
Journal of Artificial Intelligence Research 54 (2015) 123–158 Submitted 04/15; published 09/15

Achieving Goals Quickly Using Real-time Search:

Experimental Results in Video Games

Scott Kiesel skiesel at cs.unh.edu

Ethan Burns eaburns at cs.unh.edu

Wheeler Ruml ruml at cs.unh.edu

Department of Computer Science

University of New Hampshire

Durham, NH 03824 USA

Abstract

In real-time domains such as video games, planning happens concurrently with exe-
cution and the planning algorithm has a strictly bounded amount of time before it must
return the next action for the agent to execute. We explore the use of real-time heuristic
search in two benchmark domains inspired by video games. Unlike classic benchmarks such
as grid pathfinding and the sliding tile puzzle, these new domains feature exogenous change
and directed state space graphs. We consider the setting in which planning and acting are
concurrent and we use the natural objective of minimizing goal achievement time. Using
both the classic benchmarks and the new domains, we investigate several enhancements
to a leading real-time search algorithm, LSS-LRTA*. We show experimentally that 1) it
is better to plan after each action or to use a dynamically sized lookahead, 2) A*-based
lookahead can cause undesirable actions to be selected, and 3) on-line de-biasing of the
heuristic can lead to improved performance. We hope this work encourages future research
on applying real-time search in dynamic domains.

1. Introduction

In many applications, it is desirable for an agent to achieve an assigned task as quickly
as possible. Consider the common example of navigation in a video game. When a user
selects a destination for a character to move to, they expect the character to begin moving
immediately and to arrive at its destination as soon as possible. This suggests a plan-
ning strategy featuring concurrent planning and execution. The area of real-time heuristic
search has been developed to address this problem. Algorithms in this class perform short
planning episodes that are limited by a provided real-time bound, finding partial solutions
and beginning execution before a complete plan to a goal has been found. While solution
quality and search time are traditional heuristic search metrics, real-time heuristic search
algorithms are usually compared by the length of the trajectories they execute.

Most recent work in real-time heuristic search has focused on grid pathfinding problems
because of their simplicity. While important, grid pathfinding has some characteristics that
do not exist in other search problems: the search space is undirected and small enough
to easily fit in memory. We explore the use of real-time heuristic search on two additional
domains that more closely reflect features of dynamic application domains, such as robotics.
One is a platform-based pathfinding domain proposed by Burns, Ruml, and Do (2013b), and
the other is a novel domain that we call the traffic problem, featuring navigation through a
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field of moving obstacles. Unlike the traditional grid pathfinding problem used to evaluate
real-time search, both of these benchmarks have dynamics and large state spaces that form
directed graphs.

In addition to evaluating real-time heuristic search on new domains, we introduce three
modifications to LSS-LRTA* (Koenig & Sun, 2008), which is among the state-of-the-art
in real-time heuristic search algorithms. First, we show that LSS-LRTA*, which executes
multiple actions per planning episode, can be improved by executing only a single action
at a time. Second, it has become the standard practice to construct the local search space
of a real-time search using a partial A* search. We show that, if care is not taken to
compare search nodes correctly, the agent may execute unnecessary actions. Third, we show
that applying on-line de-biasing of the heuristic used during search can significantly reduce
the overall goal achievement time. Together, these modifications can be easily applied to
improve the overall performance of an agent being controlled by a real-time heuristic search
algorithm. Videos illustrating our new domains and the discussed algorithms are provided
on-line (Kiesel, Burns, & Ruml, 2015b) as well as described in Appendix B.

Instead of comparing techniques based solely on solution length or convergence time,
we evaluate our new methods by comparing their goal achievement times—the time from
when the problem is issued until the goal is achieved. This metric follows naturally from our
benchmark domains and allows us to easily compare real-time search algorithms with off-
line planning techniques such as A*. Our results show that A*, which performs optimally
with respect to the number of expansions required to produce an optimal solution, can
easily be outperformed when one cares about goal achievement time. We hope that this
work and its methodology will encourage future research on applying real-time search in
dynamic domains.

2. Previous Work

There has been much work in the area of real-time search since it was initially proposed by
Korf (1990). In this section we will review those real-time search algorithms most relevant
for our study. (Additional related algorithms are reviewed in Section 7.)

2.1 LRTA*

Many real-time search algorithms are considered agent-centered because the agent performs
a bounded amount of lookahead search rooted at its current state before acting. Since the
size of each lookahead search is bounded, the agent can respect its real-time constraints
by restricting its lookahead to be completed by the time that the real-time limit has been
reached. In his seminal paper, Korf (1990) presents Learning Real-time A* (LRTA*), a
complete, agent-centered, real-time search algorithm. To select the next action to perform,
LRTA* uses the action costs and an estimate of the cost-to-goal, or heuristic value, for the
states resulting from applying each of its current applicable actions; it chooses to execute
the action that has the lowest estimated cost-to-goal.

LRTA* estimates the heuristic value for states in two different ways. First, if a state
has never been visited before, then it uses a depth-bounded, depth-first lookahead search.
The estimated cost of the state is the minimum f value among all leaves of the lookahead
search, where f is the cost-so-far (notated as g) plus the estimated cost-to-goal (notated as

124



Achieving Goals Quickly Using Real-time Search

LSS-LRTA*(s, expansion limit)
1. until a goal is reached
2. perform expansion limit expansions of best-first search on f from s

3. update heuristic values of nodes in CLOSED

4. s← state on OPEN with the lowest f
5. start executing path to s

6. OPEN ← {s}; clear CLOSED

Figure 1: Pseudocode for LSS-LRTA*.

h). The second way that it estimates cost is through learning. Each time LRTA* performs a
search, it learns an updated heuristic value for its current state. If this state is encountered
again, the learned estimate is used instead of searching again. Korf (1990) proved that as
long as the state’s heuristic estimate is increased after each move by an amount bounded
from below by some ǫ, then the agent will never get into an infinite cycle, and the algorithm
will be complete. In the original algorithm, the second best action’s heuristic value is used
to update the cost estimate of the current state before the agent moves.

2.2 LSS-LRTA*

Local Search Space Learning Real-time A* (LSS-LRTA*, Koenig & Sun, 2008) is currently
one of the most popular real-time search algorithms. LSS-LRTA* has two big advantages
over the original LRTA*: it has much less variance in lookahead times and it does signif-
icantly more learning. LRTA* can have a large variance in its lookahead times because,
even with the same depth limit, different searches can expand very different numbers of
nodes due to pruning. Instead of using bounded depth-first search beneath each succes-
sor state, LSS-LRTA* uses a single A* search rooted at the agent’s current state. The
A* search can be limited by an exact number of nodes to expand, so there is significantly
less variance in lookahead times. The second advantage is that the original LRTA* only
learns updated heuristics for states that the agent has visited; LSS-LRTA* learns updated
heuristics for every state expanded in each lookahead search. This is accomplished using
Dijkstra’s algorithm to propagate more accurate heuristic values from the fringe of the
lookahead search back to the interior before the agent moves. Koenig and Sun showed that
LSS-LRTA* can find much cheaper solutions than LRTA* and that it is even competitive
with a state-of-the-art incremental search, D*Lite (Koenig & Likhachev, 2002).

Another major difference between LRTA* and LSS-LRTA* is how the agent moves. In
LRTA*, after each lookahead, the agent moves by performing a single action; in LSS-LRTA*
the agent moves all the way to the node on the fringe of its current lookahead search with
the lowest f value. As a result, the agent performs many fewer lookahead searches before
reaching a goal. If one is concerned with minimizing the total number of expansions, this
may be advantageous. However, as we will see below, when search and execution are allowed
to happen in parallel, the movement method of LSS-LRTA* can actually be detrimental to
performance. Pseudocode for LSS-LRTA* is presented in Figure 1.
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3. Evaluating Real-time Search Algorithms

Traditionally, real-time heuristic search algorithms have been evaluated using two criteria:
convergence time and solution length. Convergence time measures the number of repeated
start-to-goal plans that an algorithm must execute before it learns the optimal path between
a given start and goal pair. While it is useful for comparing the rate at which different
algorithms learn more accurate heuristic values, it does not seem to be as useful in practice;
agents rarely need to repeatedly plan between exactly the same start and goal states. Often
just one solution is needed, and an algorithm that finds a better first solution is preferred
even if it takes a long time to converge.

