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Abstract: To achieve the goal of limiting global warming to 1.5 ◦C above preindustrial levels, net-zero
emissions targets were proposed to assist countries in planning their long-term reduction. Inverse
Data Envelopment Analysis (DEA) can be used to determine optimal input and output levels without
sacrificing the set environmental efficiency target. However, treating countries as having the same
capability to mitigate carbon emissions without considering their different developmental stages
is not only unrealistic but also inappropriate. Therefore, this study incorporates a meta-concept
into inverse DEA. This study adopts a three-stage approach. In the first stage, a meta-frontier DEA
method is adopted to assess and compare the eco-efficiency of developed and developing countries.
In the second stage, the specific super-efficiency method is adopted to rank the efficient countries
specifically focused on carbon performance. In the third stage, carbon dioxide emissions reduction
targets are proposed for the developed and developing countries separately. Then, a new meta-
inverse DEA method is used to allocate the emissions reduction target to the inefficient countries
in each of the specific groups. In this way, we can find the optimal CO2 reduction amount for
the inefficient countries with unchanged eco-efficiency levels. The implications of the new meta-
inverse DEA method proposed in this study are twofold. The method can identify how a DMU
can reduce undesirable outputs without sacrificing the set eco-efficiency target, which is especially
useful in achieving net-zero emissions since this method provides a roadmap for decision-makers
to understand how to allocate the emissions reduction targets to different units. In addition, this
method can be applied to heterogeneous groups where they are assigned to different emissions
reduction targets.

Keywords: eco-efficiency; common but differentiated responsibilities (CBDR); carbon allocation;
meta-frontier; specific super-efficiency; enhanced Russell graph measures; inverse data envelopment
analysis (DEA)

1. Introduction

According to the Emissions Gap Report 2021, regardless of whether countries meet
their latest climate mitigation pledges, the global temperature will rise by 2.7 ◦C by the
end of the century [1]. In his concluding remarks at the United Nations Framework
Convention on Climate Change (UNFCCC) COP26 in Glasgow, UN Secretary-General
António Guterres said, “Our fragile planet is hanging by a thread. We are still knocking
on the door of climate catastrophe” [2]. To achieve the goal of limiting global warming to
1.5 ◦C above preindustrial levels, net-zero emissions targets were proposed as an important
strategy to assist countries in planning their long-term reduction. The net-zero emissions
strategy is also beneficial to reduce the climate change caused by extreme weather events,
and its negative consequences on production systems [3–6].

With the intensification of climate change and scientists warning that humanity is
running out of time, engaging all stakeholders to take climate action to reduce emissions
is imperative. The 1992 UNFCCC divided the signatories into Annex I and non-Annex I
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countries. The Annex I countries were industrialized countries, including the Organisation
for Economic Co-operation and Development (OECD) member countries and “economies
in transition”. Based on the “common but differentiated responsibilities and respective
capabilities” (CBDR-RC) principle adopted by the UNFCCC, the Annex I countries were
called upon to “take the lead” in reducing carbon emissions, whereas no time frame was
set for developing countries.

The 1997 Kyoto Protocol under the UNFCCC regime also followed the CBDR principle.
The protocol considered differences in emissions, wealth, and capacity for change in the
allocation of mitigation responsibilities among its signatories [7]. The Annex I countries
were obligated to meet their mitigation targets, whereas legally binding mitigation targets
were not imposed on the non-Annex I countries. This difference created a two-tier world [8],
which was criticized by some developed countries, especially the United States, and
became an impediment to climate negotiations. The Kyoto Protocol established three
flexible market-based mechanisms to help the Annex I countries fulfill their obligations
cost-effectively. Nevertheless, arguments about what burden-sharing scheme is appropriate
as well as effective emerged. Scholars and practitioners proposed various carbon emissions
allocation schemes utilizing different methods [9–11]. Optimization methods are based on
an efficiency perspective, which can be considered a response to cost-effective advocacy.
Among the optimization methods, data envelopment analysis (DEA) gained considerable
popularity in environmental studies [12].

The Paris Agreement in 2015 not only expanded the participation of different countries
but also resolved the dispute over only developed countries being responsible for carbon
emissions reduction under the framework of the Kyoto Protocol. Instead, the countries
proposed nationally determined contributions (NDC) voluntarily and determined their
carbon emissions reduction contribution according to their national conditions under the
Paris Agreement. Although the burden-sharing scheme seems no longer the focus of debate,
how to establish mitigation plans which can effectively achieve the goal of limiting global
warming to 1.5 ◦C persists.

Combating global warming may harm economic growth, causing many countries
to hesitate in taking ambitious climate action. If countries can create more GDP with
less CO2 emissions, in other words, more eco-efficient [13,14], then they will be more
willing to commit themselves to emissions reduction. Eco-efficiency measurement via
DEA can provide useful information for designing environmental strategies [15]. However,
DEA was not developed for resource allocation and may undermine the effectiveness of
environmental planning [16]. By contrast, inverse DEA can determine the level of inputs
and outputs without sacrificing the given efficiency score. This implies that economies can
reduce carbon emissions without sacrificing their economic growth.

There are at least two dimensions of the research gap. Under the framework of
the Kyoto Protocol, many studies employed various DEA models to propose emissions
reduction allocation schemes for countries around the world, but few adopted the inverse
DEA approach. The 2015 Paris Agreement adopted a bottom-up approach instead of
a top-down approach adopted by the Kyoto Protocol. After the paradigm shift, most
literature employed DEA to discuss carbon quota allocation for an industry or a country,
but not globally. Second, the prior literature focused on how to allocate emission reduction
targets fairly, but paid less attention to how can countries utilize their resource to achieve
their targets cost-effectively. Under the framework of the Paris Agreement, the countries
proposed their own NDCs. It is important to set explicit short-term and long-term emission
reduction targets to achieve the ultimate goal of net-zero emissions. None of the prior
studies used inverse DEA to illustrate how a net-zero emission target could be achieved
through resource allocation without hurting countries’ economies.

