
1

Achieving Maximum Energy-Efficiency in

Multi-Relay OFDMA Cellular Networks:

A Fractional Programming Approach
Kent Tsz Kan Cheung, Shaoshi Yang, and Lajos Hanzo, Fellow, IEEE

Abstract—In this paper, the joint power and subcarrier al-
location problem is solved in the context of maximizing the
energy-efficiency (EE) of a multi-user, multi-relay orthogonal
frequency division multiple access (OFDMA) cellular network,
where the objective function is formulated as the ratio of the
spectral-efficiency (SE) over the total power dissipation. It is
proven that the fractional programming problem considered is
quasi-concave so that Dinkelbach’s method may be employed for
finding the optimal solution at a low complexity. This method
solves the above-mentioned master problem by solving a series
of parameterized concave secondary problems. These secondary
problems are solved using a dual decomposition approach, where
each secondary problem is further decomposed into a number of
similar subproblems. The impact of various system parameters
on the attainable EE and SE of the system employing both EE
maximization (EEM) and SE maximization (SEM) algorithms is
characterized. In particular, it is observed that increasing the
number of relays for a range of cell sizes, although marginally
increases the attainable SE, reduces the EE significantly. It
is noted that the highest SE and EE are achieved, when the
relays are placed closer to the BS to take advantage of the
resultant line-of-sight link. Furthermore, increasing both the
number of available subcarriers and the number of active user
equipment (UE) increases both the EE and the total SE of
the system as a benefit of the increased frequency and multi-
user diversity, respectively. Finally, it is demonstrated that as
expected, increasing the available power tends to improve the SE,
when using the SEM algorithm. By contrast, given a sufficiently
high available power, the EEM algorithm attains the maximum
achievable EE and a suboptimal SE.

Index Terms—Subcarrier/power allocation, green communi-
cations, energy-efficiency, multiple relays, dual decomposition,
fractional programming.

I. INTRODUCTION

E
NERGY-efficiency (EE) is becoming of great concern in

the telecommunications community owing to the rapidly

increasing data rate requirements, increasing energy prices,

and societal as well as political pressures on mobile phone
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operators to reduce their ’carbon footprint’ [1]. This has

led to several joint academic and industrial research ef-

forts dedicated to developing novel energy-saving techniques,

such as the ’green radio’ project [2], the GreenTouch al-

liance [3], and the energy aware radio and network technolo-

gies (EARTH) project [4]. Substantial research efforts have

also been dedicated to the next-generation wireless networks,

such as the third generation partnership project’s (3GPP) long

term evolution-advanced (LTE-A) and IEEE 802.16 world-

wide interoperability for microwave access (WiMAX) [5]

standards, which may rely on relaying between the central

base station (BS) and the user equipment (UE). As a benefit

of reduced transmission distances, either the quality of the

communication is maintained at reduced power requirements,

or the transmission integrity is improved at the same power

consumption. This allows the need for expensive deployment

and maintenance of additional BSs to be circumvented. The

two most popular relaying techniques are the amplify-and-

forward (AF) and the decode-and-forward (DF) schemes [6].

The AF regime is less complex than DF, since the relay

node (RN) needs only to receive and linearly amplify the

source’s transmissions, before forwarding it to the destination.

The effects of scheduling and frequency reuse in the context

of the above-mentioned networks was studied in [7].

Both LTE-A and WiMAX employ the orthogonal frequency

division multiple access (OFDMA) technique. In OFDMA,

the whole channel’s bandwidth is divided into multiple sub-

carriers, where subsets of subcarriers may be allocated for

transmission to different users [8]. In OFDMA, the system at-

tains two types of diversity, which may be jointly exploited for

improving the achievable sum-rate (SR) of the system. Firstly,

multi-user diversity is attained with the aid of appropriate user

mapping, because when the channel from the BS to a specific

UE is undergoing severe fading on a particular subcarrier, then

this subcarrier may be assigned for transmission to another

user, whose channel might be more friendly. On the other

hand, activating only those subcarriers that are suitable for

high-quality transmission to a particular UE leads to frequency

diversity. These philosophies underpin several contributions

in the literature, where the goal is to assign the available

resources, for example power and subcarriers, so that a system-

wide metric is maximized. These methods belong to the family

of resource allocation policies and typically aim for solving

one of two problems: either the spectral-efficiency (SE)1 [9],

[10], [11] of the system is maximized while a maximum power

constraint is enforced, or the power consumption is minimized

under a minimum total system throughput or individual UE

1For a given system bandwidth, the SR maximization and SE maximiza-
tion (SEM) solutions are identical. To avoid any additional abbreviations, they
are both henceforth referred to as SEM.
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rate constraint2 [12], [13], [14], [15], [16].

An example of the SE Maximization (SEM) problem was

considered in [11], where the authors formulate the optimiza-

tion problem for the downlink (DL) of an AF relaying-aided

OFDMA cellular network, and their goal was to optimize the

power and subcarrier allocation so that the SE of the system

was maximized under maximum outage probability and total

power constraints. In the class of power minimization prob-

lems, an example is the often-cited work by Wong et. al [12],

where a heuristic bit allocation algorithm was conceived for a

multi-user OFDMA system with the aim of minimizing the

power consumption under a minimum individual user rate

constraint. With a similar goal, Piazzo [13] developed a sub-

optimal bit allocation algorithm for an orthogonal frequency

division multiplexing (OFDM) system. This work was later

extended to provide the optimal bit allocation in [15].

However, the SEM and the power minimization problems

do not directly consider an EE objective function (OF), and in

general they do not deliver the EE maximization (EEM) so-

lution. In recent years, research into resource allocation using

an EE OF has become increasingly popular. In reality, EEM

may be viewed as an example of multi-objective optimization,

since typically the goal is to maximize the SE achieved, whilst

concurrently minimizing the power consumption required.

From this perspective, [17] derives an aggregate OF, which

consists of a weighted sum of the SR achieved and the power

dissipated. However, selecting appropriate weights for the two

OFs is not straightforward, and different combinations of

weights can lead to very different results. Another example

is given in [18], where the EEM problem is considered in

a multi-relay network employing the AF protocol. However,

both [17], [18] only optimize the user selection and power

allocation without considering the subcarrier allocation in the

network. Another formulation, demonstrated in [19], [20], con-

siders power and subcarrier allocation in an OFDMA cellular

network, but without a maximum total power constraint and

without relaying. The authors of [21] formulate the EEM

problem in a OFDMA cellular network under a maximum

total power constraint, however relaying is not considered.