Solution length is the number of actions executed to achieve the goal. In real-time
search, where planning and action execution can happen in parallel, solution length is a
good proxy for the amount of time between when a real-time agent is given a problem
and when the goal is actually achieved. The downside of simply using the solution length,
however, is that it makes comparison with offline techniques unfair. For example, when
comparing algorithms solely by the solution length, no technique can perform better than
an optimal search like A*. But, in practice, A* may not be the best method to solve the
problem. An agent using A* could spend a very long time planning before it finally begins
executing an optimal path, but an agent using a real-time algorithm may start executing a
long path right away, and consequently it can arrive at the goal first.

3.1 Goal Achievement Time

Recently, Hernández, Baier, Uras, and Koenig (2012) introduced the game time model for
evaluating real-time heuristic search algorithms. In the game time model, time is divided
into uniform intervals. During each interval, an agent has three choices: it can search, it can
execute an action, or it can both search and execute in parallel. The objective of the game
time model is for the agent to move from the initial state to a goal state using the fewest
time intervals. The advantage of the game time model is that it allows for comparisons
between real-time algorithms that search and execute in the same time step and off-line
algorithms, like A*, that search first and execute only after all search has completed. For
our experiments, we compare algorithms directly on their goal achievement time. Goal
achievement time (GAT) is a slight generalization of the game time model that allows for
real-valued times, not just fixed-size discrete time intervals. It is computed as the planning
time plus the execution time minus the time spent planning and executing in parallel:

goal achievement time = timeplanning + timeexecuting − timeboth

Since some of the benchmark domains used in our experiments have no natural definition
of execution time (e.g., in the 15-puzzle, exactly how much time is needed to slide a tile?),
we present results using a variety of different execution times. We define execution time as
the number of seconds required to execute a unit-cost action. We call this value the unit
action duration; it effectively converts action costs into units of time. For example, on an
8-way grid pathfinding problem where diagonal edges cost

√
2, we can simply multiply the

edge costs by the unit action duration to convert them to seconds of execution. A large
unit action duration models an agent that moves slowly and a small unit action duration
models an agent that moves quickly, relative to its planning speed.
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In the two following sections, we present modifications to the LSS-LRTA* algorithm.
The benefit of each modification is evaluated using goal achievement time.

4. Lookahead Commitment

An important step in a real-time search algorithm is selecting how far to move the agent
before the next phase of planning begins. As mentioned above, in the original LRTA*
algorithm the agent moves a single step, while in LSS-LRTA* the agent moves all of the
way to a frontier node in the local search space. Luštrek and Bulitko (2006) reported
that solution length increased when switching from a single-step to multi-step policy using
the original LRTA* algorithm. It was unclear if this behavior would carry over given the
increased learning performed by LSS-LRTA* and the use of a new goal achievement metric.

4.1 Single-step and Dynamic Lookahead

We implemented a standard LSS-LRTA* as well as a version that executes single actions
like LRTA*. We also implemented LSS-LRTA* using a dynamic lookahead strategy that
executes multiple actions leading from the current state to a selected state on the fringe
of the most recent local search. With a dynamic lookahead, the agent selects the amount
of lookahead search to perform based on the duration of its currently-executing trajectory.
When the agent commits to executing multiple actions, it simply adjusts its lookahead to
fill the entire execution time.

Because of the learning step, any algorithm based on LSS-LRTA* cannot simply search
until the real-time bound expires — it must leave time for learning. To account for this
we use offline training to determine the speed at which the agent searches. With the
fixed lookahead algorithms, it is necessary to know the maximum lookahead size that the
agent can search during the minimum action execution time. This can be found by simply
running the search algorithm with different fixed lookahead settings on a representative
set of training instances and recording the per-step search times. In the case of dynamic
lookahead, the agent must learn a function mapping durations to lookahead sizes. When
the agent commits to a trajectory that requires time t to execute, then it must use this
function to find l(t), the maximum lookahead size that the agent can search in time t. Note
that, because the data structures used during search often have non-linear-time operations,
this function may not be linear. It is possible to create a conservative approximation of l(t)
by running an algorithm on a representative set of training instances with a large variety
of fixed lookahead sizes. The approximation of l(t) selects the largest lookahead size that
always completed within time t.

4.2 Experimental Evaluation

We compare the different techniques on the platform pathfinding benchmark of Burns et al.
(2013b). This domain is inspired by popular platform-based video games like Super Mario
Bros. The agent must find a path, jumping from platform to platform, through a maze. A
screenshot of the domain and an example instance is shown in Figure 2. Videos are also
available on-line (Kiesel et al., 2015b) and described in Appendix B.
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Figure 2: A screenshot of a problem instance in the platform path-finding domain (left),
and a zoomed-out image of the entire instance (right). The knight must find a
path from its starting location, through a maze, to the door (on the right side in
the left image, and just above the center in the right image).

The available actions are different combinations of controller keys that may be pressed
during a single iteration of the games main loop: left, right, and jump. Left and right move
to the knight in the respective directions (holding both at the same time is never considered
by the search domain, as the movements would cancel each other out, leaving the knight in
place), and the jump button makes the knight jump, if applicable. The knight can jump
to different heights by holding the jump button across multiple actions in a row up to a
maximum of 8. The actions are unit cost.

Each state in the state space contains the x, y position of the knight using double
precision floating point values, the velocity in the y direction (x velocity is not stored as
its determined solely by the left and right actions), the number of remaining actions for
which pressing the jump button will add additional height to a jump, and a boolean stating
whether or not the knight is currently falling. The knight moves at a speed of 3.25 units per
frame in the horizontal direction, it jumps at a speed of 7 units per frame, and to simulate
gravity while falling, 0.5 units per frame are added to the knights downward velocity up to
a maximum of 12 units per frame.

This benchmark is a natural fit for real-time search algorithms, since the agent must
decide on an action to execute before it is forced to move due to gravity. The state space
for the platform domain is directed, because while in the air the agent’s actions are not
reversible. The heuristic is based on visibility navigation (see Burns et al. for details)
and it is quite accurate except that it does not account for the player’s limited jumping
height. The C++ source code is available on GitHub (Kiesel, Burns, & Ruml, 2015a). All
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Figure 3: LSS-LRTA*: multi-step, single-step, and dynamic lookahead.

experiments were run on a Core2 duo E8500 3.16 GHz with 8GB RAM running Ubuntu
10.04.

For our experiments we used 25 test instances created using the level generator described
by Burns et al. (2013b), where the maze for each instance was unique and had a random
start and goal location. We used the offline training techniques described above to learn
the amount of time required to perform different amounts of lookahead search. For the
offline training, we generated an additional 25 training instances. The lookahead values
used were 1, 5, 10, 20, 50, 100, 200, 400, 800, 1000, 1500, 2000, 3000, 4000, 8000 10000,
16000, 32000, 48000, 64000, 128000, 196000, 256000, and 512000. For algorithms that use a
fixed-size lookahead, the lookahead value was selected by choosing the largest lookahead size
for which the mean step time on the training instances was within a single action duration.
If none of the lookahead values were fast enough to fit within a single action time for a given
action duration, then no data is reported. Our implementation used the mean step time
instead of the maximum step time, as the latter was usually too large due to very rare, slow
steps. We attribute these outliers to occasional, unpredictable overhead in system-related
subroutine calls such as memory allocation. We suspect that this issue would go away if a
true real-time operating system were used, where such operations perform more predictable
computations, or if a domain-specific optimized implementation were used. (Unfortunately,
developing such optimized implementations would have made it much more difficult to
perform thorough scientific comparisons.)

Figure 3 shows a comparison of these different techniques for the LSS-LRTA* algorithm.
The y axis shows the goal achievement time as a factor of the optimal goal achievement
time for each instance. The optimal goal achievement time is computed as the GAT of an
optimal solution with no planning time taken into account. One could imagine an oracle
that is able to instantly provide the optimal set of actions to execute. In the plot, the y
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Figure 4: Example of heuristic error and f layers.

axis is shown on a log10 scale. We consider a variety of action durations, these are shown on
the x axis, also on a log10 scale. Smaller action durations represent an agent that can move
relatively quickly, so spending a lot of time planning to make small decreases in solution
cost may not be worth the time. For larger values, the agent moves more slowly, and it
may be worth planning more to execute cheaper paths. The unit action duration is used to
limit the number of expansions performed in each iteration.

