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Abstract 

Land use and land cover changes, such as deforestation, agricultural expansion and urbanization, are one of the larg-

est anthropogenic environmental changes globally. Recent initiatives to evaluate the feasibility of malaria eradication 

have highlighted impacts of landscape changes on malaria transmission and the potential of these changes to under-

mine malaria control and elimination efforts. Multisectoral approaches are needed to detect and minimize negative 

impacts of land use and land cover changes on malaria transmission while supporting development aiding malaria 

control, elimination and ultimately eradication. Pathways through which land use and land cover changes disrupt 

social and ecological systems to increase or decrease malaria risks are outlined, identifying priorities and opportunities 

for a global malaria eradication campaign. The impacts of land use and land cover changes on malaria transmission 

are complex and highly context-specific, with effects changing over time and space. Landscape changes are only one 

element of a complex development process with wider economic and social dimensions affecting human health and 

wellbeing. While deforestation and other landscape changes threaten to undermine malaria control efforts and have 

driven the emergence of zoonotic malaria, most of the malaria elimination successes have been underpinned by agri-

cultural development and land management. Malaria eradication is not feasible without addressing these changing 

risks while, conversely, consideration of malaria impacts in land management decisions has the potential to signifi-

cantly accelerate progress towards eradication. Multisectoral cooperation and approaches to linking malaria control 

and environmental science, such as conducting locally relevant ecological monitoring, integrating landscape data 

into malaria surveillance systems and designing environmental management strategies to reduce malaria burdens, 

are essential to achieve malaria eradication.
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Background
Malaria continues to be a major public health burden 

globally, with over 200 million cases in 2018. Despite 

effective treatment and control measures, over 400,000 

deaths are caused by malaria annually, primarily in sub-

Saharan Africa [1]. Malaria eradication, the permanent 

reduction of malaria infections globally to zero, has 

been a long-standing goal of the public health commu-

nity, with a previous failed malaria eradication attempt 

from 1955–1969 [2]. Following significant reductions in 

malaria morbidity and mortality between 2000 and 2015, 

the World Health Assembly endorsed aims to reduce 

malaria burdens a further 90% by 2030 and has again 

begun exploring the possibility of malaria eradication [3]. 

Within the past year, two separate initiatives, the World 

Health Organization (WHO) Strategic Advisory Group 

for Malaria Eradication (SAGme) and the Lancet Com-

mission on Malaria Eradication analysed future scenar-

ios, concluding that malaria eradication is feasible and 

outlining key priorities [4, 5]. Both reports examine the 

impacts of global environmental change and conclude 

long-term climate patterns and urbanization are likely 

to be favourable for malaria eradication. Within these 

assessments, land use and land cover changes (LULCC) 

are only recognized as external factors influencing 
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malaria transmission and not as a priority for eradication 

campaigns due to the difficulty predicting impacts.

LULCC, such as deforestation, agricultural expansion 

and infrastructure development, have huge potential 

to impact malaria control efforts through disruptions 

of both ecological and social systems [6]. Natural geo-

graphic heterogeneity in malaria is largely driven by 

biological differences in Anopheles species adapted to dif-

ferent landscapes while human vulnerability, economic 

status and access to healthcare are intricately linked with 

local environmental factors. �e efficacy of malaria inter-

ventions and vector control measures are largely depend-

ent on these factors and a successful malaria eradication 

campaign needs to develop landscape-specific strate-

gies. Within countries moving towards elimination, 

many remaining foci of malaria transmission are driven 

by landscape factors, such as the high malaria incidence 

associated with deforestation in Southeast Asia and 

South America [7]. Conversely, many major malaria elim-

ination successes were underpinned by LULCC, includ-

ing, famously, the extensive hydrological and agricultural 

modifications conducted by Italian malaria control pro-

grammes following World War II [8]. Because LULCC 

are dynamic processes, impacts on transmission change 

over time following initial environmental changes and 

subsequent development. Anthropogenic changes gen-

erally reduce biodiversity, favouring species adapted to 

human populations. As land is transformed at unprec-

edented rates, there is a danger that future development 

will embed malaria into these landscapes, creating ideal 

man-made habitats for Anopheles vectors. Alternatively, 

the expected extent of future development offers unpar-

alleled opportunities to “build out” malaria, reducing 

background transmission sufficiently to enable malaria 

eradication.

In this article, based on a report commissioned by 

the SAGme, a framework is outlined for incorporating 

LULCC into malaria eradication strategies. While previ-

ous successful disease eradication programmes for small-

pox and rinderpest relied heavily on vaccination, there 

remains no highly effective licensed vaccine for malaria 

and increasing levels of insecticide resistance threaten to 

undermine existing vector control methods [9]. Emer-

gence of zoonotic malaria in Southeast and South Amer-

ica presents new challenges for eradication and requires 

explicit consideration of LULCC on wildlife habitats. 

