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We investigate the hydrodynamic friction properties of superhydrophobic surfaces and quantify their

superlubricating potential. On such surfaces, the contact of the liquid with the solid roughness is

minimal, while most of the interface is a liquid-gas one, resulting in strongly reduced friction. We

obtain scaling laws for the effective slip length at the surface in terms of the generic surface

characteristics �roughness length scale, depth, solid fraction of the interface, etc.�. These predictions

are successfully compared to numerical results in various geometries �grooves, posts or holes�. This

approach provides a versatile framework for the description of slip on these composite surfaces. Slip

lengths up to 100 �m are predicted for an optimized patterned surface. © 2007 American Institute

of Physics. �DOI: 10.1063/1.2815730�

I. INTRODUCTION

The design and fabrication of micro- and nanopatterned

nonwetting surfaces have received much attention in recent

years.
1,2

This was initially motivated by the peculiar static-

wetting properties of such surfaces, associated with the so-

called superhydrophobic effect. The natural nonwettability of

the flat substrate, as quantified by the liquid contact angle, is

enhanced by the underlying roughness, reaching values close

to 180°.
3

Depending on the characteristics of the liquid-solid

interface, two different classes of superhydrophobic states

are exhibited, namely the so-called Wenzel and Cassie states.

For the Wenzel case,
4

the liquid impregnates the roughness,

while for the Cassie �fakir� state,
5

the liquid interface is re-

stricted to the top of the roughness, the roughness being oc-

cupied by a gas phase. The relative stability of the two states

depends on the surface structure characteristics �height and

lateral scale, etc.�6
and the experimental conditions �liquid

pressure, etc.�.2,7
While a strong dissipation is expected in

the Wenzel state as the liquid flow follows the contour of the

roughness, it was predicted by Philip
8,9

that a composite in-

terface in the Cassie state should display a low friction-

superlubricating behavior.

Such a superlubricating behavior is particularly attrac-

tive in the context of micro- and nanofluidic devices. As

downsizing leads to an increased surface-to-volume ratio, su-

perlubricating properties of textured nonwetting surfaces

provide a way to bypass the huge increase in hydrodynamic

resistance that comes with system miniaturization.
10

Accord-

ingly, surface effects become key factors in the understand-

ing of the motion of liquids at ever smaller scales. A reduced

wall friction is associated with a breakdown of the no-slip

boundary condition of the hydrodynamic velocity field at the

surface, leading to wall slippage. Slippage is described by

the Navier boundary condition �BC�11
for the velocity field at

the surface, beff�zv=vw, where beff is the effective slip length,

vw is the slip velocity at the wall, and z is the normal coor-

dinate to the wall.

Since the first experiments involving rolling drops,
12

a

few experimental works have reported the characterization of

friction properties of superhydrophobic surfaces.
13–19

All experimental studies confirm large slippage on

microtextured
13,14

and nanotextured
16–19

nonwetting sur-

faces, which are orders of magnitude higher than what is

achievable with liquid on smooth nonwetting walls. Typi-

cally, slip lengths in the micrometer range have been dem-

onstrated on superhydrophobic surfaces, while it remains

within the tens of nanometers range on a smooth hydropho-

bic surface.
20–23

On the theoretical side, flows on composite interfaces

�combining solid and gas areas� were first tackled theoreti-

cally by Philip
8,9

and more recently by Lauga and Stone
24

and Cottin-Bizonne et al.
25

Numerical approaches have also

been followed, either at the molecular scale using molecular

dynamics
6,25

or at larger mesoscopic scales using, e.g.,

Lattice-Boltzmann methods.
26

At the hydrodynamic level,

the composite surface is modeled as a spatially dependent

boundary condition, with a no-slip BC on the solid surface

and a shear-free BC on the liquid-vapor interface.

However, the hydrodynamic flow on a mixed BC is dif-

ficult to solve in practice and analytical results are only

available in simple geometries. These latter essentially re-

duce to the case of a flow on stripes �either parallel or per-

pendicular to the external flow�, as solved by Philip and

Lauga-Stone, so that results for more complex geometries,

even the rather simple case of a regular array of posts, are

still lacking. In particular, for a given nanotexture �character-

ized by its morphology, height, length scale, etc.� investi-

gated experimentally,
17–19

there exists no prediction for the

amount of slippage that is to be expected. Even simple ques-

tions such as whether slippage on an array of posts is ex-

a�
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pected to be larger than for a stripe geometry remain without

any answer up to now.

Thus, a quantitative understanding of liquid friction past

superhydrophobic surfaces is still challenging. The design of

optimized interfaces faces a lack of predictive tools linking

the wall characteristics—texture geometry �pattern type and

dimensions� and chemistry �setting the intrinsic slip length

over the smooth solid�—to the final slippage properties.

In the present work, we propose analytical expressions

for the slip length on superhydrophobic surfaces in the form

of scaling laws in terms of the texture properties. We quan-

tify furthermore how dissipation into the gas layer and the

curvature of the liquid-gas interface may affect the final re-

sult. These predictions are successfully compared to numeri-

cal calculations of the slip lengths both by direct resolution

of the hydrodynamic equations and by finite-element meth-

ods. Altogether, these results are used to discuss the merits of

different generic surface geometries—stripes, pillars,

holes—with respect to the resulting frictional properties. Fi-

nally, we show how these simple analytical laws can be used

to link basic surface parameters to the surface slip length in

order to anticipate and optimize the surface frictional

properties.