Each point on the plot shows the mean goal achievement time out of the 25 test instances
solved by all algorithms given as the factor of the optimal goal achievement time at that
action duration. A value of log10(0) = 1 indicates that the given algorithm had an optimal
time. Error bars show the 95% confidence intervals on the means.

From this plot, it is clear that the multi-step approach (standard LSS-LRTA*) performed
worse than both the single-step and the dynamic lookahead variants. This is likely because
the multi-step technique commits to too many actions with only a little bit of planning—the
same amount of planning that the single-step variant uses to commit to just one action.
As the unit action duration was increased to 1 second, the algorithms started to perform
similarly. However, single-step and dynamic lookahead still appear to perform slightly
better. Note that there were 0.02 seconds per frame in the game from which the platform
domain was derived, so values greater than log10(0.02) ≈ −1.7 represent an agent that
moves at an unusually slow pace.

It is also important to note that for some very small unit action durations, one algo-
rithm may perform better than another, while as the unit action duration increases, this
relationship inverts. At the very small unit action durations, there is not much time for
search to be performed.

5. A*-based Lookahead

In standard LSS-LRTA*, the lookahead search is A*-based, so nodes are expanded in f

order. After searching, the agent moves to the node on the open list with the lowest f

value. While this may seem intuitively reasonable, we will show why this choice can be
problematic, and we will see how it can be remedied.
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Figure 5: f -layered lookahead.

5.1 Heuristic Error

The crux of the problem is that f -based lookahead doesn’t account for heuristic error. The
admissible heuristic used to compute f is, by definition, low-biased, so f will typically
optimistically underestimate the true solution cost through each node. Because of this
heuristic error, not all nodes with the same f value will actually lead toward the goal node.
Figure 4 shows an example using a simple grid pathfinding problem. In the figure, the agent
is located in the cell labeled ‘S’ and the goal node is denoted by the star. The admissible
h values are the same for each column of the grid; they are listed across the top of the
columns. The g and f values are shown in each cell. Cells with f = 4 are bold, and the rest
are light gray. We can see that nodes with equivalent f values form elliptical rings around
the start node. In the heuristic search literature, these are referred to as f layers. While
some nodes in an f layer are closer to the goal node, there are many nodes in each layer
that are not—some nodes in an f layer will even be exactly away from the goal. In this
simple problem, the optimal solution is to move the agent right until the goal is reached,
however, of the 7 nodes with f = 4, only 2 nodes are along this optimal path; the other
nodes are not, but they have the same f value because of the heuristic error. If the agent
were to move to a random node with f = 4, chances are it will not be following the optimal
path to the goal.

One way to alleviate this problem is to use a second criterion for breaking ties among
nodes with the same f value. A common tie breaker is to favor nodes with lower h values
as, according to the heuristic, these nodes will be closer to the goal. We can see, in Figure 4
that among all nodes in the f = 4 layer, the one with the lowest h value (h = 1) is actually
along the optimal path. In LSS-LRTA* this tie breaking is insufficient, because when LSS-
LRTA* stops its lookahead, it may not have generated all of the nodes in the largest f layer.
If the node with h = 1 was not generated, then even with tie breaking, the agent can be
led astray.

5.2 Incomplete f Layers

These incomplete f layers cause other problems too. Recall that in LSS-LRTA*, the agent
moves to the node at the front of the open list. If low-h tie breaking is used to order the
expansions of the local search space, then the best nodes in the first f layer on the open list
will actually be expanded first and will not be on the open list when it comes time for the
agent to move. Figure 5 shows the problem diagrammatically. As before, the agent is at
the node labeled ‘S’ and the goal is denoted by the star. Each ellipse represents a different
f layer, the shaded portions show closed nodes, darker shading denotes nodes with larger
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h(s) {

heuristic error

(a)

S α
h(α)g(α) {

heuristic error
h(s) ← g(α) + h(α)

(b)

S α
h(α)g(α) {

heuristic error ≈ d(α)·ε
h(s) ← g(α) + h(α) + d(α)·ε^

(c)

Figure 6: (a) A standard heuristic and its error. (b) An updated heuristic and its error.
(c) Using an updated heuristic and accounting for heuristic error.

f values, and the dotted lines surround nodes on the open list. As we can see, the closed
nodes with the largest f values cap the tip of the second-largest f layer. This is caused
by low-h tie breaking where the first open nodes to be expanded and added to the closed
list will be those that have the lowest h. These are the nodes on the portion of the f layer
that are nearest to the goal. If the agent moves to the node on its open list with the lowest
f value, tie breaking on low h, then it will select node α and will not take the best route
toward the goal.

5.3 Improving Lookahead Search

We have demonstrated two problems: 1) because of heuristic error, f layers can contain a
large number of nodes, many of which do not lead toward the goal, and 2) even with good
tie breaking, LSS-LRTA* may miss the good nodes because it only considers partial f layers
when deciding where to move. Next we present two possible solutions to these problems.

The first is quite simple. When choosing where to move, select a node with the lowest
h value on the completely expanded f layer with the largest f value, not the next node
on open. In Figure 5, this corresponds to the node labeled β. We call this the “complete”
technique, as it considers only completely expanded f layers instead of partially expanded,
incomplete layers.

The second technique explicitly accounts for heuristic error—it orders both the search
and the agent’s action selection not on f , but on a less-biased estimate of solution cost.
Ideally, we would prefer to use an unbiased (and hence inadmissible) estimate that accounts
for and attempts to correct heuristic error. While any inadmissible heuristic could be used,
we note that Thayer, Dionne, and Ruml (2011) investigated the use of inadmissible heuristics

132



Achieving Goals Quickly Using Real-time Search

for offline search and here we adopt their simple heuristic correction technique for real-time
search. We call this estimate f̂ . Like f , f̂ attempts to estimate the solution cost through a
node in the search space. Unlike f , f̂ is not explicitly biased—it is not a lower bound. f̂ is
computed similarly to f , however, it attempts to correct for the heuristic error by adding
in an additional term:

f̂(n) =

f
︷ ︸︸ ︷

g(n) + h(n)+

error
︷ ︸︸ ︷

d(n) · ǫ
where ǫ is the average single-step error in the heuristic, and the additional term d(n) · ǫ
corrects the error by adding ǫ back to the cost estimate for each of the d(n) steps estimated
to remain from n to the goal. Following Thayer et al. (2011), we make the simplifying
assumption that the error in the heuristic is distributed evenly among each of the actions
on the path from a node to the goal.

Distance estimates d are readily available for many domains; they tend to be just as
easy to compute as heuristic estimates (Thayer & Ruml, 2009). To estimate the single-step
heuristic error, we use an average of the difference in the f values between each expanded
node and its best child. This difference accounts for the amount of heuristic error due to
the single step between a parent node and its child. With a perfect heuristic, one with no
error, the f values of a parent node and its best child would be equal—some of the f will
simply have moved from h into g:

f(parent) = f(child), in the ideal case, so

h(parent ) = h(child) + c(parent , child), and

g(parent ) = g(child )− c(parent , child)

Since g is known exactly, as is the cost of the edge c(parent , child), with an imperfect
heuristic any difference between f(child) and f(parent ) must be caused by error in the
heuristic over this step. Averaging these differences gives us our estimate ǫ.

Adapting this technique to real-time search requires some subtlety. In real-time search
algorithms like LSS-LRTA*, the heuristic values of nodes that are expanded during a looka-
head search are updated each time the agent moves. Figure 6a schematically depicts the
error in the default heuristic value for a node S. Its error is accrued over the distance from
S to the goal. After lookahead (Figure 6b), the updated heuristics are more accurate than
the originals because they are based on the heuristic values of nodes that are closer to the
goal, and thus have less heuristic error. Here, we can see that α is the node on the fringe
from which the start state inherits its updated heuristic value. Since g(α), the cost from
S to α, is known exactly, the error in the backed up heuristic now comes entirely from the
steps between α and the goal. Since α is closer to the goal, the error is less than the error
of the original heuristic value for S.