Within this context, it is clear a successful malaria eradi-

cation strategy will need to both mitigate the negative 

impacts of LULCC and leverage LULCC beneficial to 

malaria control. Effective strategies are inherently inter-

disciplinary and cannot be implemented solely within 

health sectors, requiring engagement of agricultural 

scientists, engineers, geographers and other disciplines 

to monitor and mitigate impacts of LULCC on malaria 

transmission [10]. Although interactions between human 

and natural systems driving malaria transmission are 

undoubtedly complex, this should not preclude explicit 

consideration of LULCC into eradication strategies. �is 

article outlines the extent and drivers of LULCC, review 

the evidence on direct and indirect impacts on malaria 

transmission and identify priorities for malaria control 

and eradication, using landscape data to inform malaria 

surveillance and control while in turn incorporating 

malaria risks into land management strategies.

Land use and land cover changes: de�nitions 
and drivers
Land cover refers to the physical and biological cover 

of terrestrial surfaces, such as water, soil, vegetation 

and infrastructure, while land use refers to the human 

management and activities which modify land surface 

processes [11]. Although people have transformed land-

scapes since prehistoric times, the extensive changes 

in the past 300  years following the Industrial Revolu-

tion have been unprecedented, leading to this era being 

termed the Anthropocene [12]. While agricultural land 

occupied less than 2% of global ice-free land prior to 1000 

AD, this percentage increased to over 4% in 1700 AD to 

35% in 2000 AD [13]. Today, over 75% of Earth’s ice-free 

land has been altered by human residence and land use 

[14].

Deforestation remains one of the main global LULCC 

(Fig.  1). Changes to forest cover are particularly pro-

nounced in tropical areas, where over 80% of new agricul-

tural land was cleared from tropical rainforests between 

1980 and 2000 and an estimated 2100  km2 of forests were 

lost per year between 2000 and 2012 [15, 16]. Much of 

this deforestation is driven by agricultural expansion 

driven by rising demands due to population growth and 

increased consumption levels [17]. Between 1970 and 

2010, there has been a 1.4-fold increase in the number of 

livestock and an 18.4% increase in daily per capita food 

availability globally [18]. However, increased productiv-

ity and industrialization has meant this increase in the 

amount of food produced is not always accompanied 

by corresponding increases in land area but rather new 

management techniques, such as irrigation and fertilizers 

[19]. For example, there was a 73% increase in the area of 

irrigated land between 1970 and 2010 [20]. Global biofuel 

production is also increasing rapidly, growing 19.4% per 

year globally between 2004 and 2011, with an expansion 

of 33.2 million hectares for oilseeds globally [21].

�e causes for LULCC are multifactorial, with under-

lying political, institutional and economic factors driving 

agricultural expansion, resource extraction and infra-

structure development [22]. For example, while extensive 



Page 3 of 14Fornace et al. Malar J           (2021) 20:69  

deforestation occurred in Indonesia between 2000 and 

2012, commitments to global climate change agreements 

led to substantial decreases in forest loss in 2017 [23–25]. 

Conversely, policies may have unintended implications. 

Peace agreements between the Colombian government 

and armed groups led to land colonization in previously 

inaccessible areas of the Andean-Amazonian foothills 

of Colombia; deforestation has been further amplified 

by governmental programs building roads and fostering 

extractive and ranching industries [26]. United States 

drug policies have led to “narco-deforestation”, extensive 

forest loss in Central America fuelled by the development 

of landing strips, need to launder money and influxes of 

cash from the global narcotics trade [27]. �ese complex 

economic and social forces driving LULCC may have 

unintended consequences for malaria transmission, dis-

rupting both ecological and human systems (Table 1).

LULCC impacts on malaria transmission
Impacts on malaria transmission are complex and highly 

context-specific, with environmental and demographic 

changes within a specific setting either increasing or 

decreasing risks. Natural geographical variation is largely 

driven by biological differences between local Anopheles 

species and the landscapes to which they are adapted. 

LULCC changes affect these disease systems in differ-

ent ways in different regions. For example, when a land-

scape becomes urbanized, the original natural streams 

and ponds are typically either drained, enclosed in con-

crete, or polluted with decaying organic matter. �ese 

transformations make the water unsuitable as a breeding 

site for all-but-one Anopheles malaria vector species 

(though other mosquitoes such as Culex quinquefas-

ciatus can thrive). For this reason, there is often little or 

no transmission in the thoroughly urbanized centres of 

large African cities, despite intense transmission in the 

surrounding countryside. In India, by contrast, there is 

Anopheles stephensi. the world’s only important Anoph-

eles species that is well-adapted to urban conditions, 

through its ability to breed in man-made containers, 

including domestic water storage containers. Because of 

these differences in vector species, urbanization has dif-

ferent impacts on malaria geographically.