In light of the above discussions, this work focuses on

a solution method for the EEM problem in a multi-relay,

multi-user OFDMA cellular network, which jointly considers

both power and subcarrier allocation as well as a maximum

total power constraint. The contributions of this paper is

summarized as follows:

• The EEM problem in the context of a multi-relay, multi-

user OFDMA cellular network, in which both direct and

relayed transmissions are employed, is formulated as a

fractional programming problem, which jointly considers

both the power and subcarrier allocation. In contrast to

previous contributions such as [7], the aim is for finding

the optimal power and subcarrier allocations within a

network context. Furthermore, in contrast to [12], [13],

[9], [10], [14], [11], [15], [18], [17], the focus is placed

on an EE OF. It is demonstrated that in its original form

the problem is a mixed-integer non-linear programming

problem (MINLP) [22], which is challenging to solve. In

order to make the problem more tractable, both a variable

transformation and a relaxation of the integer variables is

2In the latter case, the minimum rate constraint may be viewed as ensuring
fairness among the users, since each user achieves at least a minimum rate.

introduced.

• It is proven that the relaxed problem is quasi-concave and

consequently Dinkelbach’s method [23] may be employed

for obtaining the optimal solution by solving a sequence

of parameterized secondary problems. Each of these are

solved using the dual decomposition approach of [24].

It is demonstrated that the EEM algorithm reaches the

optimal solution within a low number of iterations and

reaches the optimal solution obtained via an exhaustive

search. Thus the original problem is solved at a low

complexity.

• Comparisons are made between two multi-relay resource

allocation problems, namely one that solves the EEM

problem and another that considers SEM. As an example,

it is shown that when the maximum affordable power

is lower than a given threshold, the two problems have

the same solutions. However, as the maximum afford-

able power is increased, the SEM algorithm attempts to

achieve a higher SE at the cost of a lower EE, while

given the total power, the EEM algorithm reaches the

upper limit of the maximum achievable SE for the sake

of maintaining the maximum EE.

• Since the system model is generalized, the EEM and SEM

algorithms may be employed for gaining insights into

network design, when the aim is for maximizing either

the EE or SE. To that end, a comprehensive range of

results are presented, which demonstrate both the effect

of increasing the number of available subcarriers and

UEs in the system, as well as quantifying the impact

of increasing the number of RNs in the system and its

relation not only to the cell radius, but also to the relays’

positions. The algorithm may be used for characterizing

the effects of many other system design choices on the

maximum SE and EE.

The rest of this paper is organized as follows. In Section II,

the multi-user, multi-relay OFDMA cellular network model is

described, which is followed by a formulation of the optimiza-

tion problem in Section III. Upon invoking a transformation of

variables and a relaxation of the integer variables, it is proven

that the OF is quasi-concave. The combined solution algorithm

of Dinkelbach’s method [23] and dual decomposition [24]

is outlined in Section IV. The performance of the EEM

algorithm is demonstrated in Section V, which includes results

obtained when the EEM and SEM algorithms are employed

for characterizing the effect of different system design choices

on the achievable SE and EE. Lastly, conclusions are given in

Section VI, where future work ideas are also listed.

II. SYSTEM MODEL

Consider an OFDMA DL cellular system relying on a single

BS, M fixed RNs and K uniformly-distributed UEs, as shown

in Fig. 13. The cell is divided into M sectors, where each

sector is served by one of the fixed RNs. Naturally, the path-

loss is a major factor in determining the receiver’s signal-to-

noise ratios (SNRs) at the UEs, and thus has a substantial

effect on the EE. Therefore, in order to minimize the RN-

to-UE pathloss, all the UEs in a specific sector are only

3Although it is more realistic to consider a multi-cell system, which would
lead to inter-cell interference, our system model assumes that intelligent
interference coordination or mitigation techniques are employed such that
the level of inter-cell interference is negligible [25].
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Figure 1: An example of a cellular network with M = 3 RNs

and K = 18 UEs.

supported by that sector’s RN, and therefore relay selection is

implicitly accomplished. Although the model may be readily

extended to include relay selection, for the sake of mathemat-

ical tractability, it is not included in this work. The model

accounts for both the AF relayed link as well as for the direct

link between the BS and UEs, while the variables related

to these two communication protocols are distinguishable

by the superscripts A and D, respectively. When defining

links, the subscript 0 is used for indicating the BS, whilst

M(k) ∈ {1, · · · ,M} indicates the RN selected for assisting

the DL-transmissions to user k. The proportion of the BS-to-

RN distance to the cell radius is denoted by Dr, while the total

available instantaneous transmission power of the network is

Pmax. Although it is more realistic to consider a system with

separate power constraints for each transmitting entity, for

simplicity, a certain total power constraint is considered4. The

results obtained provide insights into holistic system design

by granting a higher grade of freedom in terms of sharing the

power among the transmitting entities, and thus attaining a

higher performance.

Using the direct transmission protocol, the receiver’s SNR at

UE k on subcarrier n may be expressed as ΓD,n
k (P), whereas

when using the AF relaying protocol, the receiver’s SNR at

UE k on subcarrier n may be expressed as [6]

ΓA,n
k (P) =

γA,n

0,M(k)γ
A,n

M(k),k(
γA,n

0,M(k) + γA,n

M(k),k + 1
) , (1)

where γX,n
a,b = PX,n

a,b Gn
a,b/∆γN0W is the SNR at receiver

b ∈ {1, · · · ,M, 1, · · · ,K} on subcarrier n ∈ {1, · · · , N}, and

PX,n
a,b is allocated to transmitter a ∈ {0, · · · ,M} using proto-

col X ∈ {D,A} for transmission to receiver b. Furthermore,

Gn
a,b represents the channel’s attenuation between transmitter

a and receiver b on subcarrier n, which is assumed to be

known at the BS for all links. The channel’s attenuation is

modeled by the path-loss and the Rayleigh fading between the

transmitter and receiver. Furthermore, N0 is the additive white

4Additionally, it was empirically shown the dual decomposition approach
only obtains a local optimum when separate BS and RN power constraints
are imposed.