When computing f̂(S) in a real-time search, it is necessary to account for the fact that
error in the updated heuristic comes from the node α. To do this, we track a value called
derr , the distance over which heuristic error is accrued, for each node, and we use it to
compute f̂ . Initially, for nodes without updated heuristic values derr(n) = d(n). After
performing a lookahead search, h is updated from backed-up h values as before. If h(n)
receives a backed up value that originated at node α, then we set derr(n) = d(α), since
the error in the updated heuristic comes from the instance between the fringe node α an
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Figure 7: LSS-LRTA*: f-based lookahead and f̂ -based lookahead.

the goal, not the distance between n and the goal. The updated heuristic, when accounting
for heuristic error, is ĥ(s) = g(α) + h(α) + derr (n) · ǫ, where g(α) + h(α) is the standard
heuristic backup and derr (n) · ǫ is the error correction (cf Figure 6b, derr(n) = d(α) due
to the update). This is demonstrated by Figure 6c. Our new technique uses f̂ to order
expansions during the lookahead search in LSS-LRTA*, and it moves the agent toward the
node on the open list with the lowest f̂ value.

Figure 7 shows a comparison of the three node selection techniques: the standard in-
complete f layer method of LSS-LRTA*, the complete f -layer method, and the approach
that uses f̂ (denoted fhat). To better demonstrate the problem with the standard approach,
the plot shows results for the multi-step movement model that commits to an entire path
from the current state to the fringe of the local search space after each lookahead. The style
of the plot in panel (a) is the same as for Figure 3.

In this figure, we can see that complete performed worse than the standard LSS-LRTA*
algorithm for small action durations where the agent may not have time to expand many
nodes and thus ignoring some expansions has a large effect. For longer action durations,
however, this performance improves and complete becomes the best performer on the right
side of the plot where cheaper solutions are preferred. To clarify the improvement on the
right side of the plot in Figure 7 (a), we have included Figure 7 (b). This plot has a
different y-axis that highlights the improvement by comparing each algorithm directly to
the incomplete version of LSS-LRTA*. This indicates that using the completed f layer
does lead to fewer extraneous actions and gives cheaper solutions. Using f̂ to sort the open
list of lookahead searches performs much better than the other two algorithms on the left
side of the plot, although it begins to perform slightly worse as the unit action duration is
increased. This is likely because the inadmissibility in f̂ hinders its ability to find solutions
that are as cheap as those found by the complete f layer variant.
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Figure 8: Comparison of the four new real-time techniques.

Dynamic-f̂(s, expansion limit)
1. until a goal is reached

2. perform expansion limit expansions of best-first search on f̂ from s

3. update heuristic values of nodes in CLOSED

4. s← state on OPEN with the lowest f̂
5. start executing path to s

6. execution time← execution time to reach s

7. expansion limit← number of expansions possible within execution time

8. OPEN ← {s}; clear CLOSED

Figure 9: Pseudocode for LSS-LRTA* with a dynamic lookahead using f̂ .

Figure 8 shows the results of a comparison between the four combinations of single-step
versus dynamic lookahead and f -based versus f̂ -based node ordering. In this domain, f̂
with dynamic lookahead tended to give the best goal achievement times in portions of the
plot where all algorithms did not have significant overlap (i.e., everywhere except for the
right-half of the plot).

In both Figure 7 and Figure 8, ordering the lookahead search on f̂ was the common
link to the best performance out of all considered algorithms. Figure 7 demonstrates the
initial intuition that heuristic correction can be used in real-time search. Figure 8 builds
on this idea by adding in the dynamic look ahead proposed in the previous section to yield
the strongest algorithm we have seen so far. We present pseudocode in Figure 9 for this
dynamic-f̂ method.
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Figure 10: Comparison of the four new real-time techniques with a weak heuristic.

5.3.1 Heuristic Accuracy

It could be argued that the effects of dynamic lookahead and heuristic correction are dis-
torted by such a strong heuristic as a visibility graph. In this short experiment, we replace
the visibility graph heuristic in the platform domain with a much weaker euclidean distance
heuristic. To solve instances using this heuristic, we had to decrease the overall size of the
instances from 50x50 to 25x25.

Even with this decreased instance size, only the dynamic algorithms were able to solve
all 25 instances for all unit action durations. The other algorithms, for some unit action
durations, solved as few as 13 out of the full 25 instances. Figure 10 shows results for this
experiment, each data point represents the mean over only those instances that were solved
by all algorithms at that unit action duration (between 13 and 17 instances).

We can see that the ranking of the algorithms remains the same between the algorithms
regardless of the weakening in heuristic. We note that at a unit action duration of 0.001
seconds there is a rise in the data. This can be attributed to solving a larger subset of the
25 instances containing more difficult instances, thus increasing the GAT.

5.3.2 CPU Usage

While this paper does not focus on minimizing CPU time and assumes that any time
allocated to search may be utilized, it is still instructive to compare CPU usage of these
new techniques. As one might imagine, there is a tradeoff between CPU usage and GAT.
This inverse relationship can be seen by examining how each algorithm utilizes its search
time. Single step policies will execute search during every action until the goal is reached.
This behavior can increase the overall demand on the CPU. However, using a single step
policy, the goal can be achieved more quickly than using a multi-step policy. Dynamic
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Figure 11: Comparison of LSS-LRTA*, single-step LSS-LRTA* and dynamic f̂ in terms of
cpu usage.

lookahead will greedily use more search time as it becomes available, but will arrive at the
goal more quickly.

In Figure 11, search time is plotted. Figure 11 (a) shows the raw cpu time used by each
algorithm in the platform domain. On the y axis is the raw cpu time in seconds and on
the x axis is the log10 unit action duration. As can be seen from the plot, dynamic f̂ uses
a very small amount of planning time. This can be attributed to dynamic f̂ finding the
goal very quickly. While the single-step policy is able to find the goal more quickly than
LSS-LRTA*(see Figure 3), it requires more cpu time to do so as the unit action duration
increases.

Figure 11 (b) plots the raw cpu time divided by the goal achievement time. This provides
an idea of how active the CPU is during execution for each of the algorithms. It is important
to keep in mind that quick goal achievement times will have a small denominator, causing
utilization to appear higher than for the same raw cpu time with a longer goal achievement
time. The reduced utilization for longer action durations is likely because dynamic f̂ is able
to find goals quickly using a small number of iterations and the remainder of execution has
no overlapping planning time.

5.3.3 Implementation Details

The f̂ technique requires more information that standard LSS-LRTA*, so it has slightly
greater storage requirements. We should note, however, that during our experiments we
did not run into memory issues, so we did not optimize our implementation to reduce
memory requirements.
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Our implementation uses two different types of nodes: persistent and transient. Persis-
tent nodes form the agent’s memory of all states it has encountered during all past lookahead
searches: their connectivity, learned heuristic values, and the distance estimates over which
their heuristic error is accrued. Transient nodes exist for a single round of lookahead search
and h-cost learning; they are akin to traditional search nodes used in, for example, an A*
search, however they include information required to order the search on f̂ .

In each persistent node, we store information about the connectivity of the search graph.
This includes the set of predecessors and successors of the node and the costs of the associ-
ated edges. We store the predecessors because we do not assume an undirected search graph
or that a predecessor function is easily computable. Both the predecessors and successors
are computed lazily. Each predecessor is added only when it is first expanded, while the en-
tire set of successors is populated the first time the node is expanded. For successor nodes,
we also store the cost of reversing the edge (which matters in the case where edge costs
are not symmetric) and the operator used to generate that successor. Persistent nodes also
store the learned heuristic estimate and cached values such as the original h and d estimates
for the node, which would otherwise need to be computed each time they are needed.

Transient nodes hold additional information needed to perform a best first search ordered
on f̂ . First, each transient node has a pointer to the corresponding persistent node. In
addition, each transient node has the g-cost, f -cost, and f̂ -cost as computed during the
single lookahead search for which the node persists. Other information contained in the
transient nodes are: a pointer to the best parent during the current lookahead search; the
node’s index on the open list (which is implemented as an array-based binary heap), needed
for updating the node’s position in the heap if it is encountered via a better path; and two
booleans used during h-cost learning to easily determine if the node has already had its
h value updated and to determine if it is on the closed list. For more detail, we refer the
reader to the source code which is freely available on GitHub (Kiesel et al., 2015a).