Anthropogenic LULCC is one element of a complex 

development process with economic, agricultural and 

social dimensions. As these components all affect malaria 

and occur simultaneously, it is difficult to distinguish 

between effects of landscape, housing, health cover-

age and other factors. In north-western Europe, malaria 

gradually disappeared between 1550 and 1950, not due 

to public health interventions, but from cumulative shifts 

in land use, including drainage of marshes, shifts in ani-

mal husbandry, and improvements in housing. Similarly, 

the introduction of house-spraying and improved drugs 

in the mid-twentieth century enabled elimination to be 

achieved in Southern Europe, the USA and several Car-

ibbean islands. However, environmental, economic and 

social factors were equally important, reducing back-

ground transmission to the point where elimination was 

within reach and making malaria absence a stable state 

after the withdrawal of anti-malaria spraying despite 

the re-introduction of infection by imported cases. �is 

Fig. 1 Net forest canopy cover loss and gain between 1982 and 2016 [115]
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section outlines how LULCC impacts vector, human and 

wildlife systems, highlighting the linkages between these.

Impacts on vector biology
LULCC directly affects anopheline mosquito popula-

tions, altering the abundance, species composition and 

life history of malaria vectors. Ecological changes in soil, 

sunlight cover, vegetation type, development of water 

pockets and water temperature, affect breeding condi-

tions for Anopheles malaria vectors with effects varying 

by Anopheles species. For example, while deforestation 

reduces shaded water bodies, the preferred breeding 

habitats of some Anopheles species, other Anopheles spe-

cies thrive in water bodies with increased sunlight, with 

increased larval survivorship, adult productivity, intrinsic 

growth rates and shortened gonotrophic cycles signifi-

cantly increasing vectoral capacity [28]. Other environ-

mental and microclimate changes due to LULCC may 

favour survival of different Anopheles species enabling 

sustained seasonal malaria transmission or impacting the 

availability of hosts and blood meals.

Associations between forest disturbance and vec-

tor ecology are widely described in Southeast Asia 

and South America. Many highly efficient forest vec-

tor species occur within these regions, breeding in for-

est fringe and deforested areas. For example, within 

Malaysian Borneo, Anopheles balabacensis biting rates 

were greater in modified forest than in primary for-

est, with breeding sites found in wheel tracks in logged 

areas [29]. Similarly, deforestation within the Amazon 

also resulted in increased larval breeding sites and cor-

responding increases in malaria incidence [30]. In the 

Peruvian Amazon, extensive deforestation between 1983 

and 1995 undermined previous achievements of malaria 

eradication programmes and corresponded with a four-

fold increase in malaria cases nationally between 1992 

to 1997 and a 50-fold increase within the rapidly defor-

ested Loreto Department [31]. �is malaria emergence 

paralleled increases in Anopheles darlingi, which was not 

found in the area in 1991 and favours ecologically altered 

habitats, leading to increased vector density in areas 

undergoing rapid land use change in close proximity to 

human settlements [31].

However, in some sites, forest disturbance may 

reduce malaria risks. For example, in African sites 

where the deep forest species Anopheles nili is the main 

Table 1 Examples of e�ects of land use change on potential malaria risks

Environmental changes References

 Deforestation

  Increases in anopheline larval breeding sites in response to forest clearing in the Amazon [30]

  Initial decreases in vector densities followed by colonization by more efficient malaria vectors [7, 35]

  Changes in vector habitat suitability linked with forest disturbance [29, 34]

  Changes in ecological structure and biodiversity increasing or decreasing vector densities, availability of blood meals and result-
ing disease risks

[116–118]

 Agricultural expansion

  Effects of irrigation systems [40, 119]

  Expansion of rubber and rice paddies associated with increases in anopheline densities [28, 36]

Socio-demographic changes

 Population at risk

  Influx of susceptible populations into endemic areas in response to increased economic opportunity [43, 120]

  Increase and movement of migrant worker populations in the Amazon and Southeast Asia [121, 122]

  Occupational changes, such as forestry and extraction activities bringing people into vector habitats [44, 47]

 Socioeconomic status

  Increased income following agricultural development leading to decrease in malaria risk [52]

  Improved housing structure due to development reducing malaria risks [51, 123]