Gaussian noise (AWGN) variance and W is the bandwidth of

a single subcarrier. Still referring to (1), ∆γ is the SNR gap

at the system’s bit error ratio (BER) target between the SNR

required at the discrete-input continuous-output memoryless

channel (DCMC) capacity and the actual SNR required the

modulation and coding schemes of the practical physical layer

transceivers employed. For example, making the simplifying

assumption that idealized transceivers operating exactly at the

DCMC capacity are employed, then ∆γ = 0 dB. Although

it is not possible to operate exactly at the DCMC channel

capacity, several physical layer transceiver designs exist that

operate arbitrarily close to it [26]. Additionally, the power

allocation policy of the system is denoted by P , which

determines the values of PX,n
a,b .

Assuming sufficiently high receiver’s SNR values, the fol-

lowing approximation can be made

ΓA,n
k (P) ≈

PA,n

0,M(k)G
n
0,M(k)P

A,n

M(k),kG
n
M(k),k

∆γN0W
(
PA,n

0,M(k)G
n
0,M(k) + PA,n

M(k),kG
n
M(k),k

) ,

(2)

which is valid5 for PA,n

0,M(k)G
n
0,M(k) + PA,n

M(k),kG
n
M(k),k ≫

∆γN0W . The SE of an AF link to UE k on subcarrier n is

then given by

RA,n
k (P) =

1

2
log2

(
1 + ΓA,n

k

)
[bits/s/Hz], (3)

where the factor of 1
2 accounts for the fact that two time slots

are required for the two-hop AF transmission. The SE of a

direct link to UE k on subcarrier n is similarly given by

RD,n
k (P) = log2

(
1 + ΓD,n

k

)
[bits/s/Hz]. (4)

The subcarrier indicator variable sX,n
k ∈ {0, 1} is now

introduced, which denotes the allocation of subcarrier n for

transmission to user k using protocol X for sX,n
k = 1, and

sX,n
k = 0 otherwise. The weighted average SE of the system

is calculated as

RT (P,S) =
1

N

K∑

k=1

ωk

N∑

n=1

sD,n
k log2

(
1 + ΓD,n

k

)

+
sA,n
k

2
log2

(
1 + ΓA,n

k

)
[bits/s/Hz], (5)

where S denotes the subcarrier allocation policy of the system,

which determines the values of the subcarrier indicator vari-

able sX,n
k . The weighting factor ωk may be varied for ensuring

fairness amongst users. However, since ensuring fairness is not

the focus of this work, ωk = 1, ∀k is assumed then the effect

of ωk may be ignored.

In order to compute the energy used in these transmissions,

a model similar to [27] is adopted and the total power

consumption of the system is assumed be governed by a

constant term and a term that varies with the transmission

powers, which may be written as (6).

Here, P
(B)
C and P

(R)
C represent the fixed power consumption

of each BS and each RN, respectively, while ξ(B) > 1
and ξ(R) > 1 denote the reciprocal of the drain efficiencies

of the power amplifiers employed at the BS and the RNs,

5It is plausible that in next-generation systems, through the combination
of multi-user and frequency diversity, this assumption holds true when an
intelligent scheduler is employed [7].
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PT (P,S) =
(
P

(B)
C +M · P

(R)
C

)
+

K∑

k=1

N∑

n=1

sD,n
k ξ(B)PD,n

0,k +
1

2
sA,n
k ·

(
ξ(B)PA,n

0,M(k) + ξ(R)PA,n

M(k),k

)
[Watts] (6)

respectively. For example, an amplifier having a 25% drain

efficiency would have ξ = 1
0.25 = 4.

Finally, the average EE metric of the system is expressed

as

ηE(P,S) =
RT (P,S)

PT (P,S)
[bits/Joule/Hz]. (7)

III. PROBLEM FORMULATION

The aim of this work is to maximize the energy efficiency

metric of (7) subject to a maximum total instantaneous trans-

mit power constraint. In its current form, (7) is dependent

on 3KN continuous power variables PD,n
0,k , PA,n

0,M(k) and

PA,n

M(k),k, ∀k, n, and 2KN binary subcarrier indicator variables

sD,n
k and sA,n

k , ∀k, n. Thus, it may be regarded as a MINLP

problem [22], and can be solved using the branch-and-bound

method of [28]. However, the computational effort required for

branch-and-bound techniques typically increases exponentially

with the problem size. Therefore, a simpler solution is derived

by relaxing the binary constraint imposed on the subcarrier

indicator variables, sD,n
k and sA,n

k , so that they may assume

continuous values from the interval [0, 1], as demonstrated

in [12], [29]. Furthermore, the variables P̃D,n
0,k = PD,n

0,k sD,n
k ,

P̃A,n

0,M(k) = PA,n

0,M(k)s
A,n
k and P̃A,n

0,M(k) = PA,n

0,M(k)s
A,n
k are

introduced.

The relaxation of the binary constraints imposed on the

variables sD,n
k and sA,n

k allows them to assume continuous

values, which leads to a time-sharing subcarrier allocation

between the UEs. Naturally, the original problem is not actu-

ally solved. However, it has been shown that solving the dual

of the relaxed problem provides solutions that are arbitrarily

close to the original, non-relaxed problem, provided that the

number of available subcarriers tends to infinity [29]. It has

empirically been shown that in some cases only 8 subcarriers

are required for obtaining close-to-optimal results [30]. It

shall be demonstrated in Section V that even for as few as

two subcarriers, the solution algorithm employed in this work

approaches the optimal EE achieved by an exhaustive search.

The optimization problem is formulated as shown as fol-

lows:

Relaxed Problem (P):

maximize
R̃T

P̃T

(8)

subject to

K∑

k=1

N∑

n=1

P̃D,n
0,k + P̃A,n

0,M(k) + P̃A,n

M(k),k ≤ Pmax,

(9)

sD,n
k + sA,n

k ≤ 1, ∀k, n, (10)

K∑

k=1

sD,n
k + sA,n

k ≤ 1, ∀n, (11)

P̃D,n
0,k , P̃A,n

0,M(k), P̃
A,n

M(k),k ∈ R+, ∀k, n, (12)

0 ≤ sD,n
k , sA,n

k ≤ 1, ∀k, n, (13)

where the objective function is the ratio between (14) and (15).