The only differences between the information stored by f̂ and our normal LSS-LRTA*
implementation is that the latter does not store d estimates in its persistent node set, and
it does not store f̂ values in its transient nodes. All other information is exactly the same.

5.3.4 Theoretical Evaluation

Here we prove that, under certain conditions, our modifications to LSS-LRTA* retain the
completeness property of the algorithm. This is because learning will cause f̂ to converge
to f∗. To begin, we assume that the heuristic is admissible and the state space is finite.

Proposition 1. Following the spirit of Korf’s completeness proof for LRTA*, we note that,
if a search algorithm is incomplete in a finite state space, then there must exist nodes that
are visited an infinite number of times. 1

Our goal now is to show that such nodes cannot exist.

Lemma 1. If dynamic f̂ searches only within some finite set of nodes D, the h values of the
nodes that are in the interior of D will reach a fixed point (remain static and unchanging)
at some finite time T1, for at least as long as the search remains within D.

1. We note that, contrary to the assumptions of some previous work, the algorithm need not actually enter

a loop, as the trajectory may vary in a non-repeating way, just as the digits of π are conjectured to.
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Proof. 1. Because h is updated using the same update rule as in LSS-LRTA*, all h

values in the state space are non-decreasing via Koenig and Sun’s (2008) Theorem 1
regarding LSS-LRTA*.

2. Note that the h values of nodes on the fringe of D will remain static because the
h-value learning only updates the heuristic of nodes in the interior of an LSS. Every
update during a learning step obeys h(p) = max(h(p), c(p, bc) + h(bc)), where bc is
the best child of p — the one with the lowest f value. Thus every h(p) value will
be the sum of numbers drawn from the set C that contains: all edge costs, the set
of all fringe h values, and the set of initial h(p) values. Because there are a finite
number of costs in C, any update to h(p) must be larger than the minimum positive
difference between any two possible sums of costs drawn from C. Thus the increases
are bounded from below by a constant.

3. Similarly to step 1, the h values remain admissible via Theorem 2 of Koenig and Sun
regarding LSS-LRTA*, so they cannot rise above the true cost to go.

4. By steps 1, 2, and 3, there must be a time T1, after which the h values do not change
for as long as the search remains within the set D.

Lemma 2. If a search visits some finite set of nodes D an infinite number of times, there
exists a time T ′ after which the search visits only nodes in D.

Proof. Consider the LSSes that are formed in each iteration and the learning step in which
parents inherit h values from their child with the lowest f . Considering each of these pairs
of nodes, there are two cases: a) those two nodes will be in the same LSS an infinite number
of times as the number of search iterations approaches infinity, or b) these nodes will only
be in the same LSS a finite number of times. For those pairs in case (b), note that there
must exist a time, T ′, after which they are never in the same LSS, for otherwise the two
nodes would have been covered by case (a) instead.

Lemma 3. If dynamic f̂ searches only within some set D, then the one-step heuristic error
ǫ goes to 0 by some time T2 and stays there for at least as long as the search remains within
D.

Proof. 1. Consider those pairs of nodes in the same LSS after T ′. By Lemma 1, there
exists some T1 after which the h values have converged. So after T1, we know that
h(p) = c(p, bc) + h(bc).

2. Note that ǫ is the average, across all internal nodes in an LSS and their associated
best children, of the differences between the f values of parents and their best children.
By step 1, f(p) = f(bc), so ǫ = 0 holds after some time T2 ≥ T1.

Lemma 4. There cannot exist a set of nodes D that dynamic f̂ visits infinitely often.

Proof. 1. For the sake of contradiction, let D be a set of nodes which are part of an LSS
an infinite number of times.

2. By Lemma 3, ǫ will become 0 by some time T2.
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3. At time T2 when ǫ = 0, ĥ = h, f̂ = h, and so dynamic f̂ will behave like LSS-LRTA*
(dynamic-sized lookahead makes no difference to LSS-LRTA*’s theoretical properties
as they hold without regard to lookahead size).

4. LSS-LRTA* is complete (Koenig & Sun, 2008, Thm. 3), so the search will eventually
reach a goal. This contradicts 1, so dynamic f̂ will not visit a set of states infinitely
often.

Note that, if dynamic f̂ were to escape a potential set D, as described in step 1 of the
proof of Lemma 4, but then circulate within another set of nodes D′ for an infinite time,
then D would have equaled D′ instead. Also, if it were to oscillate between two or more
sets, then D would be defined as the union of all such sets.

Theorem 1. In a finite search space with admissible h, dynamic f̂ will eventually reach a
goal.

Proof. Proof by contradiction:

1. Assume the search never reaches a goal. Because dynamic f̂ goes to any goal in the
LSS, this means that a goal is never in the LSS.

2. In a finite space, if the search never sees a goal, then it must visit other states an
infinite number of times.

3. By Lemma 4, dynamic f̂ will not exhibit such behavior.

4. Thus, using dynamic f̂ retains the completeness of LSS-LRTA*.

6. Comparison With Off-line Techniques

In the previous sections, we explored modifications to the LSS-LRTA* algorithm to improve
its ability to achieve goals quickly. LSS-LRTA*’s performance can be improved by applying
a heuristic correction and either using a single-step movement policy or using dynamically-
sized lookahead searches. In this section we evaluate the performance of these algorithms
against standard offline techniques. We have included three extra domains for this final
comparison, the 15-puzzle, grid pathfinding, and a novel domain that we call the traffic
domain. For the 15-puzzle, we used the 94 instances from Korf’s 100 instances (Korf, 1985)
that our implementation of A* was able to solve using a 6GB memory limit. For grid
pathfinding, we ran on the orz100d grid map from the video game Dragon Age: Origins
(Sturtevant, 2012). This map, shown in Figure 12, includes a mix of open space and maze-
like areas with narrow corridors. We used the 25 start and end locations with the longest
optimal path lengths in the scenarios from Sturtevant (2012). For completeness, results for
the best performing algorithms on a random selection of 10 additional maps are presented
in Appendix A.
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Figure 12: Grid path-finding on a video game map.

6.1 The Traffic Domain

The traffic domain is a new domain inspired in part by video games such as Frogger2.
The goal in the traffic domain is to navigate through a grid to a given goal location while
avoiding obstacles, many of which are in motion. Each state includes the x, y location
of the agent and the x, y location of each obstacle (In our implementation, the locations
of obstacles were not stored in the state; instead, we store each state’s current time, and
obstacle locations were computed based on their initial location, velocity, and the time).
Time is divided into discrete intervals called ticks, and the agent can move in one of the four
cardinal directions or remain still during each tick. Obstacles each have both horizontal
and vertical velocities that are either -1, 0, or 1 cell per-tick in the respective direction.
Obstacle locations are known to the agent at any time in the future. When an obstacle
hits the edge of the grid it “bounces” off, reversing its velocity in the direction of the hit.
Obstacles simply pass through each other. The search space is directed, because time is
ticking forward and, once the obstacles move, the agent cannot perform an action to move
the obstacles back to their previous locations. This domain is especially well-suited for
real-time techniques as the agent must have an action ready to execute at each tick when
the world transitions and the obstacles move.