Wildlife reservoirs

 Origin of malaria

  P. falciparum originated from non-human primates [54]

 Spatial overlap with wildlife hosts

  Increased contact between people and non-human primates hypothesised as main driver of human infections with P. knowlesi 
and P. cynomolgi in Asia and P. simium and P. brasilianum in South America

[76, 85, 124, 125]

 Maintenance of malaria infections

  Human malaria species circulating in great apes and gorillas in West and Central Africa [55, 56]
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vector, deforestation leads to modest reductions in 

malaria transmission [7]. Alternatively, in other African 

sites, deforestation can create habitats for non-forest effi-

cient vectors. In Nigeria, forest loss was demonstrated to 

have a large impact on malaria risks, with each standard 

deviation of forest loss corresponding to an almost 5% 

increase in malaria in children under 5 [32]. A study in 

the Democratic Republic of Congo similarly found defor-

estation and agricultural expansion led to an increase in 

malaria prevalence in children; these LULCC were asso-

ciated with increases of indoor biting rates of the malaria 

vector Anopheles gambiae sensu lato [33].

Forest disturbance can also impact species composi-

tion and may initially deplete deep forest vectors but sub-

sequently lead to invasion by other efficient vectors [7]. 

Counter-intuitively, the abundance of both colonist (dis-

turbance-tolerant) and climax (disturbance-intolerant) 

anopheline mosquitoes species increased in disturbed 

forests in Panama [34]. Anopheles albimanus, a colonist 

species, co-existed at the landscape scale with two climax 

species, Anopheles oswaldoi and Anopheles triannula-

tus. �e likelihood of colonist-vector species occurrence 

was most prominent at highly disturbed forest sites and 

decreased markedly in relatively undisturbed forest [34]. 

Similarly, a study in highly fragmented forested areas of 

Cambodia suggested decreases in primary malaria vec-

tors but increases in secondary vectors, with the outdoor 

and early biting behaviours of these secondary vector 

species sufficient to maintain malaria transmission [35]. 

�ese impacts on species composition influence contact 

rates with hosts and pathogen transmission, with colonist 

species often more likely to transmit pathogens than cli-

max species.

Agriculture has also been associated with changes 

in Anopheles densities due to factors such as planted 

crops, irrigation, applications of pesticides or changes 

in host availability. Rubber plantations, contain-

ing planted trees with high humidity and lower tem-

peratures, can provide ideal environments for malaria 

vectors. Since the first accounts in Malaysia, regular 

malaria outbreaks have been reported across South-

east Asian rubber plantations [36]. As 90% of the global 

demand in rubber is met by the expansion of rub-

ber plantations in Southeast Asia, with an expanding 

migrant workforce, malaria control in this region might 

be jeopardized by the rubber boom [36]. Introduction 

of new crop species or farming practices can also alter 

vector species composition. In �ailand in the 1970s, 

development of cassava and sugarcane plantations led 

to increases in malaria risks. While these agricultural 

changes decreased the density of the shade-loving spe-

cies Anopheles dirus, the modified landscape provided 

ideal breeding conditions for the sun-loving Anopheles 

minimus and resulted in an increase in malaria trans-

mission among resettled cultivators [28]. Other agri-

cultural methods such as slash-and-burn techniques 

similarly lead to deep shade elimination, changes in the 

acidity and chemical composition of the soil, creation 

of new breeding sites in the forest fringes and higher 

host exposure [7]. However, while much of the litera-

ture focuses on agricultural practices driving malaria 

transmission, agricultural practices also can reduce 

transmission; for example, agroforestry is increas-

ingly proposed as a malaria intervention in Africa 

where planting trees can both increase biodiversity and 

decrease breeding sites for sun-loving Anopheles vec-

tors [37].

Irrigated rice cultivation can also create permanent 

habitats for mosquito larvae [38]. For example, prolonga-

tion of the breeding season of Anopheles aconitus caused 

by rice cultivation and its linked irrigation systems in 

Indonesia resulted in an increase of malaria incidence 

[28]. In sub-Saharan Africa, initiatives to systematically 

increase irrigated rice cultivation have resulted in a rise 

in prevalence of the malaria vector, Anopheles arabiensis. 

Agronomic practices, such as fertilizer and insecticide 

use, can increase available nutrients and create predator-

free habitats, increasing larval density; conversely, use of 

pesticides against agricultural pests may also decrease 

mosquito populations. Additionally, gravid An. arabi-

ensis are attracted to the odour of rice, acting as a cue 

for oviposition site selection [38]. However, the impacts 

of increased vector densities in agricultural settings on 

malaria transmission is unclear. Described as “paddy’s 

paradox,” in many cases, increased abundance may cor-

relate with changes in biting patterns or life history or 

be counteracted by the socioeconomic and public health 

improvements associated with agriculture [39].

