the modification, it can be seen that the monitored field is under strong full-view
coverage of the deployed camera sensor network if and only if there is at least one s − t
path in the coverage graph.

8. SIMULATION AND NUMERICAL RESULTS

In the simulation, we want to validate the theoretical analysis on sensor density es-
timation for full-view coverage. Meanwhile, we want to have a pictorial view of the
relationship between sensor density and the percentage of full-view coverage. Finally,
we will compare barrier coverage and full coverage (i.e., every point of the monitored
area is full-view covered) in terms of the number of cameras required.

8.1. Simulation Results on Full Coverage

In this section, we are interested in finding out how many camera sensors are needed
to achieve full-view coverage in a random deployment. Note that for a triangle
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Fig. 25. Density vs. probability (r = 5, 25). Fig. 26. Percentage vs. density (r = 5, 25).

lattice-based deterministic deployment, the numerical result has already been pre-
sented in Section 5.

8.1.1. Simulation Configuration. The target field A is a 100m × 100m square region. We
use two settings for sensing radius: r = 5 m and r = 25 m. In both cases, we deploy the
sensors in the field with area of (100 + 2r)m × (100 + 2r)m to circumvent the boundary
effect. When r is 5 m, it is much smaller compared with the side length, and hence
the deployment field is almost the same as A. With r = 25 m, it is comparable to
the side length, and hence the density results (both in the simulation and theoretical
estimation) are for the enlarged deployment field. The FoV angle is fixed to be ϕ = π/3,
and we use three values for the effective angle, that is, θ = π/6, π/4, π/3 (or 30, 45, 60
in degree) respectively.

In the first step of the simulation, we vary the number of sensors from 10,000 to
90,000 for r = 5 m, and from 1,000 to 6,000 for r = 25 m, to observe the full-view
coverage probability. Each experiment is run 100 times, and the results are averaged.
As comparisons, we also give the theoretical estimation for each configuration. Note r
is normalized to 0.05 and 0.25, respectively.

In the second step of the simulation, we vary the number of sensors from 4,000 to
40,000 for r = 5 m, and from 200 to 2,000 for r = 25 m, to observe the percentage of
full-view coverage. The percentage of full-view coverage is defined to be the percentage
of points that are full-view covered. Each result shown here is the statistical average
of 100 experiments.

8.1.2. Simulation Results. Figure 25 shows the results of the sensor density under dif-
ferent probability requirement for full-view coverage. We use the x-axis to denote the
probability and the y-axis to denote the sensor density. The results shown here are for
probability requirement above 0.9, which would be of interest in practice. The sensor
density is normalized by dividing the total number of sensors by the target field’s area.
The results shown here are for r = 5 and r = 25. In both cases, the sensor density
needed for full-view coverage increases as the required probability increases, although
the density for r = 25 is much lower than the density for r = 5 (reflected by the range
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Fig. 27. Comparison between barrier coverage and full area coverage.

on y-axle). The theoretical results (indicated by ‘estimate’ in the figures) serve as up-
per bounds for the real densities (indicated by ‘simulation’ in the figures) in all cases,
which means as long as the sensor density reaches the theoretical bound, the coverage
probability is guaranteed. Moreover, the theoretical bounds are very close to the real
deployment density. The difference becomes even smaller as the required probability
is higher. This further validates the theoretical estimation.

Figure 26 shows the results on the percentage of full-view coverage under different
sensor densities. The percentage of full-view covered points increases very quickly as
the sensor density increases. By comparing this figure and Figure 25, we can see that
although the density needed to achieve full-view coverage for the whole target field may
be high, the density needed for a high percentage (but not 100%) of full-view coverage
is much lower. For example, when θ = π/4 and r = 25, 90% of the field is full-view
covered when the density is around 0.1 (1,000 sensors). However, if we want to achieve
full-view coverage for the whole area with probability 0.9, the density should be above
0.25 (2,500 sensors).