To eliminate dead end states (real-time algorithms are incomplete in the presence of
dead ends), when the result of executing an action by the agent is an intersection with an
obstacle, the agent is teleported back to the start state location (at time t=0). This is
especially important for offline algorithms that expect to begin execution from the initial

2. This domain is similar to the 2011 ICAPS International Probabilistic Planning Competition domain

called ’crossing traffic’ which was constructed as an MDP and also a POMDP. Our version of the

domain is deterministic and fully observable.
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Figure 13: Comparison with off-line techniques.

state despite the passage of time while planning. For our experiments, we generated 25
random solvable instances consisting of 100x100 grids with 5,000 obstacles placed randomly
with random velocities. The start location was in the upper-left corner of the grid and the
goal location was in the lower-right corner. The average solution length was 211.24 moves.
Videos showing the traffic domain are available on-line (Kiesel et al., 2015b) and discussed
in Appendix B.
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6.2 Results

By allowing planning and execution to take place simultaneously, it should be possible to
improve over offline techniques that delay execution until planning is finished. To assess
this, we compared the best-performing variants of LSS-LRTA* with A* and an algorithm
called Speedy (Thayer & Ruml, 2009). Speedy is a best-first greedy search on d(n), the
estimated number of actions remaining to the goal. It tends to find poor plans very quickly,
providing an informative contrast with A*. Figure 13 shows the results of this comparison,
again with the log10 factor of optimal goal achievement time on the y axis and the unit
action duration, on a log10 scale, on the x axis.

f̂ -based search with a dynamic lookahead gave the best goal achievement times on the
platform, 15-puzzle, and traffic domains. Speedy was a strong performer in both the grid
pathfinding domain and the traffic domain. This is not surprising as these domains are both
based on grid navigation. In the traffic domain Speedy is able to quickly find a collision free
path (avoiding additional cost overhead). On grid pathfinding A* actually had the lowest
goal achievement times for all unit action durations, and f̂ with a dynamic lookahead was
about tied with A* for all except the fastest unit action duration. These results on grid
pathfinding are consistent with the results presented by Hernández et al. (2012), where
their best performer was about as good as A*. (In their study, the best performer was
TBA*, which we don’t compare against as it does not work for directed graphs.) This is
likely because A* can solve these grid pathfinding problems very quickly, thus it has short
planning times, and still finds optimal solutions.

Even though A* performs well, it is not applicable when a real-time constraint is present
and an action needs to be returned within a bound. A*-based real-time algorithms give
similar results with an infinite lookahead, although some would waste time learning.

7. Related Work

There is a large body of work relating to real-time search. In this section we review some of
this work and discuss its relation with the techniques that we have presented in the previous
sections.

7.1 Pruning Dead States

f -LRTA* (Sturtevant & Bulitko, 2011) is an extension of LSS-LRTA* and RIBS (Sturtevant,
Bulitko, & Björnsson, 2010), combining both h-cost learning and g-cost learning. The g-cost
learning enables the algorithm to label states as dead-ends or redundant. Determining these
types of states using the basic algorithm relies on an underlying undirected graph. This
arises from the requirement to compute the cost from successor to parent. In an undirected
graph this is simply the reverse operator, but in the case of a directed graph, this would
require a call to either a heuristic or a call to an additional search to determine the cost
of that edge. In consultation with Sturtevant, we created a small modification to include
reverse edge costs where they were easily computable. However, in practice this did not
perform well in our directed graph domains. We conclude that further work is needed to
adapt the ideas behind f -LRTA* to directed graphs.
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Sharon, Sturtevant, and Felner (2013) introduce a technique for pruning dead states in
real-time agent-centered search. This work detects two types of dead states: expendable
and swamp. These are determined by considering reachability and shortest paths in the
local neighborhood of a state. While dead state pruning has been shown to lead to speed-
ups in 8-way grid pathfinding, it is only applicable in certain domains. Let us first consider
the undirected domains considered in this paper. In the sliding tile puzzle, for example,
expendable and swamp states do not exist locally. No neighbors of a state s can reach
another neighbor without passing through s when only considering a local neighborhood.
Without reachability, no shortest paths can exist, so no locally expendable or swamp states
would be pruned. We also note that in a grid navigation problem that only considers
movement in the four cardinal directions, no pruning could occur either for the same reason.

In a directed graph, the predecessors of s must also be considered in the local neighbor-
hood. In this case, an expendable state would be a state s whose predecessors can reach all
of s’s successors without traversing through s. Similarly, a swamp state s would be a state
whose predecessors have shortest paths to all successors of s that do not pass through s.
In the traffic domain, for example, the state contains time, so all predecessors of a state s

with time t, would have time t− 1 and its successors all have a time of t+ 1. There is no
way to traverse from a state t − 1 to a state with time t+ 1 without traversing through a
state with time t. As state s is the only state in the local neighborhood with a time t, no
paths can exist between predecessors and successors of s that do not pass through s. No
expendable or swamp states would be pruned in this domain.

7.2 Minimizing Search Effort

The GAT model assumes that search can occur during action execution, which is appro-
priate for situations in which separate processor cores are responsible for planning versus
managing execution. When processor resources are scarce and shared among many tasks,
one may want to minimize search effort even during execution. Bulitko, Luštrek, Schaeffer,
Björnsson, and Sigmundarson discuss methods for dynamically adjusting real-time search
lookahead in order to minimize search effort while still selecting good actions. In contrast,
as we discussed in section 5.3.2, dynamic f̂ attempts to use all available execution time to
perform as much search as possible.

7.3 Time-bounded A*

Time-bounded A* (TBA*, Björnsson, Bulitko, & Sturtevant, 2009) is a non-agent-centered
real-time search algorithm. Instead of performing a bounded amount of lookahead search
from the agent’s current state, TBA* maintains a single A* search from the agent’s initial
starting state to the goal state. During each iteration, a fixed number of expansions are done
on this single search and the agent attempts to move toward the most promising node on the
search frontier. Since the agent may have already moved away from the initial state during
previous iterations, and because A* vacillates between many different paths, the agent’s
current state may not be along the current best path. If this occurs, the agent backtracks
toward the initial state until it is on the current best path. In their experiments, Björnsson
et al. showed that, on grid pathfinding benchmarks, TBA* requires fewer iterations to find
the same quality paths as other real-time algorithms such as LRTA*.
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As mentioned briefly above, Hernández et al. (2012) found that TBA* was the best
technique for optimizing goal achievement time on grid pathfinding problems in fully-known
grids. They state that its performance was about the same as that of A*. In our experi-
ments, we do not compare with TBA*, as we consider domains that form directed graphs,
and TBA* only works on undirected graphs, due to the agent’s need to backtrack. We
suspect, however, that our dynamic lookahead f̂ technique would be quite competitive with
TBA*, as it also matched the performance of A* on grid pathfinding problems and it was
able to greatly outperform A* on all of the other domains.

7.4 Avoiding Depressions in Real-time Heuristic Search

Real-time search algorithms can become temporarily stuck in a heuristic local minimum for
an extended period of search and execution time (Sturtevant & Bulitko, 2014). The agent
will typically wander around in a heuristic minimum until it learns that the heuristic in
that area is inaccurate and corrects it. This behavior results in long solutions and can be
aesthetically undesirable.

daLSS-LRTA* and daRTAA* (Hernández & Baier, 2012) attempt to actively avoid and
escape heuristic depressions. Instead of selecting the node with the lowest f value, daLSS-
LRTA* selects the node along the frontier whose heuristic value has changed the least.
daRTAA* is similar but uses a simpler learning phase borrowed from Real-Time Adaptive
A* (Koenig & Likhachev, 2006). RTAA* and daRTAA* update the entire interior of the
local search with the f value of the node on the open list with the best f value.

We implemented both daLSS-LRTA* and daRTAA* and compared them to standard
LSS-LRTA* as well as the multi-step and dynamic lookahead variants of LSS-LRTA* using
f̂ . The results of the comparison are shown in Figure 14. Our results on the grid pathfinding
problem (orz100d) agree with results from Hernández and Baier (2012) and show that using
depression avoidance techniques can help improve performance (for example, compare LSS-
LRTA* and daLSS-LRTA*). Also, daLSS-LRTA* and daRTAA* outperform the standard
multi-step variant of LSS-LRTA* using f̂ . Dynamic lookahead f̂ clearly gives the best
performance for all but the fastest unit action duration of 0.0001. In the platform and
traffic domains, however, daLSS-LRTA* appears slightly worse than LSS-LRTA*, and in
the 15-puzzle depression avoidance appears to have little effect. Overall, we found dynamic
f̂ to dominate the other techniques.

Similar to Figure 10, we can see a spike at 0.001 unit action duration in the platform
domain. This can be attributed to a jump in the number of instances that were solved by
all algorithms between 0.0001 and 0.001. The larger set contains more difficult instances
and increases the factor of optimal GAT.