II. A SCALING LAW APPROACH FOR SLIPPAGE

We examine in this part the problem of an idealized

superhydrophobic surface in the Fakir state �sketched in

Fig. 1� where a liquid slab lies on top of the surface

roughness.

The liquid-gas interface is assumed to be flat �no menis-

cus curvature�, so that the modeled superhydrophobic sur-

face appears as a perfectly smooth surface with a pattern of

BCs. The latter BCs are taken as no-slip over solid/liquid

areas and shear-free over gas/liquid regions �Fig. 1�. We de-

note as L the roughness periodicity and a the typical length

scale of solid/liquid areas. The fraction of such solid/liquid

areas will be denoted �s. We assume that the fluid is de-

scribed by the Stokes equation, i.e., that the Reynolds num-

ber is very small. This is a pertinent limit for microfluidic

devices. Overall, the situation we investigate is similar to

those studied in the simple geometries previously considered

in Refs. 8, 9, 24, and 25.

In this idealized surface description, it should be recog-

nized that two of the assumptions have a possible influence

on the surface frictional properties. First, by assuming flat

menisci, we have neglected an additional mechanism for mo-

mentum transfer between liquid and wall.
27

Second, by as-

suming a shear-free BC over the gas/liquid regions, the vis-

cous dissipation taking place in the underlying gas phase has

been neglected. Both effects are expected to increase the

surface friction, i.e., decrease the effective slip length. The

results obtained in this section, therefore, provide an upper

limit for the slip length. How curvature of the liquid-gas

interface and dissipation in the gas phase affect the slip

length will be discussed in Sec. III.

In the following, our aim is to define an effective bound-

ary condition for the composite interface in the form of an

effective �averaged� Navier BC:

��w� = �l��̇w� = �eff�uw� , �1�

where �l is the liquid dynamic viscosity, �eff is the effective

surface friction coefficient, and ��w�, ��̇w�, and �uw� are, re-

spectively, the averaged shear stress, shear rate, and �slip�
velocity at the interface. This BC here expressed in the form

of a stress balance at the interface can also be rewritten to

introduce the effective slip length beff characterizing the

interface,

beff��̇w� = �uw� with beff =
�l

�eff

. �2�

Let us emphasize that the effective slip length beff is the

pertinent BC for the hydrodynamic problem at scales larger

than those characterizing the underlying roughness �L�. The

roughness scales are therefore integrated out in the definition

of beff.

A. Limit of vanishing solid areas: �
s
\0

We first consider the case in which the solid fraction �s

is very small. This is the interesting limit to obtain superlu-

bricating surfaces, for which slippage effects are expected to

be the largest.

In such a limit, the wall is almost frictionless, and close

to the interface the flow is plug-like and described by the

imposed plug-flow velocity U. Accordingly, the averaged

slip velocity simply reads in this situation �uw��U.

Let us now estimate the averaged viscous stress at the

wall ��w� in this limit. The residual friction stress is only

imposed on the solid parts, i.e., over a fraction �s of the

surface. This leads to an averaged shear stress

��w� = �s � �l��̇w�s, �3�

where ��̇w�s is the local shear rate on the solid surface. To

estimate this quantity, we recall that the Stokes equation has

a Laplacian form, which strongly couples the spatial depen-

dence of the velocity profile along the different axes �x ,y ,z�.
This implies that ��̇w�s= ��vx /�z�s�U /a, with a the typical

size of the solid area.

Gathering the above results, one obtains that the effec-

tive slip length scales as beff�a /�s. We thus write in the

limit of small solid fraction �s

FIG. 1. �Color online� Sketch of the liquid interface at a superhydrophobic

wall in the Cassie state. L, e: roughness periodicity and height; a: typical

length scale for solid/liquid contact areas.
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beff �
�s→0

�
a

�s

, �4�

with � a numerical prefactor, which is expected to depend on

the underlying geometry of the surface �stripes, posts, etc.�.
This relationship is the main result of this paper.

First, it is interesting to compare this scaling law �4� to

existing analytical predictions in simple geometries. For pe-

riodic grooves oriented parallel
8,9 �respectively, perpen-

dicular
24� to the flow, the exact expression for beff actually

reads

beff =
− L

	
log�cos		

2
�1 − �s�
� �5�

�respectively, 1 /2 of Eq. �5��. In the limit of vanishing solid

fraction �s, it therefore predicts beff to depend only logarith-

mically on �s through beff�−L log �s. For this groove ge-

ometry, the solid fraction simply reads �s=a /L so that the

scaling law approach �4� now becomes

beff �
�s→0

L . �6�

In agreement with the exact calculation, our approach, there-

fore, predicts no dependency of the effective slip length on

the solid fraction �s to leading order in �s �i.e., up to the

logarithmic term�.
We now consider a more complex geometry of major

practical interest: a bidimensional �2D� pattern of posts. In

this situation, the solid fraction now reads �s= �a /L�2 so that

Eq. �4� predicts that

beff �
�s→0

�
L

��s

. �7�

Since no exact calculation is available for post patterns, we

have checked the validity of the above scaling law using a

numerical calculation for the slip length. To this end, we

used a previously reported numerical approach.
25

We only

briefly recall here the basic steps of this approach and refer

the reader to Ref. 25 for a more detailed description. A shear

flow is considered over a composite surface characterized by

a heterogeneous slip length pattern. The boundary is mod-

eled by a pattern of local slip lengths on a planar surface.