To fill out the research gap, this study proposes a new meta-inverse DEA method to
illustrate how can countries achieve net-zero emissions targets, and estimate the potential
carbon emission reductions which can be achieved by developed and developing countries
without changing their current eco-efficiency levels. Thus, this study not only extends the
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application to inverse DEA but also conforms to the consensus on international climate
negotiations. There are three main research questions, and different approaches are em-
ployed to address each research question. First, which countries are benchmarks in terms
of eco-efficiency? This study employed meta-frontier DEA to identify which countries
are eco-efficient in OECD and non-OECD groups respectively. Second, how to rank the
eco-efficient countries specifically focused on carbon performance? The super-efficiency
was adopted for ranking. Third, how to allocate the emissions reductions target to in-
efficient OECD and non-OECD member countries to achieve the goal of limiting global
warming to 1.5 ◦C? The new-meta inverse DEA is used to allocate the emissions target to
OECD and non-OECD members respectively through resource planning with unchanged
eco-efficiency. The research framework is illustrated in Figure 1.
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The contribution of this research includes methodological refinements as well as real-
world applications. Policymakers can adjust constraints based on actual situations by
using this new method for achieving carbon emissions reduction targets through resource
planning. In regard to methodological refinements, this research has three main contribu-
tions. First, this study integrates the meta-frontier concept into inverse DEA to enhance
the method’s practical application value. Countries in different developmental stages
face different social, economic, and environmental constraints as well as opportunities
for production. Countries make decisions based on different sets of feasible input–output
combinations constituting different technology sets. However, ignoring the differences
would be misleading. Therefore, this study extends inverse DEA to meta-inverse DEA to
deal with the carbon emissions reduction target allocation issue of countries worldwide. To
the best of our knowledge, studies have yet to employ this method.
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Second, this study replaces the radial measure with the enhanced Russell graph mea-
sure and integrates it into inverse DEA for resource management. DEA measures the
relative efficiency of decision-making units (DMUs) based on two types of models. Radial
models include CCR and BCC models, which were initially proposed by Charnes et al. [17]
and Banker et al. [18], respectively. The efficiency scores obtained by radial models often
overstate efficiency when nonzero slacks are present because they do not account for the
non-radial inefficiency of the slacks. Non-radial models include additive models, multipli-
cation models, range-adjusted measures, and slacks-based measures. The second group
measures the efficiency with slacks without considering the input or output orientation. The
Russell measure (RM) model belongs to the non-radial group, which was first developed
by Färe and Lovell [19]. The RM model has considerable difficulty measuring efficiency
because its objective function is nonlinear. Subsequently, Pastor et al. [20] proposed a
modification called the “enhanced Russell graph measure”. The enhanced Russell measure
can be interpreted as the ratio of the average efficiency of inputs to the average efficiency of
outputs, which is more straightforward than a radial measure.

Third, this study integrates specific super-efficiency into inverse DEA to overcome the
shortcomings of the tradeoff in the DEA model. Owing to the piecewise linear nature of the
frontier in DEA, the estimated marginal rate of substitution applies only to infinitesimal or
finitely small changes in one or more variables. The tradeoff feature of DEA determines
that many of the economies with high carbon emissions in this study are located on the
efficient frontier. To overcome the above problems, this study modifies the super-efficiency
model and uses the specific super-efficiency model to restrict the changes in the other
inputs–outputs while allowing only carbon emissions to be reduced. Therefore, this study
employs specific super-efficiency to rank the efficient countries.

The rest of this paper is organized as follows. Section 2 presents the relevant literature,
and Section 3 introduces the methodology. Section 4 analyzes the empirical results, and
Section 5 summarizes the study and highlights some directions for further research.

2. Literature Review
2.1. Carbon Emissions Quota Allocation and DEA Application

Since the adoption of the UNFCCC in 1992, a wealth of literature initiated discussions
on reduction targets or how to allocate carbon emissions quotas among countries. Various
‘effort-sharing’ or ‘burden-sharing’ approaches were proposed to achieve reduction targets.
The indicator approach is the most widely adopted approach for emissions allocation,
which involves the allocation of reduction targets based on a single indicator or certain
indicators [21]. In the 1990s, the total carbon emissions by country became the major indica-
tor for carbon emissions reduction based on the Kyoto Protocol [22,23]. However, the total
carbon emissions of sovereign states may seem unfair to many developing countries that
have just begun to experience economic growth. That is the reason why most developing
countries rely on the carbon intensity indicator to fulfill their national carbon reduction
targets [23]. Some researchers advocated using energy indicators for carbon emissions
allocation, such as energy consumption or production because energy use is the primary
source of carbon emissions [24]. Such single-factor indicators are simple to calculate and
easy to understand. However, they do not reflect the actual process of CO2 production and
neglect some important factors [25,26].

The controversial issue in the allocation of carbon emissions targets is how to establish
an allocation principle that all countries will agree on and follow. Although various
allocation criteria have been advocated, they may be divided into two major categories,
namely equity and efficiency principles [27,28]. The equity principle can be defined from
at least two aspects, that is, the “polluter pays” principle and capability [28]. The polluter
pays principle was formally adopted by OECD in 1974 [10]. In the context of climate
change, countries with higher emissions should assume a considerable reduction burden.
Capability considers economic ability, as mitigation efforts require tremendous investments.
Therefore, developed regions with high economic ability should assume a large emissions
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reduction burden [28]. The efficiency principle is focused on economic efficiency from the
perspective of mitigation cost reduction, although some scholars argued that efficiency is
also a form of fairness [29,30].

Prior studies used optimization methods with nonlinear and linear models to allo-
cate carbon emissions targets from an efficiency perspective [31]. Filar and Gaertner [9]
proposed a nonlinear model to allocate carbon emissions targets to countries globally
in terms of economic utility maximization. However, the model was too complicated
to use. DEA is a widely used linear programming model to allocate carbon emissions
targets [31]. Gomes and Lins [32] developed a zero-sum gains DEA (ZSG-DEA) model
to reallocate carbon emissions targets by putting a cap on the emissions of the industrial-
ized and non-industrialized countries, which was subsequently employed for the carbon
emissions allocation scheme in different regions. Cucchiella et al. [33] employed the above-
mentioned model to allocate emissions permits among European Union member states
based on their specific concerns. Färe et al. [34] proposed a DEA model to examine the
magnitude and timing of carbon emissions reductions in 28 OECD countries from 1992 to
2006. DEA application was also adopted for domestic levels in several studies [34], such
as Wang et al. [25] and Zhou et al. [30], which used DEA models to examine the optimal
allocation of carbon emissions targets among different provinces in China. In addition,
DEA models were also utilized for industrial levels to allocate carbon emissions targets.
Wu et al. [35] used the DEA model for emissions quota allocation in a cap-and-trade sys-
tem, whereas Sun et al. [36] adopted DEA to construct an allocation of emissions permit
mechanism among a group of manufacturing companies.

Despite the wide application, Zhang et al. [37] identified defects in the use of DEA to
allocate carbon emissions targets. DEA was designed for efficiency evaluation rather than
resource allocation; therefore, the adjustment of resources is not the main concern. This
feature may undermine the effectiveness of an allocation scheme since we emphasized the
reduction of undesirable outputs. Thus, inverse DEA emerged as a practical method for
studies on the allocation of carbon emissions targets.

