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Abstract—In this paper, we present an analytical solution
to the problem of rate allocation and receiver partitioning
in layered media systems. The framework of our proposed
protocol Layered Media Multicast Control (LMMC) deter-
mines the layer rates and the corresponding partitioning
of the receivers maximizing a mathematically well-behaved
approximation of the so-called max-min fairness metric.

Index Terms— Layered Media, Multicast IP Networks,
Heterogeneity, Optimality, Fairness, Rate Allocation, Re-
ceiver Partitioning.

I. INTRODUCTION

Transmitting real-time compressed digital media over
multicast IP networks has been the subject of heavy re-
search in the recent years as surveyed by Li et al. in [6]
and the references cited therein. Layered media streaming
over multicast IP networks allows a multimedia source for
transmitting its layered bitstream over different multicast
groups. Intended receivers then join at least the base layer
group and as many enhancement layer groups as their ca-
pacities allow. The idea of layered media streaming over
multicast IP networks was first proposed by Deering et
al. [3] in the context of multicast routing and further en-
hanced by McCanne et al. [8] in the context of RLM pro-
tocol, Amir et al. [1] in the context of SCUBA protocol,
and Li et al. [7] in the context of rate control aspect of
LVMR protocol. We provide a comprehensive review of
literature articles in [14].

The main objective of this paper is to provide an an-
alytical framework for the partitioning strategy and rate
allocation of distributing multimedia content over multi-
cast IP networks. The objective is achieved in the context
of Layered Media Multicast Control (LMMC) protocol.
In this study, we do not address the issues of error con-
trol, inter-session fairness, and congestion control. We
refer the interested reader to our work of [15] and [12]
for a treatment of those subject. An outline of the pa-
per follows. In Section II, we formulate the problem of
receiver partitioning and rate allocation by means of max-

min fairness extrapolation. In Section III, we utilize a two-
phase approach for solving the problem of Section II. In
the first phase, we analytically solve the optimal rate allo-
cation problem assuming a given partitioning. In the sec-
ond phase, we use the allocated rates of the first phase to
obtain a near-optimal partitioning strategy. In Section IV,
we introduce an iterative approach relying on the solution
of Section III to reach a near-optimal solution. Section V
focuses on performance evaluation and includes simula-
tion results along with practical considerations. Finally,
Section VI contains concluding remarks.

II. FORMULATION OF THE PROBLEM BY MEANS OF

FAIRNESS EXTRAPOLATION

In this section, we formulate the general rate alloca-
tion problem of layered media sessions in a manner sim-
ilar to the formulation of [4] and [13]. Consider a mul-
ticast media session with a partitioning of the receivers
into

�
groups. For a media session with � receivers and�

groups, a set �������
	������������� is called a partition-
ing of the receiver set ������������������ if � is a decom-
position of the set � into a family of disjoint sets. The
term group rate is used to denote the aggregate receiv-
ing rate of a receiver in the group while the term layer
rate is used to denote the transmission rate to a specific
layer. For an ordered partitioning of the receivers into�

groups with ordered group rates of � 	��!��"#����$�!��� such
that � 	&% � "'% �� % � � , the layer rates of a layered
media session are calculated in the form of�(	$�!��"*)+�,	$�!��-*)+��"�����.�!�#�/)+���102	 (1)

A receiver in group 3 subscribes to layers 1 through 3
receiving an aggregate rate of ��4 . Reference [14] includes
a treatment of our formulation in the case of replicated
media sessions.

The optimization problem is formulated by means of
defining a per receiver max-min fairness utility with the
objective of maximizing the session utility defined as the
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sum of receiver utilities over the layered media session.
Each receiver is assumed to have an isolated multi-rate
max-min fair rate of 5�6 as described in [10]. This is the re-
ception rate of the receiver and is typically determined by
a network bottleneck link from the source to the receiver
or the receiver itself. Assuming 5 	7% 5 "8% �� % 5�9 ,
denoting the loss tolerance of receiver : by ;*6 , and con-
sidering the max-min fairness utility of [5] defined as<>= 5$6!�!��4�?@�BA CEDF= 5 6 �!��4#?AHG�I = 5$6J�!��4#? (2)

the rate allocation optimization problem can be formu-
lated as

AHG�IKMLON�P�P�P N K�QSR � <UT � AHG�IKML!N�P�P�P N K�Q �V4�W 	 R � < 4 (3)

� AHG�IKML!N�P�P�P N K�Q �V4�W 	 V6YX�Z2[ A
C\D]= 5.6O�!��4�?A>G�I = 5$6O�!��4�?