In this formulation, the variables to be optimized are sD,n
k ,

sA,n
k , P̃D,n

0,k , P̃A,n

0,M(k) and P̃A,n

M(k),k, ∀k, n. Physically, the

constraint (9) ensures that the sum of the power allocated

to variables P̃D,n
0,k , P̃A,n

0,M(k) and P̃A,n

M(k),k does not exceed the

maximum power budget of the system. Constraint (10) ensures

that a single transmission protocol, either direct or AF, is

chosen for each user-subcarrier pair. The constraint (11) guar-

antees that each subcarrier is only allocated to at most one user,

thus intra-cell interference is avoided. The constraints (12)

and (13) describe the feasible region of the optimization

variables. The following is a proof that the OF of problem (P)

is quasi-concave [31].

A. Proving that the OF in problem (P) is quasi-concave

A function, f : R
n → R, is quasi-concave if its domain

is convex, and all its superlevel sets are convex, i.e. if

the domain Sα = {x ∈ dom f | f(x) ≥ α} is convex

for α ∈ R [32]. For a fractional function, g(x)/h(x), the

inequality g(x)/h(x) ≥ α is equivalent to [g(x)−αh(x)] ≥ 0,

assuming h(x) > 0, ∀x. Therefore, in order to prove that (8)

is quasi-concave, it is sufficient to show that the numerator is

concave and the denominator is both affine and positive, whilst

the domain is convex. It is plausible that the denominator is

both affine and positive, since it is the linear combination of

multiple nonnegative variables and a positive constant. The

proof that the numerator is concave is as follows.

Firstly, the concavity of f1

(
P̃A,n

0,M(k), P̃
A,n

M(k),k

)
=

P̃
A,n

0,M(k)
Gn

0,M(k)P̃
A,n

M(k),k
Gn

M(k),k

∆γN0W
(
P̃

A,n

0,M(k)
Gn

0,M(k)
+P̃

A,n

M(k),k
Gn

M(k),k

) is proven. This may

be accomplished by examining the Hessian matrix of

f1

(
P̃A,n

0,M(k), P̃
A,n

M(k),k

)
with respect to (w.r.t.) the variables

P̃A,n

0,M(k) and P̃A,n

M(k),k [32]. The Hessian has the eigenvalues

e1 = 0 and

e2 = −
2
(
Gn

0,M(k)G
n
M(k),k

)2 (
P̃A,n

0,M(k) + P̃A,n

M(k),k

)

∆γN0W
(
P̃A,n

0,M(k)G
n
0,M(k) + P̃A,n

M(k),kG
n
M(k),k

)3 ,

(16)

which are non-positive, indicating that the Hessian is negative-

semidefinite. This indicates that f1

(
P̃A,n

0,M(k), P̃
A,n

M(k),k

)
is

concave w.r.t. the variables P̃A,n

0,M(k) and P̃A,n

M(k),k.

Examination of the composition f2

(
P̃A,n

0,M(k), P̃
A,n

M(k),k

)
=

log2

[
1 + f1

(
P̃A,n

0,M(k), P̃
A,n

M(k),k

)]
reveals that

f2

(
P̃A,n

0,M(k), P̃
A,n

M(k),k

)
is concave, since log2(·) is concave

as well as non-decreasing and 1 + f1

(
P̃A,n

0,M(k), P̃
A,n

M(k),k

)
is

concave [32].

The second term in the summation of (14) may be denoted

by (17). This may be obtained using the perspective transfor-
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R̃T =

K∑

k=1

N∑

n=1

sD,n
k log2

(
1 +

P̃D,n
0,k Gn

0,k

sD,n
k ∆γN0W

)

+
sA,n
k

2
log2


1 +

P̃A,n

0,M(k)G
n
0,M(k)P̃

A,n

M(k),kG
n
M(k),k

sA,n
k ∆γN0W

(
P̃A,n

0,M(k)G
n
0,M(k) + P̃A,n

M(k),kG
n
M(k),k

)


 (14)

P̃T =
(
P

(B)
C +M · P

(R)
C

)
+

K∑

k=1

N∑

n=1

ξ(B)P̃D,n
0,k +

1

2

(
ξ(B)P̃A,n

0,M(k) + ξ(R)P̃A,n

M(k),k

)
(15)

f3

(
P̃A,n

0,M(k), P̃
A,n

M(k),k, s
A,n
k

)
= sA,n

k,n · log2


1 +

P̃A,n

0,M(k)G
n
0,M(k)P̃

A,n

M(k),kG
n
M(k),k

sA,n
k ∆γN0W

(
P̃A,n

0,M(k)G
n
0,M(k) + P̃A,n

M(k),kG
n
M(k),k

)


 . (17)

mation6 of [32] yielding

f3

(
P̃A,n

0,M(k), P̃
A,n

M(k),k, s
A,n
k

)
= sA,n

k ·f2

(
P̃A,n

0,M(k)

sA,n
k

,
P̃A,n

M(k),k

sA,n
k

)
,

(18)

which preserves concavity. Using similar arguments,

sD,n
k log2

(
1 +

P̃
D,n

0,k Gn
0,k

s
D,n

k
∆γN0W

)
is proven to be concave w.r.t.

the variables sD,n
k and P̃D,n

0,k .

Finally, the numerator is shown to be concave w.r.t the

variables sA,n
k , sD,n

k , P̃D,n
0,k , P̃A,n

0,k , P̃A,n

0,M(k) and P̃A,n

M(k),k,

∀k, n, since it is the non-negative sum of multiple concave

functions. Thus, the OF in problem (P) has a numerator that

is concave, while its denominator is affine. Hence, the OF of

problem (P) is quasi-concave.

B. Problem solution methods

Quasi-concavity may be viewed as a type of generalized

concavity, since it can describe discontinuous functions as

well as functions that have multiple stationary points. This

means that a local maximum is not guaranteed to be a global

maximum and thus standard convex optimization techniques,

such as interior-point or ellipsoid methods, cannot be readily

applied for finding the optimal solution [32]. However, a

quasi-concave function has convex superlevel sets, hence the

bisection method [18] may be used for iteratively closing the

gap between an upper and lower bound solution, until the

difference between the two becomes lower than a predefined

tolerance. The drawback of this method is that there is no exact

method of finding the initial upper as well as lower bounds.

Additionally, a convex feasibility problem [32] must be solved

in each iteration, which may become computationally undesir-

able. In light of these discussions, the method detailed in [23]

is employed, which allows the quasi-concave problem to be

solved as a sequence of parameterized concave programming

problems. For clarity, the algorithm is summarized in Fig. 2,

which is discussed in the following section.