The characteristics of the flow far away from the surface and

an effective slip length are determined by solving the hydro-

dynamic equations with the hydrodynamic BC given by the

local slip length, using an integral method.

Using this numerical approach, the effective slip length

was computed for a square lattice of solid patches of square

cross section. The computed slip lengths beff /L are plotted in

Fig. 2 against 1 /��s for different solid fractions in the range

�s
30%. The agreement with the prediction �7� is shown to

be excellent, therefore validating the proposed scaling law.

As an additional check, these results were complemented by

numerical results obtained from 3D finite-element methods

�see Sec. III B for details� in the same geometry �square lat-

tice of solid patches of either square or disk shape�. As

shown in Fig. 2, the agreement is again excellent, with all

data collapsing on a single straight line. A linear regression

performed on the numerical calculation data allows us to

access the coefficients of the scaling behavior, Eq. �7�,
beff /L0.325 /��s−0.44. This formula provides a useful and

very simple expression for the slip length on patterned sur-

faces of posts.

To finish, we show that it is simple to relax the assump-

tion of a no-slip BC on the solid areas, assuming a finite

intrinsic slip length bs. Slippage over a bare, smooth surface

�here denoted as “intrinsic slippage”� has been intensively

investigated over the past decade.
28

An intrinsic slip length

bs of a few tens of nanometers is demonstrated over smooth,

hydrophobic surfaces.
20–23

Going back to the above derivation of the scaling law in

the limit �s→0, one expects that a finite slip length on the

solid will reduce the shear rate ��̇w�s over the solid regions:

��̇w�s�U / �a+bs�. The averaged shear stress over the total

surface now reads ��w�=�s�lU / �a+bs�. One gets accord-

ingly a modified scaling law for the effective slip length,

beff �
�s→0

a + bs

�s

. �8�

This modified scaling is tested on the square lattice ge-

ometry of solid patches in Fig. 3. The difference between the

effective slip length beff��s ,a ,bs� with intrinsic slippage bs

on the solid, and the no-slip prediction �ideal case shown in

Fig. 2� bideal�beff��s ,a ,bs=0�, is plotted against bs /�s. This

figure confirms the soundness of the scaling law �8�, which,

therefore, allows us to quantify the impact of an intrinsic

solid slip on the overall effective slip over superhydrophobic

surfaces.

Additionally, it is important to note that bs /�s does not

depend on the geometry of the surface so that the increase of

the effective slip length due to the intrinsic slip is indepen-

dent of the details of the underlying surface texture �stripes

or posts�. Moreover, Eq. �8� shows that such a term will play

a role only if the size of the solid region, a, is of the order of

the intrinsic slip length: bs�a. With bs limited to a few tens

FIG. 2. Normalized effective slip length beff /L for a composite surface made

of solid patches organized on a square lattice; limit of low solid fraction:

�s=2−30%. beff /L is plotted against 1 /��s according to Eq. �4� with �s

= �a /L�2. 2D numerical approach �Ref. 25�: ��� solid patches of square

cross section; 3D finite-element calculation: solid patches of ��� square

cross section, ��� circular cross section; �—� linear regression: beff /L

=0.325 /��s−0.44.
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of nanometers,
28

intrinsic slippage will only play a role for

very sharp nanostructures, with a in the tens of nanometer

range.

B. Limit of vanishing gas areas: �
s
\1

We now consider the opposite limit of vanishing gas

area: �s→1. This limit has a much lower practical impor-

tance than the previous one, �s→0. Indeed, in this case the

shear-free area will have a tiny influence on the wall friction

and the effective slippage is expected to be much smaller. We

mention this result for completeness.

Since in this limit the BC is almost everywhere a no-slip

BC, the flow is now appropriately described by the imposed

shear rate �̇. Accordingly, the averaged viscous stress at the

wall is expected to basically reduce to ��w��l�̇ in this

limit.

Now, the averaged slip velocity at the wall only results

from the �1−�s� surface fraction of gas areas. In these re-

gions, the typical fluid velocity is of order ��̇, with � a

characteristic length scale for the gas areas. Combining those

two estimates leads to the scaling behavior

beff �
�s→1

��1 − �s� . �9�

Again, this result �9� can be first compared with analytical

predictions for grooves.
8,9,24

For this simple one-dimensional

geometry �1D�, the typical length scale � is simply �=L�1
−�s� and Eq. �9� reduces to beff�L�1−�s�

2. This prediction

is in perfect agreement with the analytic expression in this

limit.
8,9,24

Turning now to geometries made of 2D patterns, the

scaling law predictions are tested against the numerical re-

sults for the slip length obtained using the approach de-

scribed in Ref. 25. Two geometries have been considered: a

square lattice of square solid patches, corresponding to a

surface made of pillars as already studied in Sec. II A, and of

square gas �shear-free� patches, corresponding to a holes sur-

face texture.

It is interesting to note that the two 2D geometries in-

vestigated do not behave the same way in the considered

limit �a point discussed in more detail in Sec. II C�. Namely,

for the hole pattern, the characteristic size � simply relates to

the area of the hole so that one has �=L�1−�s. On the

contrary, for a post pattern, the characteristic size � over

which the flow is modified is associated with the small width

of the gaseous stripe separating two adjacent posts. Conse-

quently, � scales as ��L�1−�s� for the post pattern, which

means that this 2D structure behaves as a stripe-like geom-

etry when �s→1.