Subject To: �#4 % 5$6�^)&;@6 (4)

for the optimal receivers partitioning of �`_ �����_	 ���a_" ���������_� � where :cbd��4 and 3e�f������.� � . We
note that the solution to the problem leads to the identifi-
cation of the optimal group rates �g_	 �!�(_" ����.�!�(_� . The ob-
jective of both heuristics of [4] and the dynamic program-
ming algorithm of [13] which was derived based on the
proposition of [9] is to determine the optimal partitioning
and the optimal layer rate allocations such that the utility
function of (3) is maximized while Constraint (4) is satis-
fied. Considering the fact that the max-min fairness utility
function of (3) is not continuously differentiable, we in-
troduce an extrapolation technique to replace the utility
function of (3) with a mathematically well-behaved func-
tion over the set of real numbers. By mathematically well-
behaved, we mean a continuously differentiable function
with no real poles. We select a function h = 5 6 �!��4�? in the
form of h = 5.6O�!��4�?i� =kj1lnm ?J5.6\��4� "4 lnm 5$6o��4 l 5 "6 (5)

and note that not only h = 5 6 �!��4�? is well-behaved for pa-
rameter

m
satisfying the boundary condition ) jHpqmrpsj

,
but it satisfies the boundary and maximum conditions of
function

<t= 5.6J�!��4#? . Figure (1) shows generic sample plots
of
<>= 5��!�u? and h = 5��!�v? versus � for a fixed 5 . Next, we uti-

lize least square error estimation technique to identify the
optimal choice of parameter

m
within the interval of inter-

est w xu�zyO{	|0g} {|~ such that h = 5.6!�!��4�? is the closest estimate of<>= 5.6O�!��4�? . As the result of solving the least square prob-
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Fig. 1. Plots of ����������� and �*�����o��� versus � for a fixed � .
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Fig. 2. The plot of optimal � versus loss tolerance � { .
lem of

A CED� � � yO{� w =kj�lnm ?J5$6Y��4� "4 lnm 5$6o��4 l 5 "6 ) ��45.6 ~ "2� ��4 (6)l � � {Lk�#� {yJ{ w =kj�lnm ?J5 6 ��4� "4 lnm 5 6 ��4 l 5 "6 ) 5 6��4 ~ " � ��4 �
we have observed that the optimal value of parameter

m
is

only a function of loss tolerance ;�6 . Figure (2) displays
the solution for the optimal value of parameter

m
in Equa-

tion (6) for different values of ;�6 in the interval of interest.
We now formulate an alternative rate allocation problem
as

AHG�IKML!N�P�P�P N K�QSR � <a��T � A>G�IKML!N�P�P�P N K�Q �V4�W 	 V6YX�Z2[
=kj�ldm ?J5 6 ��4� "4 lnm 5 6 ��4 l 5 "6(7)

Subject To: ��4 % BWL 4 3H�z������.� � (8)

where BWL 4 is defined as BWL 4�� A C\D 6YX�Z [�yJ{	|0g} { .
III. LMMC TWO-PHASE APPROACH TO RATE

ALLOCATION AND PARTITIONING

A. Phase 1: Rate Allocation Solution

In this section, we provide an analytical solution to the
optimal rate allocation problem formulated by Equation
(7) and Constraint (8) that can be applied to both layered
media and replicated media sessions. Considering the for-
mulation of the problem, we note that it can be decom-
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posed to
�

independent optimization problems as

AHG�IK [ R � <a� 4 � AHG�IK [ V6YX�Z [
=kj�lnm ?J5 6 ��4� "4 lnm 5.6\��4 l 5 "6 (9)

Subject To: ��4 % BWL 4
where 3H�z�������� � . The set of optimization problems of
Equation (9) can then be solved by finding the roots of the
equations� R � <a� 4� ��4 � V6oX�Z2[

=kj1l'm ?J5$6 = 5 "6 )e� "4 ?= � "4 lnm 5.6o��4 l 5 "6 ? " ��x (10)

and extracting the first local maximum satisfying Con-
straint (8).