2.2. Inverse DEA and Meta-Frontier DEA

DEA provides a nonparametric approach to estimating production frontiers by mea-
suring the relative efficiency of DMUs performing similar tasks in a production system [13].
Inverse DEA deals with the reversed DEA problem and operates under the principle of
inverse optimization [38]. Wei et al. [39] proposed a reverse DEA method to answer the
following question: If the current efficiency level of a set of DMUs remains the same, then
how much can the output increase if the inputs increase by a certain amount? In other
words, inverse DEA is a type of optimization technique in the form of DEA for dealing
with resource allocation problems at current efficiency levels.

Inverse DEA has been proven useful in various studies. Wei et al. [39] presented
multiple objective linear programming models to estimate output levels when the DMU
under assessment is inefficient [40]. Yan et al. [41] further developed inverse DEA by
applying it to resource allocation. Hu et al. [42] pointed out that an inverse DEA model
has two key features: its base DEA model and adopted measurement efficiency. DEA
models can be categorized as radial and non-radial models. Although various inverse DEA
models were developed, such as Zhang and Cui [43–45], they all belong under the radial
model category.

Most existing inverse DEA models are based on radial DEA models, and their efficiency
measure considers only radial efficiency and neglects slacks. Owing to the incomplete
efficiency measure problem suffered by radial inverse DEA models, their results may be
unreliable [42]. In addition, to achieve efficiency, radial inverse DEA models suggesting
the reduction of resources synchronously without discriminating between different input
variables may be subjective and unreasonable. In this study, we adopt the enhanced Russell
graph measure, so the different variables can have different reduction ratios.
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Many studies adopted DEA to analyze environmental issues under the framework
of eco-efficiency or environmental efficiency. With the development and incorporation of
undesirable outputs in a DEA model, research efforts explored how to improve the degree
of efficiency for the operation and allocation of carbon emissions targets [46]. Traditional
DEA assumes that all countries are similar without considering the heterogeneity of their
capabilities to access and convert resources and reduce carbon emissions. In reality, the cost
of pollution abatement and its impact on productivity tend to differ owing to variations in
technology and resource availability across countries [47,48]. Using a pooling approach to
measure a country’s eco-efficiency performance would be inappropriate, and contradicts
the CBDR-RC principle shared in the international community [15,23]. To the best of our
knowledge, no studies utilizing inverse DEA have considered heterogeneity and integrated
meta-frontier approach in developing resource allocation plans.

3. Methodology

This study adopts a three-stage approach, and different methodologies are applied in
different stages based on specific purposes. A research flow chart is presented in Figure 2.
In the first stage, a meta-frontier DEA method is adopted to assess and compare the
eco-efficiency of developed and developing countries. In the second stage, the specific
super-efficiency method is adopted to rank the efficient countries specifically focused on
carbon performance. In the third stage, carbon dioxide emissions reduction targets are
proposed for the developed and developing countries separately. Then, a new meta-inverse
DEA method is used to allocate the emissions reduction target to the inefficient countries
in each of the specific groups. In this way, we can find the optimal CO2 reduction amount
for the inefficient countries with unchanged eco-efficiency levels.
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3.1. Meta-Frontier and Group Frontiers of the Directional Distance Function

Considering technological heterogeneity, O’Donnell et al. [49] constructed a meta-
frontier and group frontiers to measure their impact on efficiency. A meta-frontier is
composed of DMUs from all groups, whereas group frontiers denote individual groups. A
meta-frontier is presumed to envelop all individual group frontiers. We assume a set of N
DMUs that can be classified into p dissimilar groups (Gg, g = 1, . . . , p). The sample of the
Gg group is Ng, where N1 + N2 + . . . + Np = N. Each DMU has m inputs, s outputs, and
q undesirable outputs. We use inputs x ∈ Rm

+ to produce the desired output y ∈ Rs
+ and

undesirable output b ∈ Rq
+. We assume that the input and output production possibilities

sets (PPS) are convex. The meta-distance directional function and two group-specific
directional distance functions are

⇀
D

M(
x, y, b; gx, gy, gb

)
= Max

{
α+β+ ζ :

(
x−αgx, y +βgy, b + ζgb

)
∈ TM(x, y, b)

}
.

⇀
D

G(
x, y, b; gx, gy, gb

)
= Max

{
γ+ τ+ ρ :

(
x− γgx, y + τgy, b + ρgb

)
∈ TG(x, y, b)

}
,

G = G1, . . . , GP.

We define the meta-technology and the group-specific technology sets as follows:
TM(x, y, b):x ∈ Rm

+ can produce desirable outputs y ∈ Rs
+ and undesirable outputs

b ∈ in the production process.
TG(x, y, b):x ∈ Rm

+ can be used by the economies in group Gg of the first process to
produce the desired outputs y ∈ Rs

+ and undesirable outputs b ∈ in the production process.
In addition, the meta-technology set consists of the G group-specific technology set

TM(x, y, b) =
{

TG1(x, y, b) ∪ . . . ∪ TGP(x, y, b)
}

. According to Fried et al. [50], the direction

vector g =
(

gx, gy, gb

)
should be chosen before the directional distance function is eval-

uated. In this study, we consider the direction to be g =
(

gx=x, gy=y, gb=b
)

[51,52]. The
measurement of inefficiency measure for the economies in the meta-technology and group-
specific technology sets under convex constraints can be constructed as Equations (1) and (2).

⇀
D

M
= Max ∑m

i=1 αM
io + ∑s

r=1 βM
ro + ∑

q
h=1 ζM

ho
S.T.

∑
p
g=1 ∑

Ng
j=1 λ

g
j xg

ij ≤ xg
io − αM

io giox, i = 1, . . . , m,

∑
p
g=1 ∑

Ng
j=1 λ

g
j yg

rj ≥ yg
ro + βM

ro groy, r = 1, . . . , s,

∑
p
g=1 ∑

Ng
j=1 λ

g
j bg

hj ≤ bg
ho − ζM

ho ghob, h = 1, . . . , q,

∑
p
g=1 ∑

Ng
j=1 λ

g
j = 1,

λ
g
j ≥ 0, g = 1, . . . , p.

(1)

⇀
D

G
= Max ∑m

i=1 γ
g
io + ∑s

r=1 τ
g
ro + ∑

q
h=1 ρ

g
ho, g = 1, . . . , P

S.T.