It may be interesting future work to combine depression avoidance with dynamic looka-
head, especially for grid pathfinding domains.

7.5 Weighted Real-time Heuristic Search

Weighted A* (wA*, Pohl, 1970) is a popular heuristic search algorithm that proceeds like
A*, but orders nodes on the open list using f ′(n) = g(n) + w · h(n), for some w ≥ 1. As
w increases, the search becomes more greedy and can often find solutions faster than A*.
While these solutions may not be optimal, they are guaranteed to be within a factor w of the
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Figure 14: Depression avoidance real-time heuristic search.

optimal solution cost. Rivera, Baier, and Hernández (2012) recently showed a variant of wA*
for real-time search called wLSS-LRTA*. One obvious way to implement a real-time variant
of wA* would be to simply multiply the heuristic value by w ≥ 1 during a lookahead search
in LSS-LRTA*, however, wLSS-LRTA* does not do this. Instead, wLSS-LRTA* multiplies
the edge weights by w during the learning phase of LSS-LRTA*. The update rule becomes:
h(n)← minm∈openw · g(n,m) + h(m), where g(n,m) is the cost between the node n being
updated and a node m from the open list of the lookahead search.
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Figure 15: Weighted real-time heuristic search.

Rivera et al. (2012) show that using an increased weight in wLSS-LRTA* can lead to
lower-cost solutions. They point out that, because admissible heuristics are lower bounds,
inflating the heuristic by a factor w may make the heuristic more accurate. This is the
same reasoning behind our f̂ technique. The difference is that wLSS-LRTA* uses a weight
to inflate the g portion of the updated heuristic whereas the f̂ technique adds a correction
based on the h portion of the updated heuristic. We would argue that the f̂ approach
makes more sense because the error causing the heuristic to underestimate does not come
from the perfectly-known g portion of the update, but from the estimated h portion.
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We implemented wLSS-LRTA* and compared it to the standard multi-step and dynamic
lookahead variants of LSS-LRTA* using f̂ . The results of the comparison are shown in
Figure 15. Our results on the grid pathfinding problem (orz100d) tend to agree with those
of Rivera et al. (2012): using larger weights for wLSS-LRTA* can increase performance.
This trend seems to depend, however, on the unit action duration; it is more noticeable
when actions are fast. Also, for grid pathfinding, wLSS-LRTA* outperforms the standard
multi-step variant of LSS-LRTA* using f̂ , but the dynamic lookahead f̂ clearly gives the
best performance for all but the fastest unit action duration of 0.0001. However, in the
platform, 15-puzzle, and traffic domains we found almost the opposite to be true! Dynamic
f̂ is still the best—it nearly dominates all other techniques. But the fairest comparison is
LSS-LRTA* using f̂ (with statically sized lookahead) which provides better performance
than wLSS-LRTA*, dominating wLSS-LRTA* with a weight greater than 1 on the 15-puzzle
and traffic problems, and increasing the weight in wLSS-LRTA* either has no effect or it
makes the performance worse. For the traffic domain with weights greater than 1, wLSS-
LRTA* was unable to solve any problems with a lookahead of 1, and all greater lookahead
values tried (including a lookahead of 2) were too slow to meet the real-time deadline for
a unit action duration of 0.0001, thus there is no data point for x=0.0001 for either of
these algorithms. Based on these results, we conclude that using the parameter-free f̂

technique to explicitly attempt to account for heuristic error is the recommended approach
over weighting the edge costs during learning by a user-specified parameter.

7.6 FRIT

Follow and Reconnect with the Ideal Tree, or FRIT (Rivera, Illanes, Baier, & Hernández,
2013), takes another approach to dealing with heuristic minima in real-time search. Rather
than applying heuristic learning and updating to escape a local minimum, FRIT instead
tries to follow the ideal tree of the state space. An ideal tree represents a family of paths
that connect states of the search space with the goal state. It also can be thought of as
being implicitly represented by a heuristic.

The ideal tree is explored by following the heuristic greedily as if all operators were
applicable in all states, until the heuristic suggests an operator that is inapplicable. A simple
example is following the Manhattan distance heuristic in a grid pathfinding domain until
encountering an obstacle. When an inapplicable operator is suggested, the tree becomes
disconnected and the agent must reconnect with the tree. This is done by performing a
local search around the agent’s current state until a state believed to be in the Ideal Tree
is found. The agent then moves to that state and continues on. The resulting behavior in
grid pathfinding domains can appear very similar to wall following.

Some modifications are required to make FRIT into a real-time algorithm. The local
search to find a state in the Ideal Tree is bounded only by the size of the state space,
rather than a time bound or an expansion limit. The authors suggest a few techniques for
bounding the local search but in our experiments, we allowed FRIT to be thought of as
offline and allowed it as much time as needed when looking to reconnect with the Ideal
Tree. We also used breadth first search as the local search algorithm.

We implemented FRIT and compared it against standard LSS-LRTA* and the multi-
step and dynamic versions of LSS-LRTA* using f̂ . The results are shown in Figure 16. We
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Figure 16: Comparison with offline FRIT using breadth first search.

only present results for the grid pathfinding problem (orz100d). FRIT was only able to
solve a few of the easier instances in the platform and traffic domains within the five minute
timeout. As for the sliding tile puzzle domain, it was unclear how to adapt this algorithm
for this domain. A naive approach results in a branching factor of 44 and poor results.

On grid pathfinding, even by treating FRIT as an offline algorithm and not penalizing it
for search time in its final goal achievement time, it performs worse than the three variants
of LSS-LRTA* presented. The exception is when the unit action duration is very small, at
which point FRIT is competitive with the other algorithms (ignoring its search time).

7.7 FALCONS

Furcy and Koenig (2000) present two modifications to LRTA* to speed up its convergence
time. They noticed that by breaking ties in favor of successors with smaller f -values LRTA*
would converge more quickly. They also point out that if you also use this tie-breaking cri-
teria to select which successor to move to, convergence occurs even faster. These two mod-
ifications yield two new algorithms: Tie Breaking LRTA* (TB-LRA*) and FAst Learning
and CONverging Search (FALCONS).

In Figure 17 we compare against the original LRTA*, TB-LRTA* and FALCONS. In
all domains these three algorithms perform worse than the newer LSS-LRTA* and modified
versions of LSS-LRTA*.

7.8 RTA*

Korf (1990) not only proposed LRTA* in his seminal paper but also another algorithm
simply called Real Time A* (RTA*). RTA*, unlike its counterpart LRTA*, is focused on
solving the problem of getting from the start state to the goal state only once. LRTA* is
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Figure 17: Comparison with LRTA*, TBLRTA* and FALCONS.

proven to converge to optimal heuristic values over successive trials. RTA*’s learning policy
does not guarantee a convergence of heuristic values but in practice can find solutions more
quickly than LRTA*.

In Figure 18 we compare against RTA*. We include LRTA* in these plots as well to show
the tradeoff between convergence and initial goal achievement time RTA* makes. RTA*’s
lookahead is based on a bounded depth first search, so its run time is difficult to predict. For
these experiments we ran RTA* with lookahead depths of {1, 5, 10, 20, 50, 100, 200, 400,
800, 1000, 1500, 2000, 3000, 4000, 8000, 10000, 16000} and chose the largest depth where
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Figure 18: Comparison with RTA*.

instances were solved within the timeout. It is interesting to note that for the 15-puzzle
a depth of 1500 was able to be used, while in platform and traffic only a lookahead of 10
could be used. We attribute this to platform and traffic being very graphy domains, while
tiles has fewer cycles. The extreme case is grid pathfinding on the orz100d map where only
a maximum lookahead of 5 could solve instances within the timeout. For supplementary
comparison, we also provide a line for RTA* using an A* lookahead instead of depth first
search in the grid pathfinding domain. An expansion limit of 4000 was the largest lookahead
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size that solved all the instances. In the four plots in Figure 18, we can see that the newer
algorithms outperform RTA* in all domains.