The overall time complexity of solving for the optimum
point of equation set (10) is � =�� �������@�&? . The time
complexity of the algorithm is by far better than � = � " ?
the complexity of the dynamic programming algorithms
of [13] and [9]. In [14], we investigate the impacts of fac-
ing some of the source and the receiver limitation scenar-
ios when solving LMMC optimal control problem. Due
to lack of space, we skip the discussion here.

B. Phase 2: Partitioning Strategy

In [4], a heuristic approach to partition the receivers of
a layered media session is proposed without introducing a
formal algorithm. In addition, the dynamic programming
algorithm of [13] provides an optimal receiver partitioning
strategy for a media session while computing the optimal
layer rates. In this section, we introduce a near-optimal
partitioning strategy with a time complexity of � = � ? and
show that our partitioning strategy maximizes the session
utility for a set of given group rates. It is important to
note that the result of Theorem (1) of [13], assures that
the order of the resulting partitioning of this section are
preserved.

Considering the general objective of maximizing the
session utility of Equation (7), we observe that an op-
timal receiver partitioning strategy has to assign the re-
ceiver with isolated rate 5�6 to the group �a4 with group
rate ��4 if h = 5.6J�!��4#?�¡¢h = 5$6!�!��£Y?¥¤¦be���������� � � (11)

We now translate the latter observation to a sim-
ple group assignment mechanism. Given the group
rates ��� 	 ����$�!� � � , we first plot the family of func-
tions h = 5 6 �!��4�? versus 5 6 with parameters �#4 where3§� �������� � . Fig. 3 shows the sample plots for� �©¨ . Next, we find the intersection points of every
two functions with consecutive group rates �,4 and ��4�ª 	 .
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Fig. 3. Sample plots of �^��� { ��� [ � versus � { for three values of � [ .
The values of 5.6 at the intersection points are obtained
by finding the roots of h = 5�6O�!��4�?«�¬h = 5$6!�!��4ª 	 ? for the
variable 5.6 . The solution to the equation can be expressed
in the form of 5.6®� ¯ ��4.��4�ª 	 after a bit of algebraic
manipulation. We now pay special attention to the key
characteristic of the intersection points of the curves that
we refer to as partitioning thresholds.

Theorem 3.1: The value of the receiver utility as
defined in Equation (5) is maximized for the choice of the
group rate �#4 for 3+°±� and 3 p��

over the set of given
group rates ���u	$����.�!�#��� if ¯ ��4 02	 ��4 p 5 6 % ¯ ��4$��4�ª 	 .
The receiver utility is maximized for the choice of the
group rate �u	 if 5 6 % ¯ �(	|��" and for the choice of the
group rate � � if 5$6¦°q¯ � �102	 � � .

A proof of Theorem 3.1 is provided in [14]. We
realize that Theorem 3.1 provides the best overall
repartitioning strategy for an unconstrained problem.
Considering the constraint set of (8), we notice that
moving a receiver from group 3q)f� to group 3 can
potentially introduce a new constraint for group 3 . If the
new constraint is far from the existing optimal group rate�(_4 , it can cause a reduction in the sum of the utilities
of groups 3²)z� and 3 after repartitioning. We use the
following heuristic rule to address the issue. A receiver is
allowed to move from group 3«)³� to group 3 if one of
the following conditions holds= 5$6��)8;i6 ¡n� _4 ?^��� =µ´ "¶� _4 p 5$6�*)8;@6 p � _4 ? (12)

In practice, we have observed that setting
´ " bqw xu·¹¸(��xu·¹º ~yields good results for different values of receivers’ loss

tolerance. The same approach can be used to avoid a simi-
lar problem when moving a receiver from group 3 to 3¶)`� .
Reference [14] includes another statistical heuristic rule.