Numerical results for the effective slip length obtained

with the different geometries �simple grooves, posts, and

holes� are gathered in Fig. 4. The main figure shows data

obtained for grooves—either parallel or perpendicular to the

flow—and posts. The expected scaling beff�L�1−�s�
2 is

very well verified with �=0.41±0.04 �respectively, �
=0.21±0.02� agreeing with the prefactor �=0.393 �respec-

tively, 0.186� obtained from analytical prediction
8,9,24

for

grooves parallel �respectively, perpendicular� to the flow �see

Eq. �5��. As predicted, in this �s→1 limit, the post geometry

is equivalent to perpendicular grooves in term of surface fric-

tional properties.

Finally, the inset of Fig. 4 displays data for the hole

pattern. The modified behavior now predicted by the scaling

law, beff�L�1−�s�
3/2, is perfectly recovered.

Overall, the agreement with Eq. �9� is shown to be ex-

cellent for all geometries and for solid fractions �s�60%.

Eventually, we quote that the effect of intrinsic slippage

on the solid surface can be considered along the same lines

FIG. 3. Influence of a finite slippage on solid patches on the normalized

effective slip length beff /L for a composite surface made of solid patches

organized on a square lattice; limit of low solid fraction: �s=2–16%. In-

crease in beff /L compared to the reference for no slip on solid is plotted

against bs / �L�s� according to Eq. �8�. 2D numerical approach for patches of

square cross section �Ref. 25�: ��� �s=2%, ��� �s=5%, ��� �s=16%; �—�
linear regression: �beff /L=0.165bs / �L�s�.

FIG. 4. Normalized effective slip length beff /L for a composite surface of

various geometries in the limit of high solid fraction: �s=60–100%. beff /L

is plotted against ��1−�s� /L according to Eq. �9� with � the geometry-

dependent typical size of shear-free areas. Symbols are numerical data ob-

tained by solving the hydrodynamics equations �Ref. 25�. Main: �=L�1
−�s�; ��� square solid patches organized on a square lattice �surface struc-

ture made of pillars�, ��� solid stripes perpendicular to the flow, ��� solid

stripes parallel to the flow, �—� linear regressions: slopes are, respectively,

0.21±0.02 and 0.41±0.04. Inset: �=L�1−�s; ��� square shear-free patches

organized on a square lattice �surface structure made of holes�, �—� linear

regression: slope is 0.17.
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as above, yielding the prediction beff�bs to leading order in

�1−�s�: the main contribution to slippage originates in the

intrinsic slippage on the solid surface, therefore correspond-

ing to a small effective slip length.

C. Influence of the geometry
on the effective slip length

In the experimentally interesting limit �s→0, the differ-

ent results can be summarized, restricting to the case of a

no-slip BC on the solid regions, as

stripe geometry beff � − L log��s� ,

�10�

post geometry beff �
L

��s

.

These predictions show that the geometry has a strong effect

on the effective slip length. Indeed, for stripe geometries the

log-dependency in �s practically limits the achievable effec-

tive slip lengths to no better than the surface periodicity L.

On the contrary, the power-law divergence exhibited by the

post pattern as �s→0 makes it possible to overcome the L

bound to achieve much higher effective slip lengths.

It is interesting to note that this change in behavior does

not hold for any 2D pattern as opposed to a 1D pattern. As

already noticed in the preceding section, 2D holes and post

patterns may have completely different frictional properties,

and in the present limit �s→0, the pattern of holes surface

indeed reduces to a stripe-like one. As a matter of fact, for

holes, �s2a /L �with a the thickness of the solid walls

surrounding the holes�, so that the general predictions, Eq.

�4�, lead to beff�L, and holes thus behave like stripes.

Of course, this is to compare with the opposite limit

�s→1, where we already noticed that the post pattern this

time behaved as a stripe-like structure, in contrast to the

behavior of the hole pattern.

The two limiting cases can be rationalized in the follow-

ing way. Slippage in the �s→0 limit depends on the typical

scale a of the solid phase �see Eq. �4��, while in the �s→1

limit it depends on the gas phase extension � �see Eq. �9��. A

structure shifts from what we called 2D behavior to a 1D

stripe-like behavior whenever this typical size a �respec-

tively, �� no longer reduces to the square root of the solid

�respectively, gas� phase area. Not surprisingly, this type of

criterion amounts to considering a shape factor for the phase

under scrutiny: an elongated phase structure leading to a

stripe-like behavior.

These points are summarized in Fig. 5, where the effec-

tive slip lengths are plotted as a function of the gas area

fraction �1−�s� for different patterns: parallel grooves, per-

pendicular grooves, pillars, and holes. Note that for discreti-

zation reasons in the numerical calculations, we were limited

to solid fractions �s higher than 1% for pillars, and to the

more stringent condition �s10% for holes. Even with this

restriction, the effective slip length for surfaces made of pil-

lars �squares� is seen to be much higher than for periodic

grooves �solid and dashed lines� and holes �circles� in the

limit �s→0. Additionally, one verifies that holes behave as

grooves perpendicular to the flow in this low solid fraction

limit, while in the opposite limit �shown in the inset of Fig.

5�, it is the pillar surface that behaves that way. In the limit

�s→1, the surface made of holes is the one having the

higher effective slip length for a given solid fraction.