Wider developments of irrigation and water projects 

can also drive changes in vector ecology through mecha-

nisms such as increased breeding sites, changes in water 

pH, turbidity and chemical composition [40]. Globally, 

since 1984, net increases in surface water was detected 

on all continents except Oceania, largely driven by reser-

voir creation. However, within these global trends, there 

are substantial fine-scale variations in changes in sur-

face water levels and highly concentrated patterns of loss 

(Fig. 2) [41]. Within sub-Saharan Africa, large dams have 

major malaria impacts in areas of unstable transmission, 

either by intensifying transmission or through shifting 

from seasonal to perennial patterns [40, 42]. Existing 

large dams were predicted to increase the risk of malaria 

for around 15 million people, adding more than 1 mil-

lion cases annually to the malaria burden in the region, 

with an additional 50,000 cases per year resulting from 

planned dams.
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Changing human populations
�ese ecological changes are intricately linked with the 

distribution, movement and quality of life of human 

populations. LULCC can result in influxes of immu-

nologically naïve populations to undertake land con-

version activities. �is has been well described in the 

Brazilian Amazon, where policies encouraging devel-

opment of the Amazon in the 1970s were linked to 

the explosive increase in malaria cases, from a total of 

8,000 cases prior to the explicit government policy to 

up to 615,000 in the year 2000, with 99% of all malaria 

cases after 1990 reported in the Brazilian Amazon 

[43]. Termed “frontier malaria,” early stages of forest 

clearance are linked with changes in human exposure 

risks, weakened health systems and creation of vector 

breeding sites [44]. Risks of malaria are often highest 

during the initial stages of land clearing and settlement, 

decreasing with urbanization, agricultural expansion 

and increased socioeconomic status [45]. �ese fron-

tier communities are often characterized by weak social 

institutions, limited health care and absence of malaria 

control measures [46].

Beyond mosquito ranges, malaria can be imported 

by human movements. Within the Brazilian Amazon, 

proximity and mobility between frontier settlements 

and activities explain malaria diffusion regionally [43]. 

Similarly, in the village of Cacao, French Guiana, a 

recently built road connecting the village with Brazil 

may have facilitated the movement of carriers from 

endemic areas [47]. On a national scale, analysis of 

Fig. 2 Examples of changes to surface water between 1984–2019 in The Gambia and Senegal
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mobile phone data across Kenya highlighted the role of 

human mobility in malaria transmission; these move-

ment patterns are largely driven by trade and connec-

tivity of different land use types [48].

LULCC is also accompanied by changes in specific risk 

behaviours and occupations as individuals undertake 

land conversion and agricultural activities. For exam-

ple, disturbance of forest to increase farming surface has 

attracted seasonal workers into vector habitats in French 

Guiana. Risk behaviours among this migrant worker 

population such as outside kitchens, agricultural work 

during peak biting times and the absence of repellents or 

mosquito net use explained the spatial heterogeneity of 

malaria occurrence in this site [47]. Similar risk behav-

iours are seen among small scale gold miners in Brazil, 

with high population mobility facilitating parasite diffu-

sion [43]. Within Southeast Asia, migrant workers and 

forest and plantation activities have similarly been identi-

fied as risk factors for malaria exposure (Fig. 3) [35, 49].

Conversely, primarily driven by economic factors, 

LULCC can have correspondingly positive influences 

on human health. In many places, initial environmen-

tal changes are followed by increases in socioeconomic 

status and improvements in infrastructure and public 

health services. For example, expansion of irrigation 

systems in an arid region of India was associated with 

dramatic increases in malaria risks; however, over time, 

the economic prosperity from these developments and 

increased health service availability led to decreased 

malaria incidence [50]. Modelled impacts of defor-

estation in frontier regions including socioeconomic 

factors similarly predict initial increases in malaria 

transmission followed by decreases due to improved 

socioeconomic status [45]. Economic development 

can improve housing quality and infrastructure, fac-

tors associated with decreasing risks of malaria [51, 52]. 

While differing time scales may make untangling envi-

ronmental and societal impacts on malaria transmis-

sion challenging, fully understanding risks of landscape 

changes requires assessing how these coupled human-

environmental systems interact.

Fig. 3 GPS tracking data showing movements of plantation worker through different vector habitats while undertaking occupational activities in 

Malaysian Borneo
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Wildlife reservoirs
LULCC impacts on vector and human populations 

may be further amplified by wildlife malaria reservoirs. 