IV. DINKELBACH’S METHOD FOR SOLVING PROBLEM (P)

A. Introduction to Dinkelbach’s method

Dinkelbach’s method [23], [31] is an iterative algorithm that

can be used for solving a quasi-concave problem in a parame-

terized concave form. The algorithm is summarized in Table I.

6The perspective transformation of the function f(x) is given by tf(x/t).

Table I: Dinkelbach’s method for energy efficiency maximiza-

tion.

Algorithm 1 Dinkelbach’s method for energy efficiency maximization

Input: IDouter (maximum number of iterations)

ǫDouter > 0 (convergence tolerance)

1: q0 ← 0
2: i← 0
3: do while qi − qi−1 > ǫDouter and i < IDouter
4: i← i+ 1
5: Solve max.

P,S
RT (P,S)− qi−1PT (P,S) to obtain the

optimal solution P∗
i and S∗i (inner loop)

6: qi ← RT (P∗
i ,S

∗
i )/PT (P∗

i ,S
∗
i )

7: end do

8: return

The concave form of the fractional program (P) is formed by

denoting the OF value as q so that a subtractive form of the OF

may be written as F (q) = RT (P,S) − qPT (P,S), which is

concave. Since the parameter q now acts as a negative weight

on the total power consumption of system, it may be intuitively

viewed as the ’price’ of the system’s power consumption. At

the optimal OF value of q∗, the following holds true

max.
P,S

{F (q∗)} = max.
P,S

{RT (P,S)− q∗PT (P,S)} = 0. (19)

Explicitly, the solution of F (q∗) is equivalent to the solution

of the fractional problem (P). Dinkelbach [23] proposed an

iterative method to find increasing q values, which are feasible,

by solving the parameterized problem of maxP,S {F (qi−1)}
at each iteration. Hence, it can be shown that the method

produces an increasing sequence of q values, which converges

to the optimal value at a superlinear convergence rate. As

shown in Table I, each outer iteration corresponds to solving

maxP,S {F (qi−1)}, where qi−1 is a given value of the

parameter q, to obtain P∗
i and S∗

i , which at the optimal

power and subcarrier values at the ith iteration of Dinkelbach’s

method. For further details and a proof of convergence, please

refer to [23].

B. Solving the inner loop maximization problem

Dinkelbach’s method relies on solving maxP,S F (qi−1), in

each iteration, which will henceforth be referred to as (Pqi−1
).

Since it has been shown that RT (P,S) is concave whilst

PT (P,S) is affine, then (Pqi−1 ) is concave w.r.t. the variables

P and S . Assuming the existence of an interior point (Slater’s

condition), there is a zero duality gap between the dual

problem of (Pqi−1
) and the primal problem of (P) [32]. Thus
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solving the dual problem of (Pqi−1 ) is equivalent to solving

the primal problem of (P).

The Lagrangian of (Pqi−1
) is given by (20), where λ ≥ 0 is

the Lagrangian multiplier associated with the constraint (9).

The feasible region constraints (12) and (13), and con-

straints (10) and (11) will be considered when deriving the

optimal solution, which is detailed later.

The dual problem of (Pqi−1
) may be written as [24]

min.
λ≥0

g(λ) = min.
λ≥0

max.
P,S

L (P,S, λ) , (21)

which is solved using the dual decomposition approach [24].

Using dual decomposition, (21) may be readily solved via

solving NK similar subproblems to obtain both the power as

well as subcarrier allocations, and by solving a master problem

to update λ. The dual decomposition approach is outlined in

the following.

1) Solving the subproblem of power and subcarrier allo-

cation: For a fixed λ and qi−1, max.
P,S

L (P,S, λ) is solved

to obtain the corresponding power and subcarrier allocations.

Since the problem is now in a standard concave form, the

Karush–Kuhn–Tucker (KKT) conditions [32], which are first-

order necessary and sufficient conditions for optimality, may

be used in order to find the optimal solution. All optimal

variables are denoted by a superscript asterisk. The total

transmit power assigned for AF transmission to user k over

subcarrier n is now denoted by P̃A,n
k = P̃A,n

0,M(k) + P̃A,n

M(k),k.

Then, by substituting P̃A,n

M(k),k = P̃A,n
k − P̃A,n

0,M(k) into (20),

the following first-order derivatives may be obtained

∂L (P,S, λ)

∂P̃D,n
0,k

∣∣∣∣∣
P̃

D,n

0,k =P̃
D,n∗

0,k

= 0, (22)

∂L (P,S, λ)

∂P̃A,n
k

∣∣∣∣∣
P̃

A,n

k
=P̃

A,n∗

k

= 0 (23)

and
∂L (P,S, λ)

∂P̃A,n

0,M(k)

∣∣∣∣∣
P̃

A,n

0,M(k)
=P̃

A,n∗

0,M(k)

= 0. (24)

The optimal values of P̃D,n
0,k may be readily obtained from (22)

as

PD,n∗
0,k =

[
1

ln 2
(
qi−1ξ(B) + λ

) − 1

αD,n
k

]+
, (25)

where the effective channel gain of the direct transmission is

given by

αD,n
k =

Gn
0,k

∆γN0W
(26)

and [·]+ denotes max(0, ·) since the powers allocated have

to be nonnegative due to the constraint (12). Similarly the

optimal values of P̃A,n

0,M(k) and P̃A,n

M(k),k may be obtained by

equating (23) and (24) to give

PA,n∗

0,M(k) = βA,n
k PA,n∗

k (27)

and

PA,n∗

M(k),k =
(
1− βA,n

k

)
PA,n∗
k , (28)

where the total transmit power assigned for the AF trans-

mission to user k over subcarrier n is given by (29), (30)

and (31). Observe that (31) is the fraction of the total AF

transmit power that is allocated for the BS-to-RN link while

obeying 0 ≤ βA,n
k ≤ 1.

Having calculated the optimal power allocations, the opti-

mal subcarrier allocations may be derived using the first-order

derivatives as follows:

∂L (P,S, λ)

∂sD,n
k

= log2

(
1 + αD,n

k PD,n∗
0,k

)

−
αD,n
k PD,n∗

0,k

ln 2
(
1 + αD,n

k PD,n∗
0,k

)

= Dn
k





< 0 if sD,n∗
k = 0,

= 0 if sD,n∗
k ∈ (0, 1)

> 0 if sD,n∗
k = 1

, (32)

and

∂L (P,S, λ)

∂sA,n
k

=
1

2
log2

(
1 + αA,n

k P̃A,n∗
k

)

−
αA,n
k P̃A,n∗

k

2 ln 2
(
1 + αA,n

k P̃A,n∗
k

) (33)

= An
k





< 0 if sA,n∗
k = 0,

= 0 if sA,n∗
k ∈ (0, 1)

> 0 if sA,n∗
k = 1.