Altogether, surfaces made of pillars �posts� are the best

candidates to obtain very large slip lengths in the �s→0

limit.

III. TOWARD A GENERAL DESCRIPTION
FOR THE SLIP LENGTH

In the preceding section, we derived general scaling laws

relating the surface geometry to the effective surface friction

at the superhydrophobic wall. However, these general scaling

laws are obtained within an idealized description assuming a

flat liquid interface and “ideal” shear-free BC over the gas-

eous regions.

The validity of these assumptions is now examined and

these effects are quantified. Expressions for the effective slip

lengths taking these effects into account are provided as a

predictive tool for experimental situations.

A. An interpolation formula for composite slippage

We start by considering the situation in which the slip

length on the gas phase is not infinite, so that the local BC is

not a shear-free BC as assumed in Sec. II. We denote as bg

the slip length on the liquid-gas interface. We assume that a

no-slip BC applies on the solid regions.

Let us first consider the limiting case bg→0. For a shear

flow with shear rate �̇, the velocity profile may be approxi-

mated as u�x ,y ,z�= �̇�z+b�x ,y��, with b�x ,y� the locally

varying slip length. Such an approximation is expected to be

valid when b is smaller than its variation length scale ��b

�1, expressed here as bg�L�. The averaged velocity profile

thus reads �u��z�= �̇�z+ �b��. Using the definition of the ef-

FIG. 5. Normalized effective slip length beff /L as a function of the gas area

fraction �1−�s� for a composite surface of geometries. 2D numerical ap-

proach �Ref. 25� ��� square solid patches organized on a square lattice

�surface structure made of pillars�, ��� square shear-free patches organized

on a square lattice �surface structure made of holes�, �--� solid stripes per-

pendicular to the flow, �—� solid stripes parallel to the flow. Inset: focus on

the low gas fraction region.
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fective slip length, this velocity profile is expected to identify

with �u��z�= �̇�z+beff�. This yields the following expression

for the effective slip length in this limit:

beff = �1 − �s�bg. �11�

One may show this result more rigorously using a

perturbative approach of the flow field in bg. The reference

flow field corresponds to bg=0, which reads, for a shear rate

�̇ at infinity, u0= �̇z. The first-order correction for the flow

field over a composite surface with no-slip region S0 and

partial slip region Sg thus verifies �l�u1=�P1, together with

the following boundary condition on the liquid-gas

interface: �bg�z�u0+u1��w= �u1�w. In the limit bg→0, one

has �u1�wbg�̇ so that in the end �uw�= �1−�s�bg�̇, and

beff= �1−�s�bg as shown above.

For large bg, no such simple prediction could be ob-

tained. However, it is possible to propose an interpolation

formula that will prove to be useful in the following. This

interpolation is based on the two known limits: for bg→0,

beff= �1−�s�bg; for bg→�, beff�bideal with bideal the effec-

tive slip length obtained in the idealized case where a shear-

free BC is assumed at the liquid/gas interface. bideal is given

by the expressions discussed in Sec. II �typically bideal

�a /�s�.
A heuristic formula interpolating between these two lim-

iting cases is

1

beff

=
1

�1 − �s�bg

+
1

bideal

. �12�

This amounts to adding the friction coefficient in the above

two limits. This interpolation formula is tested in Fig. 6.

While there is no deep physical justification for such a for-

mula, it is shown to provide a very good description of the

effect of a finite slip length on the liquid-gas interface.

In the following, we will make use of this interpolation

to discuss the effect of a finite dissipation in the gas phase.

B. Finite dissipation within the gas subphase

We now discuss how the dissipation in the gas phase

modifies the friction properties and the effective slip length.

In Sec. II, the assumption of a shear-free BC at the

liquid-gas interface implicitly amounts to neglecting such a

dissipation. As a consequence, the predicted effective slip

length at the surface does not depend on the liquid viscosity.

This is to contrast with the opposite situation, which we will

refer to as the “gas cushion model,” which assumes that the

dissipation at the surface is dominated by the shearing of a

continuous gas layer, lying in between the solid and liquid

phases �gas cushion�. Such a model predicts
29,30

beff =
�l

�g

e , �13�

with �g the gas dynamic viscosity and e the thickness of the

gas layer. Of course in the limit of vanishing �s, this should

represent an upper bound value toward which the slip length

will saturate.

In the following, we develop an approach to estimate the

dissipation resulting from the gas phase in intermediate cases

�finite �s and �g /�l�. Focusing on a surface structure corre-

sponding to a square lattice of cylindrical pillars, which re-

semble most of the artificial superhydrophobic surfaces, we

will first define and estimate an averaged slip length bg over

the gas area. Then we will make use of the interpolation

formula, Eq. �12�, to obtain the effective slip length.

Before proceeding with this strategy, it should be men-

tioned that the problem of Stokes shear flow over a liquid-

impregnated roughness ��g now equals �l� has been the sub-

ject of different works, especially in the simpler groove

geometry, where it has been solved analytically by Wang
31

using eigenfunction expansions and matching. In this simpler

geometry, a strategy might then be to follow Wang’s ap-

proach by modifying the matching condition to incorporate

the viscosity contrast. To our knowledge, however, no such

route has been developed for the surfaces made of pillars that

we consider now.