∑
Ng
j=1 λ

g
j xg

ij ≤ xg
io − γ

g
o giox, i = 1, . . . , m,

∑
Ng
j=1 λ

g
j yg

rj ≥ yg
ro + τ

g
o groy, r = 1, . . . , s,

∑
Ng
j=1 λ

g
j bg

ij ≤ bg
ho − ρ

g
o ghob, h = 1, . . . , q,

∑
Ng
j=1 λ

g
j = 1,

λ
g
j ≥ 0.

(2)

where λ
g
j is the intensity variable corresponding to the processes, and N1 + N2 + . . . + Np = N.
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Thus, operational efficiency in the meta-technology and group-specific technology sets
are defined as meta-frontier technology efficiency (MTE) and group-specific technology
efficiency (GTE).

MTEM
o =

[
∑m

i=1 αM
io + ∑s

r=1 βM
ro + ∑q

h=1 ζM
ho

]
/(m + s + q)

and
GTEG

o =
[
∑m

i=1 γ
g
io + ∑s

r=1 τ
g
ro + ∑q

h=1 ρ
g
ho

]
/(m + s + q)

which is between 0 and 1. These variables indicate that the target DMU is efficient if MTEM
o

and GTEG
o are equal to unity.

3.2. Technology Gap Ratio (TGR) and Meta-Frontier Inefficiency

As TM(x, y, b) =
{

TG1(x, y, b) ∪ . . . ∪ TGP(x, y, b)
}

implies that the meta-frontier en-
velopes the G group-specific frontiers, the eco-efficiency measured by the meta-frontier
(MTEM

o ) is less than that measured by the group-specific frontiers (GTEG
o ). Thus,

MTEM
o (x, y, b) ≤ GTEG

o (x, y, b) (3)

The ratio of the efficiency of the meta-frontier to that of the group-specific frontiers is
defined as TGR.

TGR(x, y, b) = MTEM(x, y, b)/GTEG(x, y, b) ≤ 1 (4)

The value of TGR is less than 1, and the closer the TGR to 1, the closer the group-specific
frontiers are to the meta-frontier.

3.3. Inverse DEA Model to Allocate Carbon Emissions Targets and Super Efficiency Model

Based on Emrouznejad et al. [53], the Russell graph measure is integrated into the
efficiency calculation. We perform the following procedures to allocate carbon emissions
reduction targets among the designated DMUs.

First, we use Equation (5) to divide all the DMUs into two sets of efficient and inefficient
DMUs, which are denoted as F and L respectively.

⇀
D

G
= Max ∑m

i=1 γ
g
io + ∑s

r=1 τ
g
ro + ∑

q
h=1 ρ

g
ho, g = 1, . . . , P

S.T.

∑
Ng
j=1 λ

g
j xg

ij ≤ xg
io − γ

g
iogiox, i = 1, . . . , m,

∑
Ng
j=1 λ

g
j yg

rj ≥ yg
ro + τ

g
rogroy, r = 1, . . . , s,

∑
Ng
j=1 λ

g
j bg

ij = bg
ho − ρ

g
hoghob, h = 1, . . . , q,

∑
Ng
j=1 λ

g
j = 1,

λ
g
j ≥ 0.

(5)

L is composed of inefficient DMUs that must reduce undesirable outputs. We assume
that the efficiency level of all the DMUs in L remains at least the same as that before the
undesirable outputs were reduced. At the same time, we let v

g
ik, θ

g
rk, ϑ

g
hk be the levels of the

ith input, rth desirable output, and hth undesirable output of the kth DMU, respectively.
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Second, we establish Equation (6) to allocate the set amount of carbon emissions targets to
the different economies.

Min ∑m
i=1 vik −∑s

r=1 θrk, g = 1, . . . , P
S.T.

∑j∈F λ
k,g
j xg

ij + ∑j∈L vijλkj −
(

1− γ̂
g
ik

)
vik ≤ 0, i = 1, . . . , m,

∑
Ng
j∈F λ

k,g
j yg

rj + ∑j∈L θrjλkj −
(

1 + τ̂
g
rk

)
θrk ≥ 0, r = 1, . . . , s,

∑j∈F λ
g
j bg

hj + ∑j∈L ϑhjλkj −
(

1− ρ̂
g
hk

)
ϑhk = 0, h = 1, . . . , q,

∑j∈F λ
k,g
j + ∑j∈L λ

g
kj = 1, ∀k ∈ L.

∑j∈L ϑhk = Qh, h = 1, . . . , q,
0 ≤ vik ≤ xik, ∀k ∈ L, i = 1, . . . , m,
(1− Crk)y

g
rk ≤ θrk, ∀k ∈ L, r = 1, . . . , s,

0 ≤ ϑhk ≤ bg
hj, ∀k ∈ L, h = 1, . . . , q,

λ
k,g
j ≥ 0, ∀j ∈ Fk, k ∈ L,

λ
g
kj ≥ 0, k, j ∈ L.

(6)

Reducing undesirable outputs may cause the reduction of input and desirable out-
put levels. The objective of Equation (6) is to minimize the total amount of inputs and
maximize the desirable outputs for each DMU in L which needs to reduce the amount of
Qg

h(h = 1, . . . , q) from the hth undesirable outputs. To reflect the reality that limitations
or policy thresholds for certain input or output indicators, we set constraints to limit the
reduction of the desired outputs. (1− Crk)y

g
rk ≤ θ

g
rk ≤ yg

rk(∀k ∈ L, r = 1, . . . , s) where Crk is
a constant given by decision-makers. In this study, Crk = 0.05, meaning that a policy of re-
ducing the GDP by 5% at most to reduce carbon emissions is adopted. Furthermore, γ̂

g
ik, τ̂

g
rk,

and ρ̂
g
hk are parameters guaranteeing the DMU efficiency score in L does not decrease after

the undesirable outputs are reduced, as 0 ≤ γ̂
g
ik ≤ γ

g∗
ik , 0 ≤ τ̂

g
rk ≤ τ

g∗
rk , 0 ≤ ρ̂

g
hk ≤ ρ

g∗
hk , where

γ
g∗
ik , τ

g∗
rk , and ρ

g∗
hk are the optimal values of Equation (5). Let γ̂

g
ik = γ

g∗
ik , τ̂

g
rk = τ

g∗
rk , ρ̂

g
hk = ρ

g∗
hk .

The inverse DEA model (6) can be simplified to the following relaxed linear program-
ming inverse DEA model.

Min ∑m
i=1 v

g
ik −∑s

r=1 θ
g
rk, g = 1, . . . , p

S.T.