, (34)

(32) and (34) stem from the fact that if the optimal value

of sX,n
k occurs at the boundary of the feasible region, then

L (P,S, λ) must be decreasing with the values of sX,n
k that

approach the interior of the feasible region. By contrast, for

example, the derivative Dn
k = 0 if the optimal sD,n

k is obtained

in the interior of the feasible region [12]. However, since each

subcarrier may only be used for transmission to a single user,

each subcarrier n is allocated to the specific user k having the

highest value of max (An
k , D

n
k ) in order to achieve the highest

increase in L (P,S, λ). The optimal allocation for subcarrier

n is as follows7

sD,n∗
k =

{
1, if Dn

k = maxj
[
max

(
An

j , D
n
j

)]
and Dn

k ≥ 0,
0, otherwise,

(35)

and

sA,n∗
k =

{
1, if An

k = maxj
[
max

(
An

j , D
n
j

)]
and An

k ≥ 0,
0, otherwise.

(36)

Thus constraints (10)- (13) are satisfied and the optimal

primal variables are obtained for a given λ. Observe that the

optimal power allocations given by (25) and (29) are indeed

customized water-filling solutions [33], where the effective

channel gains are given by αD,n
k and αA,n

k , respectively, and

where the water levels are determined both by the cost of

allocating power, λ, as well as the current cost of power to

the EE given by qi−1.

2) Updating the dual variable λ:

Since (25), (27), (28), (35) and (36) give a unique solution

for max.
P,S

L (P,S, λ), it follows that g(λ) is differentiable and

hence the gradient method [32], [24] may be readily used for

7If there are multiple users that tie for the value of max
(

An
k
, Dn

k

)

, then
a random user from the maximal set is chosen.
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L (P,S, λ) =

K∑

k=1

N∑

n=1

sD,n
k log2

(
1 +

P̃D,n
0,k Gn

0,k

sD,n
k ∆γN0W

)

+
sA,n
k

2
log2


1 +

P̃A,n

0,M(k)G
n
0,M(k)P̃

A,n

M(k),kG
n
M(k),k

sA,n
k ∆γN0W

(
P̃A,n

0,M(k)G
n
0,M(k) + P̃A,n

M(k),kG
n
M(k),k

)




−qi−1

[(
P

(B)
C +M · P

(R)
C

)
+

K∑

k=1

N∑

n=1

ξ(B)P̃D,n
0,k +

1

2

(
ξ(B)P̃A,n

0,M(k) + ξ(R)P̃A,n

M(k),k

)]

+λ

(
Pmax −

K∑

k=1

N∑

n=1

P̃D,n
0,k + P̃A,n

0,M(k) + P̃A,n

M(k),k

)
. (20)

PA,n∗
k =


 1

ln 2
(
βA,n
k

(
qi−1ξ(B) + 2λ

)
+
(
1− βA,n

k

) (
qi−1ξ(R) + 2λ

)) −
1

αA,n
k



+

(29)

αA,n
k =

βA,n
k

(
1− βA,n

k

)
Gn

0,M(k)G
n
M(k),k(

βA,n
k Gn

0,M(k) +
(
1− βA,n

k

)
Gn

M(k),k

)
∆γN0W

(30)

βA,n
k =

−Gn
M(k),k

(
qi−1ξ

(R) + 2λ
)
+
√
Gn

0,M(k)G
n
M(k),k

(
qi−1ξ(B) + 2λ

) (
qi−1ξ(R) + 2λ

)

Gn
0,M(k)

(
qi−1ξ(B) + 2λ

)
−Gn

M(k),k

(
qi−1ξ(R) + 2λ

) (31)

updating the dual variables λ. The gradient of λ is given by

∂L (P,S, λ)

∂λ
= Pmax −

K∑

k=1

N∑

n=1

(
P̃D,n
0,k

+P̃A,n

0,M(k) + P̃A,n

M(k),k

)
. (37)

Therefore, λ may be updated using the optimal variables to

give (38), where αλ(i) is the size of the step taken in the

direction of the negative gradient for the dual variable λ at

iteration i. For the performance investigations of Section V,

a constant step size is used, since it is comparatively easier

to find a value that strikes a balance between optimality and

convergence speed. The process of computing the optimal

power as well as subcarrier allocations and subsequently

updating λ is repeated until convergence is attained, indicating

that the dual optimal point has been reached. Since the primal

problem (Pqi−1
) is concave, there is zero duality gap between

the dual and primal solutions. Hence, solving the dual problem

is equivalent to solving the primal problem. The inner loop

solution method is summarized in Table II.

C. Summary of solution methodology

Again, for additional clarity, the solution methodology is

summarized in Fig. 2. Firstly, the relaxed problem (P) ex-

pressed in a fractional form is rewritten as a subtractive, pa-

rameterized concave form, where qi is the parameter. Solving

this problem for a given qi is termed an outer iteration, which

is described in Section IV-A and is illustrated in the upper

block of Fig. 2. The lower block of Fig. 2 illustrates the

dual decomposition approach that is employed for solving

the subtractive, concave problem. Each iteration of the dual

decomposition approach is termed an inner iteration, which

is further detailed in Section IV-B. In each inner iteration,

2NK subproblems are solved to obtain the optimal power

Table II: Inner loop solution method for obtaining the optimal

power and subcarrier allocations for a given qi−1.

Algorithm 2 Inner loop solution method for obtaining the optimal power
and subcarrier allocations for a given qi−1.

Input: IDinner (maximum number of iterations)

ǫDinner > 0 (convergence tolerance)
end do

1: i← 0
2: do while |λ(i)− λ(i− 1)| > ǫDinner and i < IDinner
3: i← i+ 1
4: for n from 1 to N
5: for k from 1 to K
6: Obtain the optimal power allocation using (25), (27)

and (28)
7: end for

8: Obtain the optimal subcarrier allocation using (35) and (36)
9: end for

10: Update the dual variables λ using (38)
11: end do

12: return

and subcarrier variables for a given qi and for the dual

variable λ. The dual variable λ is then updated, depending

on the power and subcarrier variables obtained. Multiple inner

iterations are completed until convergence of the optimal dual

and primal solutions is reached. The optimal P∗ and S∗

are then fed back into the upper block 2 to evaluate the

updated value of qi, which is used in the next outer iteration.