LMMC near-optimal partitioning strategy then reorders
the receivers such that each receiver is moved to a group
maximizing its individual utility according to Theorem
3.1 and condition (12). Note that we use the term near-
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optimal to mathematically consider the effect of solving
the constrained problem besides the fact that LMMC par-
titioning strategy is optimal in the case of solving an un-
constrained problem. Such an algorithm introduces a time
complexity order of � =�� �+? .

IV. LMMC NEAR-OPTIMAL ITERATIVE SOLUTION

In this section, we introduce an iterative approach that
can reach a near-optimal solution considering the fact
that the solution to our two-phase optimal problem is
sub-optimal due to the impact of our phasing approach.
A near-optimal solution can be achieved by iteratively
applying the partitioning results of the second phase to
the first phase and solving the optimal rate allocation
problem again with the alternative partitioning strategy.
The optimal layer rates of the first phase can then be
applied to the near-optimal partitioning strategy of the
second phase to partition the receivers according to the
new set of rates. In what follows we propose the formal
iterative algorithm of LMMC.

LMMC Iterative Rate Allocation-Partitioning Al-
gorithm:»

Step 1: Start from an initial ordered partitioning of
the receivers by uniformly distributing the receivers
among the existing groups. In addition, set the initial
iteration number ¼
��x and the maximum number of
iterations ¼$½ ��¾ .»
Step 2: Calculate the optimal group rates � _ ����u_	 ����.�!�(_� � and the resulting session utilityR � <a� T by numerically solving the system of equa-
tions (10) for the local maximum satisfying condi-
tion (8). Save the previously calculated R � <a��T in
variable ¿ 	 and the currently calculated R � <a�cT in
variable ¿ " .»
Step 3: If À Á L 0 ÁJÂMÀÁ L pqÃ

or ¼t°�¼ ½ ��¾ STOP.»
Step 4: Ä]Å�5 = 3>� j Æ Å � ?¶�

– Calculate the partitioning threshold ¯ ��4 02	 ��4 .
– Repartition groups 3Ç)È� and 3 . For every re-

ceiver belonging to groups 3É)³� or 3 and iso-
lated rate 5.6 , assign the receiver to group 3 if5$6c° ¯ ��4 02	 ��4 and condition (12) hold. Other-
wise, assign the receiver to group 3Ê)¢� .

– Calculate the new optimal sending rate of group3 according to the new partitioning.� /* Ä]Å�5 = 3>� j Æ Å � ? */»
Step 5: Go back to Step 2.

We note that the time complexity of our iterative
algorithm is � = R � �Ë�������+? where R indicates the
number of iterations. We have observed in our experi-
ments that the value of R varies in the range of one to

twenty iterations. Comparing the overall complexity of
LMMC algorithm with that of the dynamic programming
algorithm of [13] � = � - ? , LMMC algorithm achieves a
much lower complexity. It is important to note that the
implementation of the algorithm is fairly practical aside
from its relative theoretical complexity. The following
theorem guarantees the convergence of “LMMC Iterative
Rate Allocation-Partitioning Algorithm”.

Theorem 4.1: The convergence of “LMMC Itera-
tive Rate Allocation-Partitioning Algorithm” mentioned
in this section is guaranteed.

A proof of Theorem 4.1 is provided in [14]. Intu-
itively, LMMC algorithm is employing steepest descent
optimal strategy and is guaranteed to reach a near-optimal
point if such a point exists. As shown by our numerical
results, proper choice of the parameters in (12) leads to a
fast convergence to a local optimal solution.

V. PERFORMANCE ANALYSIS

In this section, we compare the numerical LMMC parti-
tioning and rate allocation results to those of the dynamic
programming algorithm of [13]. The metrics of interest in
our comparisons are the session utility and the experiment
runtime as an indication of the time complexity. We note
that the space complexity of the LMMC algorithm in our
implementation is � = �&? where as the space complexity
of DP algorithm proposed in [13] is � = � " ? .