8.2. Simulation Results for Barrier Coverage

In this section, we show the simulation results for the barrier coverage. The main
purpose of the simulation is to compare the number of camera sensors needed with full
coverage (i.e., every point of the monitored field is full-view covered), and to show the
cost effectiveness of the barrier coverage. Only results for strong barrier coverage are
shown here, as the results for the weak barrier coverage are similar in trends.

We have two scenarios here. In the first scenario, the monitored field is 200 m in
width (along x-axis), 100 m and 200 m in length (y-axis) separately. The camera’s
parameters are r = 30 m, θ = π/3, ϕ = 2π/3. Cameras are deployed randomly and
uniformly in the deployed field. To avoid the boundary effect as we mentioned before,
the deployed field is a larger area with both the length and the width 2r longer than the
monitored filed. Figure 27(a) shows how the coverage probability varies as the number
of deployed sensor increases. To estimate the probability, we run each experiment at
least 500 times and the probability is obtained by dividing the number of times when
the desired coverage is achieved by the total number of tests under each configuration.
As Figure 27(a) shows, the probability of the existence of a camera barrier (denoted as
“barrier”) is almost 1 when the number of cameras deployed is beyond 1,200 if the field
length is 100. On the other hand, at least 2,500 cameras are needed for full coverage
(denoted as “full”). The difference is even bigger if the field length is 200, where barrier
coverage demands no more than 1,700 cameras but full coverage demands more than
4,000 cameras.
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In the second scenario, the camera’s parameters and the width of the monitored field
are fixed as in the preceding. We change the length of the field from 50 m to 200 m and
observe how many cameras are needed to achieve the desired coverage (barrier and
full) with at least 0.99 probability. Note that in a random deployment given the same
number of deployed cameras, as the field length increases, the camera density will drop.
As a result, to achieve the same high probability of coverage (in both full and barrier
coverage), more cameras should be deployed. As shown in Figure 27(b), the number of
cameras required for barrier coverage is much less than that in full coverage. As the
field length increases, the number of cameras required for full coverage increases much
faster than that for barrier coverage. This result is consistent with our expectation:
given the field width unchanged, to achieve full coverage, the area to be full-view
covered increases linearly as the field length increases, and so does the number of
cameras needed; however since the barrier is across the width of the field, which is
unchanged during the test, the number of cameras needed does not increase that fast,
and the cost-effectiveness of barrier coverage is obvious.

9. RELATED WORK

Coverage problems under disk sensing model have been studied extensively in the
past few years. Under the disk model, coverage detection/verification methods are well
studied. In Huang and Tseng [2003] show that an area is k-covered if and only if the
perimeter of all sensor’s sensing range (disk) is k-covered. A polynomial-time detection
algorithm has been proposed based on this perimeter coverage property. In Bejerano
[2008], the idea of perimeter coverage has been developed into a distributed protocol in
which no location but only distance information is assumed to be known by the sensors.
Based on the same assumption, Kasbekar et al. [2009] show that the target field is k-
covered if the intersection points of the perimeter of any two sensors’ sensing disks
are k-covered. They also present a distributed protocol which schedules the sensors
to prolong the lifetime of the network with coverage guarantee. More comprehensive
surveys on coverage detection (verification) methods can be found [Ahmed et al. 2005;
Cardei and Wu 2006]. Another direction on coverage detection is to utilize the property
of the Voronoi Diagram. Some interesting works are Cărbunar et al. [2006], Wang et al.
[2006], etc.

These studies under disk coverage model inspire our work in this article. Note that
like the previously mentioned works, most recent studies in camera sensor networks
(e.g., [Hörster and Lienhart 2006; Johnson and Bar-Noy 2011]) still consider cameras
as conventional directional sensors. The major difference between theirs and ours is
that full-view coverage requires consideration of three factors: the distance between
the point and the sensor, the viewing direction of the sensor, and the orientation of the
sensor, while in disk model, only the distance needs to be considered. All these issues
make the full-view coverage problem much more complicated and challenging.