We start with the estimate of the averaged slip length bg

over the gas area. To evaluate the extra dissipation occurring

within the gas subphase, we use an effective medium ap-

proach analogous in spirit to Darcy-Brinkmann’s law in a 2D

porous medium.
32

The gas is assumed to flow parallel to the

bottom reference surface �see Fig. 1� and satisfies a Stokes

equation,

�g�U� = ��P , �14�

with P the gas pressure. An effective medium approach

amounts to replacing the �gas+pillars� problem by a homo-

geneous problem with an effective velocity Ũ� and an effec-

tive pressure gradient whose strength is set by the drag on

the pillars,

FIG. 6. Effective slip length beff for various surface geometries, compared

with the interpolation formula �12�. Numerical results for the effective slip

length using the approach in Ref. 25: ��� periodic pattern of pillars with

�s=3–80%; ��� periodic pattern of holes with �s=60–80%. This also in-

corporates the effect of the viscosity of the gas phase �g on the effective slip

length �see Sec. III B�. In this case, the effective slip length is calculated

using finite-element calculations with various surface heights e /L �0.05–2�
and viscosity ratio �l /�g: �0.01–100�: ��, �� stripes �perpendicular or par-

allel to the flow� with �s=20%; ��� same for pillars; ��� same for holes.

�--� linear prediction: y=x.
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− ��P̃ = �Fd, �15�

with �=1 /L2 the number density of pillars and Fd the drag

force per unit of length experienced by a single pillar. The

latter is of the form Fd=−���s�Ũ�, where ���s� is the friction

coefficient, the �s dependency of which accounts for hydro-

dynamic interactions between pillars and can be found in the

literature.
33

For example, for a square array of pillars, a se-

ries expansion in �s leads to

4	�g

���s�
= −

1

2
ln �s − 0.738 + �s − 0.887�s

2 + 2.039�s
3

+ O��s
4� , �16�

accurate to within 5% in the range of practical interest �s


30%. Combining Eqs. �14� and �15� with the definition of

���s�, one obtains the relation

�Ũ� =
����s�

�g

Ũ� , �17�

complemented by the BCs Ũ��z=0�= �uw�g and Ũ��z=−e�
=0. It resolves straightforwardly and yields an averaged vis-

cous surface stress of

��w�g = �g�uw�g

q

tanh qe
, �18�

with q2=����s� /�g. According to Eqs. �1� and �2�, this pre-

dicts for the averaged slip length bg over the gas areas

bg =
e�l

�g

tanh qe

qe
, �19�

with q��s� given above, an expression reminiscent of the

Beavers and Joseph BC on porous media.
34

To estimate the effective slip length, we now use this

prediction together with the interpolation formula, Eq. �12�,
to obtain

1

beff

=
1

�1 − �s�
e�l

�g

tanh qe

qe

+
1

bideal

, �20�

where we recall that bideal stands for the effective slip length

for the composite surface with a negligible dissipation in the

gas �shear-free BC�, as discussed in Sec. II.

To assess the validity of this approach, we have con-

ducted numerical resolution of the Stokes equations using

finite-element methods implemented through Comsol
©

. The

computed geometry is like the one sketched in Fig. 1 with an

undeformable planar liquid interface separating a liquid

phase and a gas phase, with a given viscosity ratio �g /�l. A

planar upper wall �not sketched� encloses the liquid slab

separated from the liquid interface by a distance H �H was

chosen large enough so that the results matched the H→�
limit�. Symmetries were used to reduce the size of the com-

putation cell. A Couette flow is simulated by imposing a

velocity U of the top planar wall.

The resulting flow field is computed, from which we

have extracted the effective slip length beff over the entire

surface, as done previously. We also measured the averaged

slip length bg over the gas areas. The latter is defined from

the averaged shear stress ��w�g and the averaged slip velocity

�uw�g over the gas phase according to Navier-like relation-

ships of the form �1� and �2�.
Let us first discuss the result for the averaged slip length

bg. The comparison between the theoretical prediction �19�
and the numerical results using finite-element computations

is shown in Fig. 7. For the explored viscosity ratios �l /�g,

the gas layer thickness e /L, and the solid fraction �s, our

analytical prediction proves very satisfactory and remains al-

ways within 20% of the numerical value.

We can now test the global result for the effective slip

length, in Eq. �20�. This phenomenological relationship is

tested by comparing with the results of the 3D finite-element

calculation—where both beff and bg are measured—but also

by comparing with the 2D numerical approach
25

with a flat

composite interface with mixed BC: no-slip and partial slip

with slip length bg. This is done in Fig. 6, where �beff
−1

−bideal
−1 �−1 is plotted against �1−�s�bg. As already noted, the

interpolating formula �20� appears to be astonishingly effi-

cient. It describes with very good precision the effect of the

finite dissipation within the underneath subphase. Combining

Eqs. �16� and �20� allows us to quantify the influence of the

subphase dissipation on the effective slip length.

C. Pressure dependency: Meniscus curvature effect

In this section, we discuss qualitatively the effect of a

pressure drop �P= Pg− Pl between the liquid and the under-

lying gas phase. A pressure drop is associated with a curva-

ture of the liquid-vapor meniscus, leading to a reduction of

slippage. Our aim in this section is to provide an upper limit

for the pressure drop �P below which curvature effects can

be neglected. To this end, we shall focus on the case in which

the gas meniscus is oriented outward �protruding by a dis-

tance � into the liquid phase�, which can be handled in a

simple way within the present description. This situation was

FIG. 7. Effective slip length bg over gas areas as obtained from finite-

element calculations, compared with theoretical predictions according to Eq.