Although four main human malarias (Plasmodium fal-

ciparum, Plasmodium malariae, Plasmodium ovale and 

Plasmodium vivax) are widely recognized, zoonotic 

malaria species such as Plasmodium knowlesi and Plas-

modium simium are emerging public health threats [53]. 

Genetic studies suggest that human malarias such as P. 

falciparum originated from great ape species and these 

human malarias continue to circulate in great ape and 

gorilla populations in West and Central Africa [54–56]. 

�ese close evolutionary relationships, coupled with 

increased spatial overlap between human and non-

human primate populations, present future challenges to 

malaria eradication.

Dramatic increases in human Plasmodium knowlesi 

cases threaten to undermine progress towards malaria 

elimination in Southeast Asia. Plasmodium knowlesi 

is a malaria species maintained by long and pig-tailed 

macaques (Macaca fascicularis and Macaca nemestrina) 

and transmitted by the Anopheles leucosphyrus group of 

mosquitoes [57, 58]. Since the identification of a cluster 

of human P. knowlesi infections in Malaysian Borneo in 

2004, sporadic cases have been reported across South-

east Asia and P. knowlesi is now the main cause of human 

malaria in Malaysia [59–75]. Recent molecular studies 

have additionally identified human infections with Plas-

modium cynomolgi, another primate malaria species car-

ried by macaques [76–78]. LULCC, resulting in increased 

spatial overlap between people, macaques and mosqui-

toes, likely drive this emergence [58, 79, 80]. In Northern 

Sabah, Malaysia, village-level P. knowlesi incidence was 

positively associated with both forest cover and histori-

cal forest loss, with wider community exposure associ-

ated with forest fragmentation and agricultural practices 

[81, 82]. Deforestation is also associated with changes 

in macaque movements and increased contact between 

people and mosquito vectors at forest edges [83, 84].

Similarly, within the South American rainforests, a 

human infection with the simian malaria P. simium had 

been historically reported, although there was little evi-

dence of widespread human infections until recently 

[53]. Since 1993, sporadic human cases of a P. vivax- 

like malaria infection were reported from the Atlantic 

forest region of Rio de Janeiro, Brazil, an area in which 

malaria had previously been eliminated. Parasitological 

and molecular investigations of these infections revealed 

human cases of P. simium, including 28 confirmed cases 

in 2015–2016 [85]. Naturally acquired human infections 

with the simian malaria Plasmodium brasilianum were 

confirmed in indigenous communities in the Venezuelan 

Amazon [86]. �e increasing incidence and widespread 

circulation of these zoonotic malaria species poses signif-

icant threats to malaria eradication, highlighting the need 

to understand how risks evolve with future LULCC.

Discussion
�ese rapidly changing landscapes have huge potential to 

undermine any future malaria eradication efforts. While 

increasing development, urbanization and expanded 

healthcare coverage are widely expected to reduce 

malaria risks globally [4], these trends also drive the 

increased needs for resources underlying most LULCC. 

Further, these changes exert increasing evolutionary 

pressures on ecological systems to adapt to changing 

environments. For example, while malaria is historically a 

predominantly rural disease in Africa, the urban malaria 

vector An. stephensi typically found in India has invaded 

areas of East Africa, largely driven by truck routes and 

trade [87, 88]. Malaria control and eradication strategies 

need to detect and adjust to changing epidemiological 

patterns. While LULCC impacts on socio-ecological sys-

tems driving malaria transmission are complex, priorities 

for malaria eradication strategies are outlined, highlight-

ing the need for engagement across different sectors.

Moving from global to local contexts: 
the importance of scale
One of the key lessons learnt from the previous malaria 

eradication failures is the need for context-specific 

national malaria elimination strategies with the flexibility 

to adjust to short and long term changes [4]. Highly effec-

tive control strategies in one context may be ineffective 

in other areas, for example, the limited utility of bed nets 

and indoor residual spraying in areas where transmission 

is driven by exophagic mosquito species and outdoor 

occupational activities [89]. A large volume of literature 

addresses this need to stratify approaches to malaria 

control and defines malaria “paradigms,” characteris-

tics of ecosystems and populations relevant to control 

[90]. While this recognizes the heterogeneity of malaria 

transmission, higher levels of granularity in social and 

ecological factors are needed to accurately monitor and 

control malaria risks. For example, widely described 

“forest malaria” in Southeast Asia encompasses a range 

of transmission patterns, from hunting in deep forest 

environments to occupational risks at industrial rub-

ber plantations to peri-domestic exposure around sec-

ondary forest edges near households [36, 83, 91]. �ese 

differences have critical implications for identifying 

populations at risk and effective interventions, requiring 

continued engagement of local control programmes and 

experts to design context-specific control measures.