Several outer iterations are completed until convergence to

the optimal qi is obtained. The corresponding optimal P∗ and

S∗ values are the power and subcarrier allocation variables

that solve the problem (P). The algorithmic complexity of

this method is dominated by the comparison operations given

by (35) and (36), which leads to a total complexity of

O (Idual × 2NK) when NK is large, where Idual is the total

number of inner iterations required for reaching convergence

in Dinkelbach’s method.
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λ(i+ 1) =

[
λ(i)− αλ(i)

(
Pmax −

K∑

k=1

N∑

n=1

P̃D,n∗
0,k + P̃A,n∗

0,M(k) + P̃A,n∗

M(k),k

)]+
(38)

Find

...

Find

Dual Decomposition

Subtractive form

Fractional form

Dinkelbach’s method

Master problem Subproblems

P
(B)
1,1 P

(R)
1,1

s1,1

Find λ

P
(B)
K,N P

(R)
K,N

sK,N

λ

qi =
RT (P∗,S∗)
PT (P∗,S∗)

maxP,S RT (P ,S)− qiPT (P ,S)

P ,S

P∗,S∗

Figure 2: Summary of the solution methodology for the

relaxed problem (P).

Table III: Simulation parameters used to obtain all results in

this section unless otherwise specified.

Simulation parameter Value

Subcarrier bandwidth, W Hertz 12k

Number of RNs, M {0, 1, 2, 3, 5, 6}
Number of subcarriers, N {128, 512, 1024}
Number of UEs, K {30, 60, 120}
Cell radius, km {0.75, 1, 1.25, 1.5, 1.75, 2}
Ratio of BS-to-RN distance to the cell {0.1, 0.3, 0.5, 0.7, 0.9}
radius, Dr

SNR gap of wireless transceivers, 0
∆γ dB

Maximum total transmission power, {0, 5, 10, 15, 20, 25, 30,
Pmax dBm 35, 40, 45, 50, 55, 60}
Fixed power consumption of the BS, 60

P
(B)
C

Watts [27]

Fixed power consumption of RNs, 20

P
(R)
C

Watts [27]

Reciprocal of the BS power amplifier’s 2.6

drain efficiency, ξ(B) [27]

Reciprocal of the RNs’ power amplifier’s 5

drain efficiency, ξ(R) [27]

Noise power spectral density, −174
N0 dBm/Hz

Maximum number of outer iterations in 10

Dinkelbach’s algorithm, IDouter
Maximum number of inner iterations in 100

Dinkelbach’s algorithm, IDinner

Convergence tolerance of iterative 10−8

algorithms, ǫDouter = ǫDinner

Number of channel samples 104

V. RESULTS AND DISCUSSIONS

This section presents the results of applying the EEM

algorithm described in Section IV to the relay-aided cellular

system shown in Fig. 1. Again, the channel is modeled by the

path-loss [34] and uncorrelated Rayleigh fading obeying the

complex normal distribution, CN (0, 1). It is assumed that the

BS-to-RN link has line-of-sight (LOS) propagation, implying

Exhaustive search
EEM algorithm

K = 2, N = 2

K = 3, N = 2

K = 2, N = 3

K = 3, N = 3

Number of Dual Iterations

A
ve
ra
ge

E
E
[b
it
s/
J
ou

le
/H

er
tz
]

403530252015105

0.07

0.06

0.05

0.04

Figure 3: Average EE versus the total number of inner iter-

ations of Dinkelbach’s method required for reaching conver-

gence when using the simulation parameters from Table III

with Pmax = 0dBm, Dr = 0.5, M = 0 and with a cell radius

of 1km.

that a RN was placed on a tall building. However, the BS-to-

UE and RN-to-UE links typically have no LOS, since these

links are likely to be blocked by buildings and other large

obstructing objects. The RNs are evenly distributed at a fixed

distance around the central BS and the UEs are uniformly

distributed within the cell. An independently-random set of UE

locations as well as fading channel realizations are generated

for each channel sample. For fair comparisons, the metrics

used are the average SE per subcarrier and the average EE per

subcarrier. On the other hand, the sum-rate may be calculated

by multiplying the average SE by NW. Additionally, ρ is

introduced to denote the average fraction of the total number

of subcarriers that are used for AF transmission. Thus, ρ
quantifies the benefit attained from introducing RNs into

the system. The main simulation parameters are given in

Table III8,9.

A. Convergence of iterative algorithms to optimal value

Fig. 3 illustrates the convergence behavior of Dinkelbach’s

method invoked for maximizing the EE for a selection of

small-scale systems, averaged over 104 different channel re-

alizations. Since the problem size is small, it is possible to

generate also the exhaustive-search based solution within a

reasonable computation time. As seen in Fig. 3, Dinkelbach’s

method converges to the optimal value within forty inner

iterations. This result demonstrates that the EEM algorithm

based on Dinkelbach’s method indeed obtains the optimal

8For simplification, it is assumed that near-capacity transceivers are em-
ployed in the network.

9In all cases, the step size and the initial value of λ was empirically
optimized to give the optimal objective value in as few iterations as possible,
although the exact analytical method for achieving this still remains an open
issue.
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(b) Average EE and ρ versus Pmax for K = 30, 60 and 120.

Figure 4: Average SE, EE and ρ, and the effect of an increasing

number of users, K, for a system with simulation parameters

from Table III with N = 128, M = 3, Dr = 0.5 and with a

cell radius of 1.5km.

power and subcarrier allocation, even though the relaxed

problem is solved and a high receiver’s SNR was assumed.

B. Effect of the number of UEs on the attainable SE and EE

Additionally, the EEM algorithm may be employed for

evaluating the effects of system-level design choices on the

network’s SE and EE. The effect of K on the average EE and

SE10 is depicted in Fig. 4. As expected, upon increasing K,

the multi-user diversity of the system is increased, since the

scheduler is allowed to choose its subcarrier allocations from a

larger pool of channel gains. This results in an increase of both

the maximum EE as well as of the SE attained. Furthermore,

Fig. 4 shows that as Pmax is increased, the SEM algorithm

continues to allocate more power in order to achieve a higher

average SE at the cost of EE, while the EEM algorithm

attains the maximum EE and does not continue to increase

10N.B. The maximum SE is obtained in the first outer iteration of Dinkel-
bach’s method with q0 = 0, since this equates to zero penalty for any power
consumption.
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(a) Average SE and ρ versus Pmax for N = 128, 512 and 1024.
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(b) Average EE and ρ versus Pmax for N = 128, 512 and 1024.