�19�. The surface is made of cylindrical pillars of height e arranged on a

square lattice and the viscosity ratio �l /�g between the two phases is varied

from 0.1 to 100; solid and empty symbols correspond, respectively, to e /L

=0.25 and e /L=1. ��, �� �s=30%, ��, �� �s=20%, ��, �� �s=10%,

��, �� �s=3%, �-·-� perfect match: y=x.
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recently shown to be relevant experimentally whenever no

direct control can be exerted on the gas subphase,
35

and we

expect the present analysis to capture the general features

occurring at curved interfaces.
27,36

To obtain how pressure-induced curvature effects

modify the slip length, we follow a similar approach to that

in the preceding section. The additional dissipation resulting

from the boundary curvature will be incorporated as a finite

slip length bg applied on the liquid-gas interface. In the case

of a curved gas meniscus, this effective slip length bg should

correspond to the local radius of curvature,
37

which reads

bg��
2
/� in a parabolic approximation.

This relationship, based on the local expression of the

stress tensor in the tangential/normal vector frame,
37

can ac-

tually be recovered with a simple scaling argument. Starting

from the expression for the drag force F=4	�lRu experi-

enced by a spherical bubble moving at velocity u,
38,39

we

expect the additional drag exerted on the cap to be of the

form

�F�g � �l��uw�g. �21�

The averaged shear stress resulting from this drag force is

simply ��w�g= �F�g /�
2 with � the typical length scale for the

gas areas so that in the end one recovers for the effective slip

length over the gas areas

bg � �
2
/� . �22�

We are now in a situation similar to the one considered in

Sec. III B except for the origin of bg. The effective slip

length can be obtained using the interpolation formula �12�.
It is first interesting to compare this prediction with a

recent analytical work considering the 1D situation of a shear

flow parallel to grooves.
36

In this geometry, a first-order per-

turbative approach was developed that allowed to quantify

the effect of meniscus curvature in the limit ��� ��=L

−a�. Considering the limit of large solid fraction �s, our

scaling approach provides in this 1D situation the following

curvature correction to the effective slip length:

beff − bideal � − �1 − �s�� , �23�

which is obtained by combining Eqs. �9�, �12�, and �22�. This

result agrees fully with the first-order correction term found

in Ref. 36.

In the more interesting limit of a 2D surface pattern with

�s→0, the ideal flat surface slip length is now given by Eq.

�4�. We thus obtain

beff = 	 �

L2
+

1

bideal


−1

�24�

with bideal /L0.325 /��s−0.44 �see Sec. II�. This result

shows that in the limit bg=L2
/�
bideal, the effective slip

length beff does saturate at the gas spherical cap radius of

curvature. Coming back to macroscopic variables, this radius

of curvature can be traced back to the pressure difference

between the liquid and the gas phase through the Laplace

equation, �P= Pg− Pl=2�lg� /L2, with �lg the liquid/gas sur-

face tension. A pressure difference between the liquid and the

gas thus induces a saturation of the effective slip length at a

value beff→2�lg /�P. To fix ideas, for �P�1 bar, beff satu-

rates at beff�1 �m.

These results allow us to estimate the domain of pressure

difference �P, for which the curvature effects do not affect

the slippage on the superhydrophobic surface. According to

Eq. �24�, this amounts to L2
/��bideal, with bideal the slip

length when curvature effects are negligible. This can be

rewritten

�P �
�lg

bideal

. �25�

This condition shows that situations with larger slip

lengths are more sensitive to curvature effects. However, on

can note that a reasonable pressure difference in the order of

tens of mbars will not affect a slip length in the hundreds of

micrometers range. It should therefore be moderately limit-

ing in the design of reduced friction interfaces. This is sup-

ported by the absence of pressure effects reported in Ref. 19

or the low curvature reported in Ref. 13.

We eventually remark that such curvature effects are ex-

pected to be more important for surfaces with a roughness

made of holes, for which the gas is not connected to a res-

ervoir. Depending on the condition for surface immersion,

gas may be trapped in the holes with a non-negligible excess

pressure. Such effects have indeed been observed in Ref. 35,

with a geometry of holes of size ��650 nm, thus resulting

in a strongly reduced slip length.

IV. DISCUSSION

The results obtained in the previous sections are summa-

rized in Table I for the pillars’ surface geometry. Based on

this, we now discuss how to optimize slippage, and what

maximum slip length may actually be expected, taking into

account the actual limitation in surface engineering �nano-

lithography, etc.�. In the following, we will restrict our dis-

cussion to the case of flat interfaces, i.e., the pressure differ-

ence �P obeys the �nonrestrictive� condition in Eq. �25�. As

we noted above, a geometry of holes is to be avoided to

reduce these effects. This is, however, not actually limiting,

as this geometry is not the one that favors large effective slip

lengths �see Sec. II C�.
Let us consider a practical surface. Of course from the

different previous sections, minimizing the friction and

maximizing the slip length would require the use of large

periodicity L. However the latter is limited by stability con-

siderations: the transition to the impregnated Wenzel state,

where the liquid fills the roughness and therefore sweeps out

TABLE I. Summary of the effective slip length for flows over a surface

made of pillars in various situations. bg origin and expressions: �a� sublayer

viscous dissipation bg= �e�l /�g�tanh�qe� / �qe�; �b� curvature of menisci bg

=2�lv /�P.