In our simulations, we utilize tri-, quad-, and
pent-modal distributions to generate receiver isolated
rates. We select the means of distributions from the
set of ��� j�Ì��+ÍÏÎÑÐ �$�$Ò ÍµÎ]Ð �$��x#Ò ÍÏÎÑÐ �$��x�x#Ò ÍÏÎÑÐ �$�.� ÍÏÎÑÐ �
to properly represent ISDN, Cable/DSL, low-speed LAN,
high-speed LAN, and Gigabit LAN users. For each distri-
bution, we also set the standard deviation of the distribu-
tion at

j x�Ó of the mean value yielding disjoint successive
distributions with greater than º�º(·ÕÔ�Ó cetainty.

Fig. 4 and Fig. 5 compare sample results of LMMC
algorithm with those of the DP algorithm of [13]. In each
experiment, we have considered the same loss tolerance
for all of the receivers of the session. The first pair of
curves compare session utilities of the two techniques uti-
lizing the fairness function of Equation (5) for LMMC
and the fairness function of Equation (2) for DP. A re-
view of the sample results of the figures shows a differ-
ence of less than ��x�Ó between the raw session utilities of
the LMMC and the DP algorithms. Considering the fair-
ness approximation as well as the deployment of a gradi-
ent based method by LMMC, the experiments indicate the
robustness of LMMC iterative algorithm. The second pair
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Fig. 4. Session Utility (SU) and Time (T) comparison of LMMC and
DP versus number of receivers (N) for 3 categories of receiver isolated
rates, K=3, and loss tolerance of Ö|×MØ .

1

10

100

1000

10000

100000

10
0

30
0

50
0

10
00



30
00



50
00



10
00

0

30
00

0

50
00

0

10
00

00


(N)

S
es

si
o

n
 U

ti
tl

it
y

-20000
0
20000
40000
60000
80000
100000
120000
140000
160000

T
im

e 
(m

se
c)



LMMC-SU DP-SU LMMC-T DP-T

Fig. 5. Session Utility (SU) and Time (T) comparison of LMMC and
DP versus number of receivers (N) for 5 categories of receiver isolated
rates, K=4, and loss tolerance of Ù�×MØ .

of curves display the runtime of the experiments. In this
area, a review of the results reveals the great performance
advantage of LMMC over DP. We note that the nonlinear
increase in the runtime of the DP algorithm indicates the
threshold at which the so-called curse of dimensionality
prevents the DP algorithm from further scaling. We ar-
gue that although the specific numbers of our experiments
are related to the capabilities of our host server, the same
qualitative behavior is observed in general. We provide
the results of our other experiments in [14].

We note that utilizing the lightweight feedback schemes
of [11], we can further improve the efficiency of our ap-
proach by focusing on the discovery of the span of re-
ceivers isolated rates rather than all of the isolated rates.
Such schemes are attractive in scenarios for which the
span of isolated rates is much smaller than the bandwidth
range useful for multicast content. Another set of such
scenarios are the ones for which the number of layers and
the number of different isolated rate ranges are roughly the
same. In [14], we address the issue of feedback implosion
when reporting the isolated rates and loss tolerance of the
receivers by employing some of the well-known feedback
suppression and aggregation literature techniques. The
same article also includes a discussion of what the best
strategy is for selecting the number of layers.

VI. CONCLUSION

In this article, we analytically solved the problem of
rate allocation and partitioning for layered media systems
within the context of Layered Media Multicast Control
(LMMC) protocol. For a given session bandwidth, we
aimed at providing a two-phase iterative solution converg-
ing to a near-optimal solution. Taking into consideration
the scalability of LMMC techniques, we showed that the
techniques could be effectively adopted in different size
point-to-multipoint groups as well as different speeds of
load change in the network. Finally, we evaluated the per-
formance of LMMC solution and illustrated its applica-
bility in realistic network topologies through the use of
simulations.
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