Estimating the impacts of LULCC also requires under-

standing the wider socioeconomic and environmental 
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contexts in which these changes occur. Primarily driven 

by economic forces, increased prosperity from LULCC 

can reduce malaria burdens despite ecological changes 

favourable to transmission [45]. Conversely, economic 

pressures driving LULCC can simultaneously weaken 

health systems and amplify ecological impacts. Within 

Venezuela, economic collapses and political instabil-

ity have both crippled malaria control programmes and 

driven rapid deforestation due to migration to frontier 

areas for extractive activities [92, 93]. Changes to vec-

tor habitats and accompanying increases in vulnerabil-

ity of human populations lead to a massive resurgence 

of malaria despite elimination of malaria within large 

regions of Venezuela in 1961 [94]. Venezuela now 

accounts for a substantial percentage of malaria within 

the Americas, threatening elimination and control 

programmes in surrounding countries [95]. Similarly, 

LULCC interacts with wider climate changes, either 

increasing or decreasing vulnerability to climate anoma-

lies or longer-term changes.

Because of these interactions, associations between 

LULCC and malaria risks are modulated by the spatial 

and temporal scales of analysis. Initial LULCC impacts on 

disease transmission from disruption of existing ecosys-

tems may change over time as transmission reaches new 

equilibrium states. Following deforestation, subsequent 

stages of forest succession and agricultural development 

may either create new habitats for disease vectors and 

hosts or lead to overall decreases in malaria burdens [7]. 

Ecological processes affecting the distribution of people, 

disease vectors and wildlife hosts may occur at highly 

local to larger regional scales [96]. For other vector-borne 

diseases, variations in host richness and ecological com-

munity structure have been shown to be important at a 

fine spatial scale while changes in climate and other abi-

otic factors are more important across larger scales [97].

Linking health and environmental data 
for surveillance in changing landscapes
Monitoring these changes in malaria transmission 

requires detailed data on malaria infection and disease 

burden, human, mosquito and other host distributions 

and wider environmental factors collected in consist-

ent ways across the relevant scales. �e WHO now rec-

ognizes surveillance as a core intervention required to 

achieve malaria elimination. However, despite efforts 

to digitize and geolocate malaria surveillance data 

and advances in using climate data to inform malaria 

early warning systems [98], LULCC data rarely informs 

malaria surveillance.

New sources of Earth Observation data offer unprec-

edented opportunities to detect changes in land cover 

and proactively target surveillance and control measures. 

Earth Observation data is widely used to monitor physi-

cal changes to the environment such as land cover and 

surface water changes; this data can be used to quantify 

extents of land cover changes as well as to characterize 

habitat configuration, such as levels of fragmentation 

and proximity of forests to households. High-resolution 

satellite imagery is freely available through governmen-

tal and international agencies such as NASA (https ://

eosps o.nasa.gov/) and the European Space Agency (https 

://www.esa.int/ESA) with many countries additionally 

maintaining their own dedicated satellites. While health 

programmes can be limited by the technical, software 

and time required to process this data into a usable form, 

cloud-based computing platforms such as Earth on Ama-

zon Web Services (https ://aws.amazo n.com/earth /) and 

Google Earth Engine (https ://earth engin e.googl e.com/) 

provide access to imagery and infrastructure to analyse 

planetary-level data. Additional online platforms, such 

as Global Forest Watch, publish processed data of forest 

cover and forest loss online in addition to near real-time 

deforestation mobile alerts designed to provide action-

able information to government agencies [99]. Low-cost 

drones (unmanned aerial vehicles or UAVs) have also 

been utilized by malaria programmes in diverse eco-

logical contexts including Malaysia, Tanzania and Peru 

[100–102]. Drones allow collection of fine-scale data at 

user-defined intervals and can be used to monitor defor-

estation, agriculture and development (Fig.  4). Despite 

the increasing accessibility of Earth Observation and spa-

tial data, these are rarely used by health programmes and 

further work is needed to develop capacity to integrate 

these data within surveillance systems.

Malaria risk models have incorporated land use fac-

tors to develop spatially and/or temporal predictions of 

malaria risks, potentially allowing targeting of interven-

tions and strategic planning [103]. Within research com-

munities, datasets on land cover, land use and associated 

characteristics (such as vegetation indices or land sur-

face temperatures) are widely used to identify areas with 

increased risk [104–108]. Data on landscapes and mos-

quito can be integrated with detailed behavioural and 

demographic risk determinants to explore plausible land 

use change scenarios and impacts on human health [109]. 