Model assumptions beff

Ideal: flat, no-slip, shear-free bideal=L�0.325 /��s−0.44�

Finite solid slip bs bideal+0.165bs /�s

Finite gas slip b
g

�a�,�b� �bideal
−1 + ��1−�s�bg�−1�−1
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the gas lubricating pockets, is indeed associated with the

disappearance of superlubricating properties.
6,19

A reason-

able compromise may lie in the range L� few �m for which

pressure differences of tens of mbars—typical for gravity-

driven microfluidic flows—can be withstood by an air/water

interface. Note that for a precise value of the stability limit,

one should actually take into account all surface geometric

parameters, including, for instance, the structure height.
25

Now for microfabricated or nanofabricated surface pat-

terns, the exact geometry of the surface is known a priori

and Eqs. �4�, �8�, �12�, and �19� allow us to estimate the

expected frictional properties of this surfaces. However, for

most superhydrophobic surfaces reported, the structure ge-

ometry is not as controlled, and a key parameter such as the

solid fraction �s has to be estimated or measured. It is there-

fore very convenient to relate this parameter to a macro-

scopic observable such as the effective contact angle �eff on

the surface. With �0 the contact angle on the bare surface �in
the range of 100–120° for hydro- or fluorocarbon coatings�,
�eff relates to �s through the Cassie-Baxter relation,

5

cos �eff = �s�cos �0 + 1� − 1. �26�

Fixing the typical height of the structures to e=L=5 �m and

assuming a pillars-like type of geometry, it is therefore pos-

sible to predict the frictional properties beff of the surface as

a function of its macroscopic effective contact angle �eff. For

pillars, Eq. �4� gives

beff  �L� cos �0 + 1

cos �eff + 1
− � , �27�

with �=0.325 and �=0.44 the numerical factors. This ex-

pression shows that close to �eff=180°, beff strongly diverges,

like

beff �
L

180 − �eff

. �28�

This is apparent in Fig. 8, where huge slippage in the hun-

dreds of micrometers range can be achieved for large yet

achievable
10

contact angles.

It should be noted that for such low solid fractions, the

dissipation within the gas sublayer, though small, may have a

non negligible effect as it is predicted to decrease the slip

length from 110 �solid line� to 60 �m �dashed line� for �eff

=179°. As a consequence, the effective slip length at the

surface will depend on the liquid viscosity. Let us stress,

however, that this dependency is much weaker than what

would be predicted by the simple “gas cushion” model, for

which beff scales as �l. For the previous example, �eff

=179°, doubling the liquid viscosity only modifies beff from

60 to 80 �m. An effect of fluid viscosity on the slip length

has been reported in Ref. 17, however with a much larger

magnitude than with the above prediction.

We note in addition that the sublayer dissipation has

been calculated assuming no slip of the gas on the solid

surfaces, while with a mean free path of order 0.1 �m we

would anticipate a slip length for the gas onto the solid of the

same order. We therefore somewhat overestimate the sub-

layer dissipation together with its influence on beff.

Finally, we note that the effect of a finite slip length bs

on the solid in the tens of nanometer range does decrease the

overall surface friction but still not in large proportion for

contact angles below 179°. In the considered example, and

for �eff=179°, it would change the overall slip length from

60 to 65 �m �not plotted in Fig. 8�. Such an effect is more

effective as the effective contact angle �eff is very close to

180°.

In conclusion, we presented here a scaling law analysis

that allows us to calculate the frictional properties of super-

hydrophobic surfaces as a function of the generic geometri-

cal parameters characterizing the surface structure. These

laws were successfully tested against numerical calculations

for generic geometries and showed that very large slip

lengths can be obtained for an ultrahydrophobic surface,

characterized by a contact angle very close to 180° ��eff

�178° �.
Such surfaces may be obtained by present techniques of

nano-engineering. For example, a surface made of pillars of

�50–100 nm in diameter, 5 �m apart, is now achievable

and corresponds to an effective contact angle �eff larger than

179°. For such surfaces, our analysis predicts slip lengths

that can reach hundred of micrometers. Beyond, the slip

length is ultimately limited by the dissipation in the gas

phase. We hope that our predictions, and the simple analyti-

cal laws we provided will motivate further experimental

work to develop superlubricating surfaces, with ultralow liq-

uid friction.

ACKNOWLEDGMENTS

We acknowledge support from ANR PNANO. We thank

Elisabeth Charlaix and Jean-Louis Barrat for many discus-

sions on the subject.

FIG. 8. Effective slip length beff as a function of the contact angle �eff on the

superhydrophobic surface. The considered surface is made of pillars of

height e=5 �m arranged on a square lattice of periodicity L=5 �m. The

pillars’ radius is the only remaining geometrical parameter that controls the

overall solid fraction �s, the latter being related to �eff according to the

Cassie relation �26�. The viscosity contrast between the liquid and gas cor-

responds to the water/air interface: �l /�g=55.5. Theoretical expressions are

taken according to Table I: �—� theoretical prediction assuming ideal BCs

on the composite interface �no-slip and shear-free�, �--� theoretical predic-

tion assuming no slip on the solid and a finite dissipation within the gas

sublayer �-·-� upper bond of a uniform gas layer ��s=0�. Inset: close-up of

the near 180° contact angle region.
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