∑j∈F λ
k,g
j xg

ij −
(

1− γ
g∗
ik

)
v

g
ik ≤ 0, i = 1, . . . , m,

∑
Ng
j∈F λ

k,g
j yg

rj −
(

1 + τ
g∗
rk

)
θ

g
rk ≥ 0, r = 1, . . . , s,

∑j∈F λ
g
j bg

hj −
(

1− ρ
g∗
hk

)
ϑ

g
hk = 0, h = 1, . . . , q,

∑j∈F λ
k,g
j = 1, ∀k ∈ L.

∑j∈L ϑ
g
hk = Qg

h, h = 1, . . . , q,
0 ≤ v

g
ik ≤ xg

ik, ∀k ∈ L, i = 1, . . . , m,
(1− Crk)y

g
rk ≤ θrk, ∀k ∈ L, r = 1, . . . , s,

0 ≤ ϑ
g
hk ≤ bg

hj, ∀k ∈ L, h = 1, . . . , q,

λ
k,g
j ≥ 0, ∀j ∈ Fk, k ∈ L,

λ
g
kj ≥ 0, k, j ∈ L.

(7)

F is composed of efficient DMUs. In most DEA models, more than one DMU is
efficient, denoted by a score of 1. Likewise, in this study, more than one country shares the
fully efficient status. The super-efficiency model is prominent in its capability to distinguish
the “real” benchmarks among the efficient DMUs. The super-efficiency model operates
as follows: the observed efficient DMU is removed from the PPS, and the distance from
the observed DMU to a point located on the remaining PPS is measured. If the distance is
large, then the super-efficiency of the DMU is high, because it performs much better than
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the other DMUs. We can get the super-efficiency score of the observed DMU by solving the
following linear program.

Min θ
S.T.
∑ j ∈ F

j 6= o

λjxij ≤ θxio, i = 1, . . . , m,

∑ j ∈ F
j 6= o

λjyrj ≥ yro, r = 1, . . . , s,

∑ j ∈ F
j 6= o

λjbij ≤ bho, h = 1, . . . , q,

∑ j ∈ F
j 6= o

λj = 1,

λj ≥ 0.

(8)

4. Results and Discussions
4.1. Data Selection and Description

If a DMU can create considerable value with low impact, then it can be viewed as
eco-efficient or environmentally efficient [9,10]. Countries transform labor, capital, and
energy into a desirable output of GDP and an undesirable output of carbon emissions. If
a country can generate increased GDP with few inputs and low carbon emissions, then
it is more eco-efficient than others. Therefore, a DEA model can be constructed from the
perspective of eco-efficiency.

To illustrate the allocation of carbon emissions reduction quotas for different coun-
tries based on eco-efficiency by the new meta-inverse DEA model, we collect the energy
consumption and carbon emissions data from the US Energy Information Administration
(US EIA) [54] because of its wide coverage of countries and accessibility. However, the
limitation is the carbon emissions data provided by the US EIA only up to 2017. The
data on actual GDP and labor are obtained from Penn World Table, version 9.1 [55]. After
eliminating countries with missing data, we use the data of 149 economies around the
world in 2017.

In this study, we use a meta-frontier framework to evaluate the eco-efficiency of
countries for the following reasons. First, countries at different developmental stages
possess different capabilities. Comparing the eco-efficiency of economies based on the
assumption that they all operate under the same production boundary may lead to bi-
ased results [15,48,52]. Second, though the 2015 Paris Agreement no longer differentiated
between the carbon emissions reduction obligations of developed and developing coun-
tries, it reiterated the CBDR principle. Throughout the development of the international
climate governance regime, all climate conventions adhered to the CBDR principle, which
emphasized its importance.

In accordance with the CBDR principle, we divided all the sample economies by the
OECD membership. Among the 38 OECD member countries, only South Korea and Turkey
are excluded because of insufficient data. All sample economies and their groups are
illustrated in Appendix A.

Table 1 presents the descriptive statistics of all the variables of the two groups. At the
same time, we perform normality tests on all the input and output variables and verify
that the sample economies are not all normally distributed. A special characteristic of DEA
is that it can be used on variables that are not normally distributed. Therefore, DEA is
appropriate for this study.
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Table 1. Descriptive Statistics of all Input and Output Variables of Two Groups.

Group Variable Unit Mean Median Min Max Variance SD Normality
Test

OECD

Labor Million people 16.03 4.80 0.19 154.44 821.00 28.66 <0.01 ***
Energy Quad Btu 6.23 1.50 0.09 97.60 268.00 16.36 <0.01 ***
Capital Billion US dollars 5320.72 1866.21 52.67 56,215.31 103,078,497.00 10,152.76 <0.01 ***

GDP Billion US dollars 1342.58 390.02 15.33 17,711.02 9,178,997.00 3029.69 <0.01 ***
CO2 Million metric tons 330.48 70.64 3.58 5133.44 751,128.00 866.68 <0.01 ***

Non-
OECD

Labor Million people 21.39 3.72 0.05 791.69 8088.00 89.93 <0.01 ***
Energy Quad Btu 2.54 0.22 0.00 139.43 179.00 13.39 <0.01 ***
Capital Billion US dollars 2003.34 184.91 3.35 94,903.73 89,362,528.00 9453.18 <0.01 ***

GDP Billion US dollars 493.01 50.80 0.79 18,978.50 3,938,664.00 1984.61 <0.01 ***
CO2 Million metric tons 176.28 9.49 0.16 10,486.98 1,008,702.00 1004.34 <0.01 ***

Note: The asterisks *** indicate significance level of 1%.

The meta-frontier approach assumes that countries in different developmental stages
operate under different production technology frontiers. To verify whether differences exist
between OECD and non-OECD groups, a non-parametric rank-sum statistical analysis
(Mann–Whitney U-test) is used to test the unknown distribution [56]. The results of the
Mann–Whitney U-test for all the variables between the OECD and non-OECD groups are
reported in Table 2. The statistical results of all the variables, except labor, are significant,
thereby indicating the existence of differences between the OECD and non-OECD members,
which justifies the applicability of the meta-frontier framework.

Table 2. Mann–Whitney U-test of all variables.

Rank-Sum of
OECD Group

Rank-Sum of
Non-OECD Group U Z p-Level

Labor 3079 8246 1691 1.589 0.112

Energy 3854 7471 916 4.999 <0.01 ***
Capital 3949 7376 821 5.417 <0.01 ***

GDP 3838 7487 932 4.929 <0.01 ***
CO2 3756 7.569 1014 4.568 <0.01 ***

Note: The asterisks *** indicate significance level of 1%.