Figure 5: Average SE, EE and ρ, and the effect of an increas-

ing number of subcarriers, N , for a system with simulation

parameters from Table III with K = 30, M = 3, Dr = 0.5
and with a cell radius of 1.5km.

its attainable SE by sacrificing the achieved EE. On the other

hand, ρ is inversely proportional to K. This indicates that

as the multi-user diversity increases, the subcarriers are less

likely to be allocated for AF transmissions, simply because

there are more favorable BS-to-UE channels owing to having

more UEs nearer to the cell-center. Moreover, the value of ρ
decreases as Pmax increases, because there is more power to

allocate to the BS-to-UE links for UEs near the cell-center,

which benefit from a reduced pathloss as well as from a more

efficient power amplifier at the BS.

C. Effect of the number of subcarriers on the attainable SE

and EE

Fig. 5 illustrates the effect of increasing N on the attainable

SE and EE. Fig. 5 shows much of the same trends as

Fig. 4. For example, the SE continues to rise at the cost

of EE, as Pmax increases when using the SEM algorithm,

while the EEM algorithm attains the maximum EE and the

corresponding SE. However, in Fig. 5 both the SE and EE,
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averaged over N , decreases upon increasing N , which implies

that the subcarriers are not used effectively, when more are

available. On the other hand, it may be observed that the sum-

rate achieved using the SEM algorithm increases with N , as

expected due to frequency diversity.

In Fig. 5, it is noticeable that ρ increases upon increasing

N , which is in contrast to the trend observed in Fig. 4.

This may be understood by considering the UEs within the

network. Since the UEs positions are fixed, as N increases the

scheduler has access to a larger pool of channel gains for each

individual UE, thus more cell-edge users may be supported for

maximizing the SE or EE. However, increasing K does not

have this effect, since a larger K value indicates that there are

more UEs near the cell-center, and since both the SEM and

EEM algorithms are greedy, these cell-center UEs are served

before the cell-edge UEs, hence ρ decreases. The reduction of

ρ when Pmax is very small suggests that the total available

power in the system is not high enough to take advantage of

the AF transmissions.

D. Effect of the cell radius on the attainable SE and EE

The effect of increasing the cell radius on the attainable

SE and EE is characterized in Fig. 6. As expected, increasing

the cell radius has a detrimental effect on both the SE and

EE of the system regardless of the number of RNs employed

owing to the increased pathlosses experienced. Additionally,

it is noteworthy that ρ increases as the cell radius increases,

indicating that relaying is more beneficial for larger cells. On

the other hand, the increase in the SE obtained from employing

RNs in a large cell is small. For example, the SE is improved

by a factor of 1.03 when M = 6 RNs are used instead

of M = 0 at a cell radius of 2km. This improvement is

modest when compared to the reduction in EE of a factor of

0.34 due to having to support additional transmitting entities.

This phenomenon stems from the fact that, since the UEs are

uniformly distributed across the cell, the UEs nearer the cell-

center are more likely to be allocated resources for maximizing

the SE or EE as they may benefit from the more-favorable

direct transmission. Thus, increasing the number of RNs in

the system brings a marginal benefit in terms of SE or EE.

E. Effect of the relay’s position on the attainable SE and EE

The effect of the RNs’ position relative to the BS and the

cell-edge is illustrated in Fig. 7, which clearly shows that the

optimal SE and EE is obtained, when the RN is closer to the

BS than to the UEs. This stems from the fact that the RN

benefits from having a stronger LOS link to the BS, when it

is placed closer to the BS, thus strengthening the AF links.

However, it cannot be placed too close to the BS, since the

benefits gleaned from having a stronger BS-to-RN link are

then outweighed by having a more hostile RN-to-UE link.

VI. CONCLUSIONS

In this paper, the joint power and subcarrier allocation

problem was formulated for maximizing the EE in a multi-

relay aided multi-user OFDMA cellular network. The OF

was proven to be quasi-concave and an iterative method,

namely Dinkelbach’s method, was employed for solving the

associated optimization. Dinkelbach’s method solves the opti-

mization problem by solving a sequence of subtractive concave
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Figure 6: Average SE, EE and ρ, and the effect of an increasing

cell radius for a system with simulation parameters from

Table III with K = 30, N = 128, M ∈ {0, 1, 2, 3, 5, 6},

Dr = 0.5 and with a Pmax = 0dBm.

problems, which were solved using the dual decomposition

approach in this paper. The optimal power and subcarrier

allocation were presented for solving each iteration of the dual

decomposition algorithm, and simulations were performed to

validate the algorithm.

Further simulation results show that when there is insuffi-

cient power for attaining the maximum achievable EE, both

the EEM and the SEM algorithms have the same solution.

As the system’s total power is increased, the SEM algorithm

continues to allocate more power in order to achieve ever

higher values of SE, whereas the EEM algorithm reaches

an upper bound and does not make use of the additional

available power. Additionally, a comprehensive study of the

effect of various system parameters on the achievable SE and

EE is performed. To summarize, the achievable SE and EE is

increased, when there is a larger number of UEs in the system

owing to achieving a higher multi-user diversity. Increasing

the number of available subcarriers, although increases the

SR owing to frequency diversity, reduces the average SE
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Figure 7: Average SE, EE and ρ, and the effect of an increasing

Dr, with simulation parameters from Table III with K = 30,

N = 128, M ∈ {0, 1, 2, 3, 5, 6}, Pmax = 0dBm and with a

cell radius of 1.5km.

since not all subcarriers are effectively utilized. The benefit of

introducing RNs into the network for improving the achievable

SE becomes more significant as the cell-size increases or

the number of relays increases. However, the EE is then

degraded due to the increased overhead power consumption.

Furthermore, relaying is more beneficial, when the RNs are

placed closer to the BS, if there exists a LOS link between

the RNs and BS.

As a next step, EEM and SEM algorithms will be invoked

for multi-cell systems, which are interference-limited, rather

than noise-limited. This is in contrast to this work, which

stipulated the idealized simplifying assumption that the inter-

cell interference is sufficiently low, and thus may be ignored.

Furthermore, on-line near-real-time optimization for mobile

RNs may be considered.
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