7.9 Bugsy

Bugsy (Burns et al., 2013b) is not a real-time search, but it is an off-line algorithm that
explicitly attempts to optimize a utility function given as a linear combination of search
time and solution cost. If solution cost is specified in units of time, then Bugsy can
explicitly attempt to minimize goal achievement time by appropriately weighting search
and execution times so that they are given in the same units. As the only off-line algorithm
that can optimize our goal achievement time objective, it is interesting to see how Bugsy

compares to real-time algorithms. Since it performs a global search, it may be better able
to optimize cost, but it is inherently less efficient, as it cannot plan and execute in parallel.

Figure 19 shows the results. Bugsy tended to have the lowest goal achievement times
in all domains except for the traffic domain, where the dynamic lookahead f̂ method nearly
dominated all other approaches. However, in all domains except the 15-puzzle, the ad-
vantage of Bugsy was small. We conclude that, if a full solution can be found upfront,
then off-line methods like Bugsy can often given the best results. When an agent must
respect real-time constraints, however, the dynamic lookahead f̂ technique is the algorithm
of choice.

It may be possible to create a new algorithm that incorporates the ideas of Bugsy into
a real-time search. Bugsy proceeds like A*, but it orders its open list on a utility estimate
u(n) = wf · f(n) + wt · time(n), where time(n) is an estimate of the time the search will
take to reach the best solution beneath node n (for details, see Burns et al., 2013b). The
difficulty in incorporating the ideas of Bugsy into real-time search is that Bugsy’s utility
estimate assumes that none of the planning time, time(n), will occur in parallel with the
execution time f(n) (recall that cost is in units of time when optimizing goal achievement
time). In real-time search, this is not true. If solution cost is in units of time and all
planning happens during execution, then optimizing cost seems appropriate.

8. Conclusion

In this paper we considered real-time search in the context of minimizing goal achievement
time when concurrent planning and execution is possible. When optimizing goal achieve-
ment time, it is important to consider the tradeoff between searching and executing. We
presented three modifications to LSS-LRTA*: 1) taking single steps instead of moving all of
the way to the fringe of the lookahead search, 2) use multiple steps, but dynamically increase
the lookahead size to match the execution time of each trajectory, and 3) using f̂ to correct
the bias in the heuristic. We then evaluated these techniques against plain LSS-LRTA*, A*,
Speedy, daRTAA*, daLSS-LRTA*, wLSS-LRTA*, FRIT, TBLRTA*, FALCONS, LRTA*,
RTA*, and Bugsy on four domains. In addition to the 15-puzzle and grid pathfinding
domains, which are classic heuristic search benchmarks, we used two video-game-inspired
domains: the platform domain and a new traffic domain.

We showed that committing to single actions at a time can give better performance
than using the traditional multiple action approach. Then we demonstrated that using the
multiple action technique can be even better than performing single steps if the amount of
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Figure 19: Comparison with Bugsy.

lookahead search is dynamically adjusted to use all of the time available for the execution
of the currently-executing multi-step trajectory. We pointed out some possible reasons why
using an A*-based lookahead search may lead to poor performance and showed how f̂ could
be used to fix these issues. Overall, the combination of a dynamically sized lookahead and
f̂ gave the best performance when compared to previous real-time techniques. We hope
that this work will spur further research into applying real-time heuristic search to dynamic
domains.
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Appendix A. Grid Pathfinding Results on Additional Maps

The following are a random sample of 10 maps from Sturtevant’s repository with the top
performing algorithms plotted. These plots are similar to those included in the paper with
the log10 factor of optimal goal achievement time on the y-axis and the log10 unit action
duration on the x-axis.
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Appendix B. Video Descriptions

Here we describe the videos that are available on-line (Kiesel et al., 2015b).

B.1 Platform Videos

The videos numbered 1-10 in the playlist show algorithms solving the Platform domain.

B.1.1 Random Instance

Videos 1-7 provide an example of a random instance of the Platform of the platform domain
being solved by various algorithm configurations.

Video 1 is LSS-LRTA* with a 1,000 node lookahead using a multi-step policy. In this
video you can see the algorithm get stuck in local heuristic minima and actively trying to
update its heuristic estimates for those states in the minimum.

Video 2 is LSS-LRTA* with a 1,000 node lookahead using a single-step policy. In this
video you can see the algorithm traverse the smaller sized local minima much more quickly
but still become stuck for a short while in the larger local minimum at around 9 seconds.

Video 3 is LSS-LRTA* using a dynamically sized lookahead. Initially, it gets stuck
inside of a local minimum, similar to LSS-LRTA* with a static lookahead, but soon is able
to escape through learning and increasing lookahead sizes.

Video 4 is LSS-LRTA* using a dynamically sized lookahead and heuristic correction. It
is very quickly able to escape the various heuristic minima on the way to the goal.

Video 5 is Speedy. In this video you can see that the algorithm is able to find a solution
very quickly as it starts moving almost instantly. The next 2 minutes of the video are spent
executing the highly suboptimal solution.

Video 6 is A*. We do not visualize the planning time for complete solution to be found
before A* begins moving (roughly 1 minute and 15 seconds, see video 7). Its solution is
optimal and very quickly gets the agent from its initial position to its goal.

Video 7 is a comparison of LSS-LRTA* with a 1,000 node lookahead, LSS-LRTA* with
a dynamically sized lookahead and heuristic correction, A* and Speedy. In this video,
planning time is visualized.

B.1.2 Ladder Instance

Videos 8-10 demonstrate an extreme example of a heuristic minimum. The visibility graph
heuristic assumes the agent is able to jump infinitely high, creating a large local minimum
that the agent must learn its way out of.

Video 8 shows LSS-LRTA* with a 1,000 node lookahead and a multi-step policy strug-
gling to climb the platform ladder.

Video 9 shows LSS-LRTA* with a 1,000 node lookahead and a single-step lookahead
policy quickly climbing up the ladder but struggling at the end.

Video 10 shows an optimal example of how to climb the ladder using A*.
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B.2 Traffic Videos

The remaining videos illustrate the traffic domain, a highly dynamic domain with many
moving obstacles that the agent must avoid. These videos are provided only as a visualiza-
tion of the domain that the algorithms are trying to solve.

Video 11 shows an example of an optimal solution found by A* that never collides with
an obstacle.

Video 12 shows LSS-LRTA* with a 1,000 node lookahead solving the same problem. In
this video around 20 seconds, the agent wanders into a situation where a collision occurs
and is transported back to the start state.
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Bulitko, V., Luštrek, M., Schaeffer, J., Björnsson, Y., & Sigmundarson, S. (2008). Dynamic
control in real-time heuristic search. Journal of Artificial Intelligence Research, 32,
419–452.

Burns, E., Kiesel, S., & Ruml, W. (2013a). Experimental real-time heuristic search results
in a video game. In Proceedings of the Sixth Annual Symposium on Combinatorial
Search (SoCS).

Burns, E., Ruml, W., & Do, M. B. (2013b). Heuristic search when time matters. Journal
of Artificial Intelligence Research (JAIR), 47, 697–740.

Furcy, D., & Koenig, S. (2000). Speeding up the convergence of real-time search. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 891–
897.

Hernández, C., & Baier, J. (2012). Avoiding and escaping depressions in real-time heuristic
search. Journal of Artificial Intelligence Research (JAIR), 43, 523–570.

Hernández, C., Baier, J., Uras, T., & Koenig, S. (2012). Time-bounded adaptive A*. In
Proceedings of the Eleventh International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS).

Kiesel, S., Burns, E., & Ruml, W. (2015a). Research code for heuristic search.
https://github.com/eaburns/search. Accessed September 2, 2015.

Kiesel, S., Burns, E., & Ruml, W. (2015b). Videos for ‘achieving goals quickly using real-
time search’. http://bit.ly/1bW3Ey8. Accessed September 2, 2015.

Koenig, S., & Likhachev, M. (2002). D∗ lite. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI), pp. 476–483.

Koenig, S., & Likhachev, M. (2006). Real-time adaptive A*. In Proceedings of the Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Koenig, S., & Sun, X. (2008). Comparing real-time and incremental heuristic search for
real-time situated agents. In Journal of Autonomous Agents and Multi-Agent Systems,
pp. 18(3):313–341.

157



Kiesel, Burns, & Ruml

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27 (1), 97–109.

Korf, R. E. (1990). Real-time heuristic search. Artificial intelligence, 42 (2-3), 189–211.
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