4.2. Meta-Frontier Efficiency Analysis

Based on the meta-frontier assumption, three eco-efficiency indices are estimated for
all economies in the OECD and non-OECD groups. The meta-frontier technology efficiency
(MTE) results show how each country performs compared with all the other countries,
while the group-specific technology efficiency (GTE) indicates the performance of a country
compared with its peers in the subgroup only. The value of MTE and GTE is between 0
and 1. The closer the score is to 1, the better the country performs from the perspective of
eco-efficiency. Table 3 demonstrates that the average MTE of the OECD countries is 0.769,
which is higher than that of the non-OECD countries (the score is 0.718). The results are
conceivable, as developed countries possess advanced technologies as well as sophisticated
managerial capabilities. The average GTE of OECD economies is 0.835, while the average
GTE of non-OECD economies is 0.75. The difference between GTE and MTE of OECD
countries is much bigger than that of non-OECD members. The result indicates that the eco-
efficiency performance of OECD countries is much more similar. The developing countries
are very diversified, including emerging markets that enjoy rapid economic growth as
well as least developing countries where most of the population still suffers from extreme
poverty. The result implies that different developmental stages have an actual impact on a
country’s eco-efficiency.
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Table 3. Descriptive Statistics of MTE, GTE, and TGR of Two Groups.

Valid N Mean Min Max SD

OECD
MTE 36 0.769 0.508 1.000 0.170
GTE 36 0.835 0.514 1.000 0.171
TGR 36 0.928 0.558 1.000 0.113

Non-
OECD

MTE 113 0.718 0.390 1.000 0.176
GTE 113 0.750 0.390 1.000 0.172
TGR 113 0.957 0.711 1.000 0.065

All
Economies

MTE 149 0.730 0.390 1.000 0.175
GTE 149 0.771 0.390 1.000 0.175
TGR 149 0.950 0.558 1.000 0.080

The technology gap ratio (TGR) results, which show how close the subgroup frontier
is to the meta-frontier, present a different picture. The average TGR of the OECD countries
is 0.928, which is lower than that of the developing countries. In general, a TGR equal to 1
implies that an economy is located on the subgroup frontier as well as on the meta-frontier.
A country achieving unity of TGR means that the country is not only the benchmark among
its peers in the subgroup, but also the global leader among all countries. However, two
scenarios can make the TGR equal to 1 (please refer to Figure 3). In Scenario one, a country
achieves a score of 1 in its GTE as well as in its MTE, which means that the country is
on the subgroup frontier as well as on the meta-frontier. In Scenario two, the GTE and
MTE scores of a country are less than 1 but the same. Clearly, only the first scenario can
identify the true global leader. Therefore, distinguishing between the two scenarios is
necessary. Figure 3 shows the number of countries with the two scenarios in the OECD and
non-OECD groups. Among the countries in the OECD group whose TGR reaches unity,
35% are global leaders. Meanwhile, among the non-OECD countries, only 18% are global
leaders. The above analysis explains that the high TGR score of the non-OECD group is
not because it has a higher share of global leaders but because many of its members have
identical GTE and MTE scores.
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4.3. Specific Super Efficiency Analysis

The GTE value reveals which countries are the most efficient in their subgroup. The
empirical results demonstrate that many countries locate on the efficiency frontier (the GTE
score is 1) in the OECD and non-OECD groups. In the OECD group, as many as 44% of
the countries are located on the frontier. The empirical results raise some questions. First,
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can we rank all the efficient countries by order? Second, as a composite measurement of
eco-efficiency, radial DEA assumes proportional improvements of inputs or outputs. It is
not valid when there is a preference for improvement of a particular set of performance
measurements. For instance, from the perspective of reducing GHG emissions, which
country is the most efficient among its peers? For this purpose, we fix all the other input
and output variables and allow only the adjustment of carbon emissions. Then, we use the
super-efficiency method to rank the efficient countries based on their super-efficiency value
(SEV). By doing so, we can focus only on the CO2 efficiency of all the sample countries.

Table 4 lists all the efficient countries in their subgroup. After adopting the specific
super-efficiency method, we can clearly identify the new ranking of all the efficient coun-
tries. According to their SEV, the top emitters in the non-OECD group, namely, China,
India, Brazil, and Indonesia, demonstrate an evident decrease in their efficiency scores. The
second-largest emitter, namely, the United States, ranks 13 among the 16 efficient countries
in the OECD group with respect to the SEV.

Table 4. Specific Super Efficiency Value of Efficient Countries.

Group Country SEV Group Country SEV

OECD

Ireland 1.467

Non-
OECD

Sao Tome and Principe 1.811
Switzerland 1.392 Nigeria 1.756

Poland 1.201 Sri Lanka 1.578
Costa Rica 1.172 Iraq 1.265

United Kingdom 1.157 Gabon 1.219
Luxembourg 1.110 Equatorial Guinea 1.159

Germany 1.085 Mali 1.138
Norway 1.030 Grenada 1.045
France 0.982 Qatar 1.005
Estonia 0.976 Kuwait 1.000
Mexico 0.945 Azerbaijan 0.987
Japan 0.930 United Arab Emirates 0.952

United States 0.809 Saudi Arabia 0.952
Colombia 0.705 Chad 0.929

Italy 0.643 India 0.928
Iceland 0.546 Egypt 0.905

Brazil 0.855
Seychelles 0.840

China 0.709
Uganda 0.651

Indonesia 0.635
Ethiopia 0.548
Aruba 0.456
Bhutan 0.427

4.4. Inver DEA Results and the Allocation of CO2 Emissions Reduction

The first stage of inverse DEA is to distinguish which countries are inefficient, and the
second stage is to allocate the carbon emissions reduction targets to the inefficient countries.
Based on Equation (7), the total carbon emissions reduction targets are allocated to the
inefficient countries in OECD and non-OECD groups.

The Emissions Gap Report 2021 [1] suggested that to meet the Paris Agreement, the
world must reduce carbon emissions by 30% to limit global warming to 2 ◦C and by 55% to
limit global warming to 1.5 ◦C. Stocker [57] concludes that “economic models estimate that
feasible maximum rates of emissions reduction may not exceed about 5% per year”. Thus,
we set the emissions reduction targets as 5% of the sample countries’ total carbon emissions
each year. From the previous discussion, we determine that requiring developing countries
to assume the same mitigation burden as developed countries would be unrealistic and
unfair. Although there are various carbon reduction allocation principles such as [57,58],
this study focused on how inefficient countries can achieve the reduction targets collectively.
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As an illustration, we assign 70% of the reduction target to the OECD countries and
30% to the non-OECD countries based on the perspective of historic responsibility and
different capabilities which constitutes the cornerstone of CBDR [59–61]. Then, we perform
the new meta-inverse DEA to allocate the reduction targets among the developed and
developing countries. The process is explained in Appendix B. The results are presented in
Tables 5 and 6.