However, despite increasing use in scientific literature, 

there are fewer examples of LULCC data directly inform-

ing malaria surveillance programmes. Notably, Malaysia 

incorporates metrics of recent deforestation and recent 

construction activities into malaria foci investigations, 

defining receptivity based on numerous ecological and 

social factors [110]. More broadly, global planetary 

health projects have also highlighted the need to link 

both health and environmental data to monitor changing 

risks [111]. Major advances in computing, information 

https://eospso.nasa.gov/
https://eospso.nasa.gov/
https://www.esa.int/ESA
https://www.esa.int/ESA
https://aws.amazon.com/earth/
https://earthengine.google.com/
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technologies and environmental monitoring have tre-

mendous potential to improve malaria surveillance and 

are a priority for future research and development.

Building out malaria through sustainable 
development
Ultimately, achieving malaria eradication requires not 

only monitoring and responding to impacts of LULCC 

on malaria transmission but actively mitigating risks 

within future landscapes. Agriculture covers over 37% 

of global land surfaces, 50 million  km2 globally [112]. 

�ese landscapes are entirely man-made, providing 

opportunities to design malaria resistant environments. 

Approaches to reduce malaria transmission within these 

landscapes generally comprise of three approaches: envi-

ronmental modification on land, water or vegetation with 

long-lasting effects for vector habitat reduction; environ-

mental manipulation that generates unfavourable tempo-

rary conditions for vectors; and modification of human 

habitation to reduce exposure to vectors.

A systematic review identified 16 studies that applied 

environmental modification and 8 studies that modified 

human habitation, reducing the risk ratio of malaria by 

88% and 79.5%, respectively [113]. For example, cacao 

plantations under nurse trees in Trinidad generated ideal 

breeding sites within epiphytic bromeliads for Anoph-

eles bellator, the main local malaria vector. Control of 

the resulting malaria epidemic was achieved through 

environmental manipulation with the modification of 

plantation techniques [28]. With the intent of preventing 

malaria epidemics, environmental manipulation has been 

proposed in Panama and other Latin American countries 

by increasing forest cover recovery in highly disturbed 

deforested areas, thus favouring the prevalence of aux-

iliary over primary vectors [34]. Malaria vector breed-

ing sites can also be decreased through effective water 

management, mitigating potential effects of irrigation 

or dams. Utilization of intermittent irrigation in African 

rice fields has greatly reduced anopheline densities and 

increased rice yields while construction of several types 

of siphons and small dams in Sri Lanka and Malaysia’s 

rivers and streams eliminated mosquito breeding habi-

tats. Environmental management interventions in the 

reservoirs of the Tennessee River Valley including an 

integrated operating rule for water fluctuation cycles, 

reduced Anopheles breeding sites significantly [113].

One of the most successful large-scale environmen-

tal modification interventions was during the construc-

tion of the Panama Canal. In 1878, this construction 

was halted due to engineering challenges, yellow fever 

and malaria and the resulting deaths amongst work-

ers. Sanitation improvements allowed continuation 

of the project, including implementation of tempo-

rary and permanent drainage infrastructure and veg-

etation management, while dramatically decreasing 

malaria incidence [113]. More recently, plans for major 

developments have included evaluation of impacts 

on malaria transmission and preventive measures to 

mitigate these. For example, during the plans for Batu 

Hijau, a large-scale surface mine in Indonesia, envi-

ronmental assessments highlighted impacts on com-

munity malaria risks, particularly in relation to lagoons 

and potential vector breeding sites. �is prompted the 

establishment of a corporate public health programme 

focussing on environmental management, larvicides, 

mosquito control and active and passive detection and 

Fig. 4 Examples of remote sensing data on landcover: a. very high-resolution data collected by UAV (11 cm per pixel) in Malaysian Borneo; b. false 

colour composite from LANDSAT satellite data of Lake Victoria in Uganda (30 m per pixel)
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treatment of malaria cases [114]. Similarly, health pro-

grammes were incorporated into projects led by Exxon-

Mobil in Papua New Guinea and hydroelectric projects 

in Lao PDR to address negative externalities of develop-

ments and present templates for future developments 

[114].

Conclusions
�e impacts of LULCC on malaria transmission are 

highly complex and context specific; environmental and 

demographic changes within a specific setting may lead 

to increases or decreases in malaria risks. Impacts may 

vary over space and time due to interactions between 

the environment and intrinsic factors such as spe-

cies composition and ecology, demographic changes 

influencing socioeconomic status, risk behaviours and 

access to control measures. Malaria eradication will 

not be possible without accounting for these changing 

risks. �is requires engaging with partners outside the 

health sector to develop interventions appropriate to 

local socio-ecological contexts, integrate environmen-

tal data into malaria surveillance systems and engineer 

malaria resistant landscapes.
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