Barrier coverage was first studied in Gage [1992]. In wireless sensor networks,
one related problem is the maximum breach and minimum exposure path problem
[Meguerdichian et al. 2001; Li et al. 2003]. In this problem, the coverage quality of a
sensor (or exposure) is modeled as a decreasing function of the distance between the
sensor and the object. The goal is to find a traversing path in a deployed sensor network
such that the maximum exposure is minimized. After the first introduction of the prob-
lem, some distributed algorithms have been proposed, in which sensor collaboration is
exploited to detect the intruder [Clouqueur et al. 2003; Veltri et al. 2003].

The concepts of weak and strong barrier coverage in wireless sensor networks are
introduced in Kumar et al. [2005]. A wireless sensor network provides weak barrier
coverage if the intruder is guaranteed to be detected when it takes the shortest path
(i.e., an orthogonal line) to cross the field. Strong barrier coverage guarantees the
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detection of the intruder no matter what kind of path it takes. They obtain the critical
condition of weak barrier coverage in a random deployment. The critical condition for
strong barrier coverage is obtained in Liu et al. [2008] by using percolation theory.
They also give a distributed algorithm to construct the sensor barrier. An effective way
of measuring the quality of barrier coverage is proposed in Chen et al. [2008]. The idea
is that if the intruder is guaranteed to be detected when its path is confined in a sliced
area with a given width (bounded), then the bound of this width can be used to measure
the quality of the barrier. Under this model, the strong barrier coverage and the weak
barrier coverage are two extreme cases. They also provide an efficient way to find the
weak point of the barrier based on the measurement results. The concept of barrier
information coverage is introduced in Yang and Qiao [2009]. The basic idea is to exploit
the collaboration between sensors on target detection to reduce the number of sensors
in use and hence prolong the network lifetime. Finally, the problem of constructing
sensor barrier with mobile sensor is studied in Saipulla et al. [2010]. An optimization
algorithm is given to schedule the movement of the mobile sensors for barrier coverage
under the constraint that the moving distance of each mobile sensor is limited.

In our work, both the concept of weak and strong barrier coverage have been extended
with the consideration of the new features of the full-view coverage model. As we
discussed, the differences between camera sensors and traditional scalar sensors in
terms of coverage make barrier coverage problem in camera sensor networks much
more challenging. And hence it deserves substantial research effort.

10. CONCLUSIONS

Camera sensor networks have drawn much attention recently due to their huge poten-
tials in many applications. One fundamental research issue in camera sensor networks
is how to define the coverage. Since traditional disk sensing model does not address the
issue of viewing direction, which is intrinsic to camera sensors, in this article we intro-
duced a novel model called full-view coverage. A monitored field is said to be full-view
covered if for any point V and an arbitrary facing direction (i.e., a vector �d), there is
always a sensor Si such that V is in Si ’s sensing range and the angle between �d and the

direction vector
−−→
VSi is smaller than a predefined value θ . With this model, we proposed

an efficient method of full-view coverage detection for any given camera sensor net-
work. We also derived a sufficient condition on the sensor density needed for full-view
coverage in a random uniform deployment. In addition, we showed a necessary and
sufficient condition on the sensor density for full-view coverage in a triangular lattice
based deployment.

Based on the full-view coverage model, we also studied the barrier coverage problem
of camera sensor networks. The two barrier coverage models in the literature, the weak
barrier coverage and the strong barrier coverage, have been extended into two new
models by considering the direction issues. Along with the new models, the weak/strong
barrier coverage verification problems were introduced, and new detection methods
have been proposed.

In this article, we have developed a theoretical framework for the coverage problem
in camera sensor networks. The study is far from perfection but just a beginning. We
believe that some interesting problems such as the minimum camera selection problem
and the redundancy reduction problem in the barrier coverage, and many other related
issues have much significance in both research and practice, and hence deserve further
investigation.
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