Table 5. Actual and Targeted CO2 Emissions for Inefficient OECD Countries.

Country Reduction
Amount

Actual
Emissions Country Reduction

Amount
Actual

Emissions

Australia 188.30 411.10 Israel 28.24 72.20
Austria 46.89 69.07 Latvia 0.00 8.09
Belgium 43.22 137.84 Lithuania 0.00 14.77
Canada 230.63 624.83 Netherlands 76.50 240.94

Chile 48.59 87.26 New Zealand 34.17 40.09
Czech Republic 31.33 110.78 Portugal 27.71 60.21

Denmark 35.46 36.20 Slovakia 15.67 35.63
Finland 25.00 45.50 Slovenia 6.53 13.90
Greece 23.82 75.84 Spain 258.17 300.39

Hungary 27.97 52.46 Sweden 51.56 52.64

Table 6. Actual and Targeted CO2 Emissions for Inefficient non-OECD Countries.

Country Reduction
Amount

Actual
Emissions Country Reduction

Amount Actual Emissions

Albania 1.347 4.555 Malawi 0.438 1.027
Algeria 25.386 142.315 Malaysia 26.348 228.217
Angola 9.595 19.380 Maldives 0.239 1.767

Argentina 25.217 210.133 Malta 0.591 8.849
Armenia 1.896 5.809 Mauritania 0.452 2.616
Bahrain 1.338 40.268 Mauritius 0.653 6.650

Bangladesh 20.837 82.120 Mongolia 0.801 19.748
Barbados 0.095 1.709 Montenegro 0.495 2.373
Belarus 5.045 60.790 Morocco 8.115 55.710
Belize 0.000 0.580 Mozambique 0.618 10.036
Benin 0.464 6.621 Namibia 0.740 3.982
Bosnia 0.826 18.705 Nepal 2.510 7.681

Botswana 0.936 7.676 Nicaragua 1.125 5.265
Bulgaria 3.513 45.158 Niger 0.334 2.441

Burkina Faso 0.606 3.297 North Macedonia 0.679 6.602
Burundi 0.000 0.222 Oman 5.505 67.007

Cabo Verde 0.123 0.866 Pakistan 49.921 197.059
Cambodia 1.184 10.742 Panama 2.669 26.988
Cameroon 2.699 7.074 Paraguay 2.291 8.763

Central African 0.125 0.381 Peru 12.490 53.356
Comoros 0.000 0.277 Philippines 33.389 129.872
Croatia 4.748 17.281 Romania 25.353 75.590
Cyprus 0.632 8.115 Rwanda 0.457 0.923
Djibouti 0.115 0.862 Saint Lucia 0.000 0.469

Dominican Republic 5.679 22.017 Senegal 1.407 9.337
Ecuador 4.521 37.237 Serbia 2.350 47.086
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Table 6. Cont.

Country Reduction
Amount

Actual
Emissions Country Reduction

Amount Actual Emissions

El Salvador 1.720 6.351 Sierra Leone 0.234 0.920
Eswatini 0.535 1.092 Singapore 11.511 256.523

Fiji 0.178 2.456 South Africa 14.718 476.866
Georgia 2.313 9.907 Sudan 7.296 20.178
Ghana 7.353 15.001 Suriname 0.152 2.095

Guatemala 4.005 17.985 Taiwan 37.519 324.679
Guinea 0.693 2.746 Tajikistan 1.176 6.093

Guinea-Bissau 0.000 0.311 Thailand 34.745 342.800
Haiti 0.346 3.420 Togo 0.211 2.755

Honduras 1.140 8.767 Trinidad 0.826 50.313
Jamaica 0.414 8.852 Tunisia 3.412 24.894
Jordan 2.646 27.187 Turkmenistan 2.837 99.518

Kazakhstan 9.753 295.522 Ukraine 9.491 204.483
Kenya 5.121 18.022 Uruguay 3.606 7.283

Kyrgyzstan 1.025 8.460 Uzbekistan 9.887 95.714
Lebanon 2.294 27.190 Yemen 1.524 9.649
Lesotho 0.180 0.675 Zambia 2.491 5.032
Liberia 0.087 1.201 Zimbabwe 0.576 9.976

Madagascar 0.993 3.498

The average carbon emissions of the 21 inefficient OECD countries are 124.49 million
tons, among which Canada, Australia, and Japan are the largest emitters, with emissions
of 624, 411, and 300 million tons, respectively. The inverse DEA results suggest that
Spain should reduce its carbon emissions the most, followed by Canada and Australia.
Meanwhile, Lithuania and Latvia hardly need to reduce their carbon emissions.

For the inefficient non-OECD group, South Africa, Thailand, and Taiwan have the
highest carbon emission. The carbon emission of South Africa is 10 times higher than
the average emission amount in this group. Thailand and Taiwan are 7 times more than
the average emissions. The inverse DEA result suggests Pakistan, Taiwan, and Thailand
need to reduce the most CO2 emissions. Pakistan needs to cut its emissions by 25%, while
Taiwan and Thailand need to cut their emissions by about 10%.

5. Conclusions

As climate change intensifies, engaging all stakeholders to take ambitious climate
action to combat global warming is imperative. Many countries are reluctant to take ambi-
tious climate action owing to concerns that mitigation measures may hurt their economic
growth. Inverse DEA can be used to determine optimal input and output levels without
sacrificing the current eco-efficiency level. Thus, the method can help decision-makers
establish carbon emissions reduction strategies effectively. However, treating countries as
having the same capability to mitigate carbon emissions without considering their different
developmental stages is not only unrealistic but also inappropriate. This study contributes
to the methodology by incorporating a meta-concept into inverse DEA. Thus, this study not
only extends the application to inverse DEA but also conforms to the consensus on interna-
tional climate negotiations. Based on the CBDR principle under the UNFCCC regime, this
study proposes a new meta-inverse DEA model and suggests carbon emissions reduction
targets for developed and developing countries.

This study adopts a three-stage approach. The first stage uses a meta-frontier DEA
method to assess and compare the eco-efficiency of developed and developing countries.
The empirical results show that the OECD economies have higher average efficiency scores
among all the sample economies and their individual subgroup according to their MTE
and GTE. Presumably, the OECD group should also lead the non-OECD group in terms of
TGR, while the results demonstrate that the non-OECD group has a higher average TGR
value than that of the OECD group. By further investigation, the authors find that it is
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necessary to clarify two different situations to identify the real global leaders who achieve
unity both in MTE and GTE. Prior studies have never emphasized the difference, which
may lead to a wrong conclusion.

According to Beusch et al. [62], the increase in GHGs throughout the 1991–2030
period is mostly caused by the top five emitters, namely China, the United States, the
European Union (EU-27), India, and Russia. From the traditional single-factor point of
view, the biggest emitters should reduce the most carbon emissions. However, from the
eco-efficient point of view, the empirical results show that the largest emitters such as the
United States, United Kingdom, Germany, China, and India, are efficient in their subgroup.
Stabilized economic development and environmental protection are both important for
human development. Eco-efficiency evaluation which is based on a cost-effective approach
thus contributes to striking the balance between economic growth and environmental
protection. This does not mean the big emitters can shy away from their mitigation
responsibilities. Therefore, in the second stage, this study further employs the specific super-
efficiency method to rank the efficient countries specifically focused on carbon emissions
performance. The efficiency scores of the big emitters decreased after adopting the specific
super-efficiency approach which offers the opportunity to adjust resource allocations.

In the third stage, carbon dioxide emissions reduction targets are proposed to the
developed and developing countries separately based on the perspective of historical
responsibility which is the cornerstone of the CBDR principle. Then, a new meta-inverse
DEA method is used to allocate the emissions reduction target to the inefficient countries
in each of the specific groups. In this way, we can find the optimal CO2 reduction amount
for the inefficient countries without decreasing their current eco-efficiency level.

This research attempts to provide a new method for achieving carbon emissions targets
through resource planning. Policymakers can adjust constraints based on actual situations.
The implications of the new meta-inverse DEA method proposed in this study are twofold.
The method can identify how a DMU can reduce undesirable outputs without sacrificing
the set eco-efficiency target, which is especially useful in achieving a net-zero target since
this method provides a roadmap for decision-makers to understand how to allocate the
emissions reduction targets to different units. In addition, this method can be applied to
heterogeneous groups where they are assigned to different emissions reduction targets.

There are some limitations of this study.

• Due to data availability, this study uses the 2017 data to illustrate the applicability of
the new meta-inverse DEA. If complete data sets are available, the sample countries
and study period can be expanded.

• This study is lacking a time-series analysis. Future studies can try to integrate the
meta frontier Malmquist performance index (MMPI) proposed by [63] to inverse DEA.

This study shows that this method can be operationalized. Future studies can employ
this method to solve resource allocation problems across a wide range of disciplines. This
method can also be applied to different levels, such as regional or firm levels. Although the
large emitters discussed in this study are efficient from the perspective of environmental
efficiency, they should not shy away from their responsibility of reducing carbon emissions.
Future research can compare suggested carbon emissions reduction targets based on differ-
ent allocation principles. In addition, future studies can further examine factors that can
affect environmental efficiency.
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Appendix A

Table A1. Classification of Sample Economies.

Group Economy N

OECD

Austria *, Australia *, Belgium *, Canada *, Chile, Colombia, Costa Rica, Czech Republic *,
Denmark *, Estonia *, Finland *, France *, Germany *, Greece *, Hungary *, Iceland *, Ireland *,

Israel, Italy *, Japan *, Latvia *, Lithuania *, Luxembourg *, Mexico, Netherlands *, New Zealand *,
Norway *, Poland *, Portugal *, Slovakia *, Slovenia *, Spain *, Sweden *, Switzerland *, United

Kingdom *, United States *

36

Non-OECD

Albania, Algeria, Angola, Argentina, Armenia, Aruba, Azerbaijan, Bahrain, Bangladesh,
Barbados, Belarus *, Belize, Benin, Bhutan, Bosnia and Herzegovina, Botswana, Brazil, Bulgaria *,

Burkina Faso, Burundi, Cabo Verde, Cambodia, Cameroon, Central African Republic, Chad,
China, Comoros, Croatia, Cyprus, Djibouti, Dominican Republic, Ecuador, Egypt, El Salvador,

Equatorial Guinea, Eswatini, Ethiopia, Fiji, Gabon, Georgia, Ghana, Grenada, Guatemala, Guinea,
Guinea-Bissau, Haiti, Honduras, India, Indonesia, Iraq, Jamaica, Jordan, Kazakhstan, Kenya,

Kuwait, Kyrgyzstan, Lebanon, Lesotho, Liberia, Madagascar, Malawi, Malaysia, Maldives, Mali,
Malta, Mauritania, Mauritius, Mongolia, Montenegro, Morocco, Mozambique, Namibia, Nepal,

Nicaragua, Niger, Nigeria, North Macedonia, Oman, Pakistan, Panama, Paraguay, Peru,
Philippines, Qatar, Romania, Rwanda, Saint Lucia, Sao Tome and Principe, Saudi Arabia, Senegal,
Serbia, Seychelles, Sierra Leone, Singapore, South Africa, Sri Lanka, Sudan, Suriname, Taiwan,

Tajikistan, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkmenistan, Uganda, Ukraine, United
Arab Emirates, Uruguay, Uzbekistan, Yemen, Zambia, Zimbabwe

113

Note: * indicates the Annex I countries to UNFCCC.

Appendix B

This study first set a CO2 emissions reduction target to limit global warming to 1.5 ◦C.
Then applying the new meta-inverse DEA we proposed to allocate the amount to the
developed and developing countries respectively based on the CBDR principle. As an
illustration, 70% of the reduction target is assigned to developed countries and 30% to
developing countries. Then Equation (7) is employed to calculate the reduction amount for
each inefficient country with unchanged efficiency.

Table A2. The Process for Allocating Reduction Targets Using New Meta-Inverse DEA.

Steps Descriptions Amount

Step 1. Determine the CO2
emissions target.

5% of the total CO2 emissions of
the sample countries 33,593.3 × 0.05 = 1679.665

Step 2. Allocate the emissions
targets to the inefficient

countries in the two groups.

Developed countries 70% of the CO2 emissions target 1679.665 × 0.7 = 1199.76

Developing countries 30% of the CO2 emissions target 1679.665 × 0.3 = 479.905



Int. J. Environ. Res. Public Health 2023, 20, 4044 18 of 20

Table A2. Cont.

Steps Descriptions Amount

Step 3. Use the new
meta-inverse DEA method for

calculation.

Developed countries

Calculate the CO2 reduction
amount of each inefficient

country in OECD group using
Equation (7) to meet the 70%
reduction target collectively.

Please refer to Table 5 for
results.

Developing countries

Calculate the CO2 reduction
amount of each inefficient

country in the non-OECD group
using Equation (7) to meet the

70% reduction target
collectively.

Please refer to Table 6 for
results.
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